GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

175 publications using GAP in the category "Number theory"

[A97] Adler, A., The Mathieu group $M_11$ and the modular curve $X(11)$, Proc. London Math. Soc. (3), 74 (1) (1997), 1–28.

[AG08] Aguglia, A. and Giuzzi, L., Construction of a 3-dimensional MDS-code, Contrib. Discrete Math., 3 (1) (2008), 39–46.

[AG10] Aguiló-Gost, F. and García-Sánchez, P. A., Factoring in embedding dimension three numerical semigroups, Electron. J. Combin., 17 (1) (2010), Research Paper 138, 21.

[AH16] Araya, M. and Harada, M., On the classification of certain ternary codes of length 12, Hiroshima Math. J., 46 (1) (2016), 87–96.

[A07] Asaeda, M., Galois groups and an obstruction to principal graphs of subfactors, Internat. J. Math., 18 (2) (2007), 191–202.

[APS05] Ash, A., Pollack, D., and Sinnott, W., $A_6$-extensions of $\Bbb Q$ and the mod $p$ cohomology of $\rm GL_3(\Bbb Z)$, J. Number Theory, 115 (1) (2005), 176–196.

[AM+15] Awtrey, C., Miles, N., Milstead, J., Shill, C., and Strosnider, E., Degree 14 2-adic fields, Involve, 8 (2) (2015), 329–336.

[AT+16] Azizi, A., Talbi, M., Talbi, M., Derhem, A., and Mayer, D. C., The group $\textGal(k_3^(2)|k)$ for $k=\BbbQ(\sqrt-3,\sqrtd)$ of type $(3,3)$, Int. J. Number Theory, 12 (7) (2016), 1951–1986.

[X05] Šuch, O., On families of additive exponential sums, Finite Fields Appl., 11 (4) (2005), 700–723.

[B06] Bailey, R. F., Uncoverings-by-bases for base-transitive permutation groups, Des. Codes Cryptogr., 41 (2) (2006), 153–176.

[BD14] Baishya, S. J. and Das, A. K., Harmonic numbers and finite groups, Rend. Semin. Mat. Univ. Padova, 132 (2014), 33–43.

[BOP17] Barron, T., O'Neill, C., and Pelayo, R., On dynamic algorithms for factorization invariants in numerical monoids, Math. Comp., 86 (307) (2017), 2429–2447.

[B17] Bartholdi, L., Representation zeta functions of self-similar branched groups, Groups Geom. Dyn., 11 (1) (2017), 29–56.

[B00] Bartholdi, L., Lamps, factorizations, and finite fields, Amer. Math. Monthly, 107 (5) (2000), 429–436.

[BB+15] Bartholdi, L., Buff, X., Graf von Bothmer, H., and Kröker, J., Algorithmic construction of Hurwitz maps, Exp. Math., 24 (1) (2015), 76–92.

[BB07] Bartholdi, L. and Bush, M. R., Maximal unramified 3-extensions of imaginary quadratic fields and $\rm SL_2(\Bbb Z_3)$, J. Number Theory, 124 (1) (2007), 159–166.

[BH10] Bartholdi, L. and de la Harpe, P., Representation zeta functions of wreath products with finite groups, Groups Geom. Dyn., 4 (2) (2010), 209–249.

[B10] Benesh, B., The probabilistic zeta function, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 1–9.

[BGP11] Blanco, V., García-Sánchez, P. A., and Puerto, J., Counting numerical semigroups with short generating functions, Internat. J. Algebra Comput., 21 (7) (2011), 1217–1235.

[BP12] Blanco, V. and Puerto, J., An application of integer programming to the decomposition of numerical semigroups, SIAM J. Discrete Math., 26 (3) (2012), 1210–1237.

[BB04] Bley, W. and Boltje, R., Cohomological Mackey functors in number theory, J. Number Theory, 105 (1) (2004), 1–37.

