GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
25 publications using GAP in the category "Order, lattices, ordered algebraic structures"[CGW03] Claesson, A., Godsil, C. D., and Wagner, D. G., A permutation group determined by an ordered set, Discrete Math., 269 (13) (2003), 273–279. [DLM10] Dai Pra, P., Louis, P., and Minelli, I. G., Realizable monotonicity for continuoustime Markov processes, Stochastic Process. Appl., 120 (6) (2010), 959–982. [D13] DeMeo, W., Expansions of finite algebras and their congruence lattices, Algebra Universalis, 69 (3) (2013), 257–278. [DHS11] Duncan, D. M., Hoffman, T. R., and Solazzo, J. P., Numerical measures for twographs, Rocky Mountain J. Math., 41 (1) (2011), 133–154. [GK97] Geck, M. and Kim, S., Bases for the BruhatChevalley order on all finite Coxeter groups, J. Algebra, 197 (1) (1997), 278–310. [HMS15] Hawthorn, I., Manoharan, S., and Stokes, T., Groups with fixset quasiorder, Algebra Universalis, 74 (34) (2015), 229–239. [HL07] Hohlweg, C. and Lange, C. E. M. C., Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., 37 (4) (2007), 517–543. [HMP12] Horváth, G., Mayr, P., and Pongrácz, A., Characterizing translations on groups by cosets of their subgroups, Comm. Algebra, 40 (9) (2012), 3141–3168. [J05] Jonsson, J., Simplicial complexes of graphs and hypergraphs with a bounded covering number, SIAM J. Discrete Math., 19 (3) (2005), 633–650. [J05] Jonsson, J., Optimal decision trees on simplicial complexes, Electron. J. Combin., 12 (2005), Research Paper 3, 31. [LNP04] Larrión, F., NeumannLara, V., and Pizaña, M. A., Clique divergent clockwork graphs and partial orders, Discrete Appl. Math., 141 (13) (2004), 195–207. [ME04] Martin, P. P. and Elgamal, A., Ramified partition algebras, Math. Z., 246 (3) (2004), 473–500. [M15] Mühle, H., ELshellability and noncrossing partitions associated with wellgenerated complex reflection groups, European J. Combin., 43 (2015), 249–278. [MPW12] Monson, B., Pellicer, D., and Williams, G., The tomotope, Ars Math. Contemp., 5 (2) (2012), 355–370. [MS14] Monson, B. and Schulte, E., Finite polytopes have finite regular covers, J. Algebraic Combin., 40 (1) (2014), 75–82. [OP14] O'Neill, C. and Pelayo, R., On the linearity of $\omega$primality in numerical monoids, J. Pure Appl. Algebra, 218 (9) (2014), 1620–1627. [OR12] Otera, D. E. and Russo, F. G., Subgroup Scommutativity degrees of finite groups, Bull. Belg. Math. Soc. Simon Stevin, 19 (2) (2012), 373–382. [P95] Pahlings, H., Character polynomials and the Möbius function, Arch. Math. (Basel), 65 (2) (1995), 111–118. [PS95] Pálfy, P. P. and Szabó, C., Congruence varieties of groups and abelian groups, in Lattice theory and its applications (Darmstadt, 1991), Heldermann, Lemgo, Res. Exp. Math., 23 (1995), 163–183. [P04] Pfeiffer, G., Counting transitive relations, J. Integer Seq., 7 (3) (2004), Article 04.3.2, 11. [R02] Reading, N., Order dimension, strong Bruhat order and lattice properties for posets, Order, 19 (1) (2002), 73–100. [RS10] Reiner, V. and Stamate, D. I., Koszul incidence algebras, affine semigroups, and StanleyReisner ideals, Adv. Math., 224 (6) (2010), 2312–2345. [S16] Smith, J. P., Intervals of permutations with a fixed number of descents are shellable, Discrete Math., 339 (1) (2016), 118–126. [W09] Woodroofe, R., Cubical convex ear decompositions, Electron. J. Combin., 16 (2, Special volume in honor of Anders Björner) (2009), Research Paper 17, 33. [W07] Woodroofe, R., Shelling the coset poset, J. Combin. Theory Ser. A, 114 (4) (2007), 733–746. 
The GAP Group Last updated: Thu Jun 7 12:15:03 2018 