[B06] Booker, A. R., Artin's conjecture, Turing's method, and the Riemann hypothesis, Experiment. Math., 15 (4) (2006), 385–407.

[B16] Bors, A., Classification of finite group automorphisms with a large cycle, Comm. Algebra, 44 (11) (2016), 4823–4843.

[BMV15] Braić, S., Mandić, J., and Vučičić, T., Primitive block designs with automorphism group $\rm PSL(2,q)$, Glas. Mat. Ser. III, 50(70) (1) (2015), 1–15.

[BP00] Bratus, S. and Pak, I., Fast constructive recognition of a black box group isomorphic to $S_n$ or $A_n$ using Goldbach's conjecture, J. Symbolic Comput., 29 (1) (2000), 33–57.

[B97] Breuer, T., Integral bases for subfields of cyclotomic fields, Appl. Algebra Engrg. Comm. Comput., 8 (4) (1997), 279–289.

[BG13] Browkin, J. and Gangl, H., Tame kernels and second regulators of number fields and their subfields, J. K-Theory, 12 (1) (2013), 137–165.

[B12] Butske, W., Endomorphisms of two dimensional Jacobians and related finite algebras, Canad. Math. Bull., 55 (1) (2012), 38–47.

[CD06] Calegari, F. and Dunfield, N. M., Automorphic forms and rational homology 3-spheres, Geom. Topol., 10 (2006), 295–329.

[CC+04] Campbell, C. M., Campbell, P. P., Doostie, H., and Robertson, E. F., On the Fibonacci length of powers of dihedral groups, in Applications of Fibonacci numbers. Vol. 9, Kluwer Acad. Publ., Dordrecht (2004), 69–85.

[C09] Cao, W., Smith normal form of augmented degree matrix and its applications, Linear Algebra Appl., 431 (10) (2009), 1778–1784.

[C13] Cao, W., Degree matrices and estimates for exponential sums of polynomials over finite fields, J. Algebra Appl., 12 (7) (2013), 1350030, 9.

[CO01] Caprotti, O. and Oostdijk, M., Formal and efficient primality proofs by use of computer algebra oracles, J. Symbolic Comput., 32 (1-2) (2001), 55–70
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[C03] Cardona, G., On the number of curves of genus 2 over a finite field, Finite Fields Appl., 9 (4) (2003), 505–526.

[CM08] Carlip, W. and Mincheva, M., Symmetry of iteration graphs, Czechoslovak Math. J., 58(133) (1) (2008), 131–145.

[CM07] Carlip, W. and Mincheva, M., Component growth of iteration graphs under the squaring map modulo $p^k$, Fibonacci Quart., 45 (3) (2007), 239–246 (2008).

[CS07] Carlip, W. and Somer, L., Primitive Lucas $d$-pseudoprimes and Carmichael-Lucas numbers, Colloq. Math., 108 (1) (2007), 73–92.

[CC99] Carnahan, S. and Childs, L., Counting Hopf Galois structures on non-abelian Galois field extensions, J. Algebra, 218 (1) (1999), 81–92.

[CGL09] Chapman, S. T., García-Sánchez, P. A., and Llena, D., The catenary and tame degree of numerical monoids, Forum Math., 21 (1) (2009), 117–129.

[CG+11] Chapman, S. T., García-Sánchez, P. A., Llena, D., and Marshall, J., Elements in a numerical semigroup with factorizations of the same length, Canad. Math. Bull., 54 (1) (2011), 39–43.

[CGP14] Chapman, S. T., Gotti, F., and Pelayo, R., On delta sets and their realizable subsets in Krull monoids with cyclic class groups, Colloq. Math., 137 (1) (2014), 137–146.

[CD15] Chen, B. and Dinh, H. Q., Equivalence classes and structures of constacyclic codes over finite fields, in Algebra for secure and reliable communication modeling, Amer. Math. Soc., Providence, RI, Contemp. Math., 642 (2015), 181–223.

[CDH14] Cheng, M. C. N., Duncan, J. F. R., and Harvey, J. A., Umbral moonshine and the Niemeier lattices, Res. Math. Sci., 1 (2014), Art. 3, 81.

[CDH14] Cheng, M. C. N., Duncan, J. F. R., and Harvey, J. A., Umbral moonshine, Commun. Number Theory Phys., 8 (2) (2014), 101–242.

[CH+15] Chu, H., Hoshi, A., Hu, S., and Kang, M., Noether's problem for groups of order 243, J. Algebra, 442 (2015), 233–259.

[C05] Chua, K. S., Extremal modular lattices, McKay Thompson series, quadratic iterations, and new series for $\pi$, Experiment. Math., 14 (3) (2005), 343–357.

[CLY04] Chua, K. S., Lang, M. L., and Yang, Y., On Rademacher's conjecture: congruence subgroups of genus zero of the modular group, J. Algebra, 277 (1) (2004), 408–428.

[CGS12] Cicalò, S., de Graaf, W. A., and Schneider, C., Six-dimensional nilpotent Lie algebras, Linear Algebra Appl., 436 (1) (2012), 163–189.

[CGM16] Ciolan, E., García-Sánchez, P. A., and Moree, P., Cyclotomic numerical semigroups, SIAM J. Discrete Math., 30 (2) (2016), 650–668.

[C05] Cochet, C., Kostka numbers and Littlewood-Richardson coefficients, in Integer points in polyhedra—geometry, number theory, algebra, optimization, Amer. Math. Soc., Providence, RI, Contemp. Math., 374 (2005), 79–89.

[C93] Cohen, H., A course in computational algebraic number theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics, 138 (1993), xii+534 pages.

[CK17] Colton, S. and Kaplan, N., The realization problem for delta sets of numerical semigroups, J. Commut. Algebra, 9 (3) (2017), 313–339.

[CJ+13] Conder, M. D. E., Jones, G. A., Streit, M., and Wolfart, J., Galois actions on regular dessins of small genera, Rev. Mat. Iberoam., 29 (1) (2013), 163–181.

[CKK01] Cornelissen, G., Kato, F., and Kontogeorgis, A., Discontinuous groups in positive characteristic and automorphisms of Mumford curves, Math. Ann., 320 (1) (2001), 55–85.

[DF+97] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., and Wildanger, K., KANT V4, J. Symbolic Comput., 24 (3-4) (1997), 267–283
(Computational algebra and number theory (London, 1993)).

[DH+16] De Beule, J., Héger, T., Szőnyi, T., and Van de Voorde, G., Blocking and double blocking sets in finite planes, Electron. J. Combin., 23 (2) (2016), Paper 2.5, 21.

[GP09] de Graaf, W. A. and Pavan, A., Constructing arithmetic subgroups of unipotent groups, J. Algebra, 322 (11) (2009), 3950–3970.

[D12] Degtyarev, A., Topology of algebraic curves, Walter de Gruyter \& Co., Berlin, De Gruyter Studies in Mathematics, 44 (2012), xvi+393 pages
(An approach via dessins d'enfants).

[DR14] Dejou, G. and Roblot, X., A Brumer-Stark conjecture for non-abelian Galois extensions, J. Number Theory, 142 (2014), 51–88.

[DF+13] Delgado, M., Farrán, J. I., García-Sánchez, P. A., and Llena, D., On the generalized Feng-Rao numbers of numerical semigroups generated by intervals, Math. Comp., 82 (283) (2013), 1813–1836.

[DGR16] Delgado, M., García-Sánchez, P. A., and Robles-Pérez, A. M., Numerical semigroups with a given set of pseudo-Frobenius numbers, LMS J. Comput. Math., 19 (1) (2016), 186–205.

[DG+08] Delgado, M., García-Sánchez, P. A., Rosales, J. C., and Urbano-Blanco, J. M., Systems of proportionally modular Diophantine inequalities, Semigroup Forum, 76 (3) (2008), 469–488.

[DR06] Delgado, M. and Rosales, J. C., On the Frobenius number of a proportionally modular Diophantine inequality, Port. Math. (N.S.), 63 (4) (2006), 415–425.

[DKC10] Deveci, Ö., Karaduman, E., and Campbell, C. M., The periods of $k$-nacci sequences in centro-polyhedral groups and related groups, Ars Combin., 97A (2010), 193–210.

[DGH98] Dong, C., Griess Jr. , R. L., and Höhn, G., Framed vertex operator algebras, codes and the Moonshine module, Comm. Math. Phys., 193 (2) (1998), 407–448.

[DJ15] Dubickas, A. and Jankauskas, J., Simple linear relations between conjugate algebraic numbers of low degree, J. Ramanujan Math. Soc., 30 (2) (2015), 219–235.

[DER07] Dutour, M., Erdahl, R., and Rybnikov, K., Perfect Delaunay polytopes in low dimensions, Integers, 7 (2007), A39, 49.

[D17] Dutour Sikirić, M., The seven dimensional perfect Delaunay polytopes and Delaunay simplices, Canad. J. Math., 69 (5) (2017), 1143–1168.

[DES11] Dutour Sikirić, M., Ellis, G., and Schürmann, A., On the integral homology of $\rm PSL_4(\Bbb Z)$ and other arithmetic groups, J. Number Theory, 131 (12) (2011), 2368–2375.

[DG+16] Dutour Sikirić, M., Gangl, H., Gunnells, P. E., Hanke, J., Schürmann, A., and Yasaki, D., On the cohomology of linear groups over imaginary quadratic fields, J. Pure Appl. Algebra, 220 (7) (2016), 2564–2589.

[EGS13] Elbaz-Vincent, P., Gangl, H., and Soulé, C., Perfect forms, K-theory and the cohomology of modular groups, Adv. Math., 245 (2013), 587–624.

[EG+08] Estrada, S., García-Rozas, J. R., Peralta, J., and Sánchez-García, E., Group convolutional codes, Adv. Math. Commun., 2 (1) (2008), 83–94.

[E17] Euvrard, C., Majoration explicite sur le nombre de coefficients suffisants pour déterminer une fonction $L$, J. Théor. Nombres Bordeaux, 29 (1) (2017), 51–83.

[FK03] Fieker, C. and Klüners, J., Minimal discriminants for fields with small Frobenius groups as Galois groups, J. Number Theory, 99 (2) (2003), 318–337.

[FL13] Fité, F. and Lario, J., The twisting representation of the $L$-function of a curve, Rev. Mat. Iberoam., 29 (3) (2013), 749–764.

[FS04] Freitag, E. and Salvati Manni, R., The Burkhardt group and modular forms, Transform. Groups, 9 (1) (2004), 25–45.

[GP+13] Gaberdiel, M. R., Persson, D., Ronellenfitsch, H., and Volpato, R., Generalized Mathieu Moonshine, Commun. Number Theory Phys., 7 (1) (2013), 145–223.

[GG14] Gal, I. and Grizzard, R., On the compositum of all degree $d$ extensions of a number field, J. Théor. Nombres Bordeaux, 26 (3) (2014), 655–673.

[G16] Gannon, T., Much ado about Mathieu, Adv. Math., 301 (2016), 322–358.

[GH+17] García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ., and Rosales, J. C., Parametrizing Arf numerical semigroups, J. Algebra Appl., 16 (11) (2017), 1750209, 31.

[G16] Geroldinger, A., Sets of lengths, Amer. Math. Monthly, 123 (10) (2016), 960–988.

[GY13] Geroldinger, A. and Yuan, P., The monotone catenary degree of Krull monoids, Results Math., 63 (3-4) (2013), 999–1031.

[GH09] Giudici, M. and Hart, S., Small maximal sum-free sets, Electron. J. Combin., 16 (1) (2009), Research Paper 59, 17.

[GL+17] Glasby, S. P., Lübeck, F., Niemeyer, A. C., and Praeger, C. E., Primitive prime divisors and the $n$th cyclotomic polynomial, J. Aust. Math. Soc., 102 (1) (2017), 122–135.

[GM16] Griffin, M. J. and Mertens, M. H., A proof of the Thompson moonshine conjecture, Res. Math. Sci., 3 (2016), Paper No. 36, 32.

[GRV16] Grishkov, A., Rasskazova, M., and Vojtěchovský, P., Automorphic loops arising from module endomorphisms, Publ. Math. Debrecen, 88 (3-4) (2016), 287–303.

[GHT15] Guralnick, R., Herzig, F., and Tiep, P. H., Adequate groups of low degree, Algebra Number Theory, 9 (1) (2015), 77–147.

[GHT17] Guralnick, R., Herzig, F., and Tiep, P. H., Adequate subgroups and indecomposable modules, J. Eur. Math. Soc. (JEMS), 19 (4) (2017), 1231–1291.

[H12] Hashimoto, K., Finite symplectic actions on the $K3$ lattice, Nagoya Math. J., 206 (2012), 99–153.

[HMM98] Havas, G., Majewski, B. S., and Matthews, K. R., Extended GCD and Hermite normal form algorithms via lattice basis reduction, Experiment. Math., 7 (2) (1998), 125–136.

[HMR13] He, Y., McKay, J., and Read, J., Modular subgroups, \it dessins d'enfants and elliptic K3 surfaces, LMS J. Comput. Math., 16 (2013), 271–318.

[HL04] Heath, L. S. and Loehr, N. A., New algorithms for generating Conway polynomials over finite fields, J. Symbolic Comput., 38 (2) (2004), 1003–1024.

[H07] Helfgott, H. A., Power-free values, large deviations and integer points on irrational curves, J. Théor. Nombres Bordeaux, 19 (2) (2007), 433–472.

[H04] Helfgott, H. A., On the square-free sieve, Acta Arith., 115 (4) (2004), 349–402.

[HS15] Hofmann, J. and van Straten, D., Some monodromy groups of finite index in $Sp_4(\BbbZ)$, J. Aust. Math. Soc., 99 (1) (2015), 48–62.

[H17] Hoshi, A., Complete solutions to a family of Thue equations of degree 12, J. Théor. Nombres Bordeaux, 29 (2) (2017), 549–568.

[H12] Hoshi, A., On the simplest sextic fields and related Thue equations, Funct. Approx. Comment. Math., 47 (part 1) (2012), 35–49.

[HM10] Hoshi, A. and Miyake, K., On the field intersection problem of solvable quintic generic polynomials, Int. J. Number Theory, 6 (5) (2010), 1047–1081.

[HY17] Hoshi, A. and Yamasaki, A., Rationality problem for algebraic tori, Mem. Amer. Math. Soc., 248 (1176) (2017), v+215.

[HKP10] Huang, P., Ke, W., and Pilz, G. F., The cardinality of some symmetric differences, Proc. Amer. Math. Soc., 138 (3) (2010), 787–797.

[H14] Huczynska, S., Beyond sum-free sets in the natural numbers, Electron. J. Combin., 21 (1) (2014), Paper 1.21, 20.

[H07] Huffman, W. C., On the decomposition of self-dual codes over $\Bbb F_2+u\Bbb F_2$ with an automorphism of odd prime order, Finite Fields Appl., 13 (3) (2007), 681–712.

[H13] Hulpke, A., Computing generators of groups preserving a bilinear form over residue class rings, J. Symbolic Comput., 50 (2013), 298–307.

[H99] Hulpke, A., Galois groups through invariant relations, in Groups St. Andrews 1997 in Bath, II, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 261 (1999), 379–393.

[J10] Jones, J. W., Number fields unramified away from 2, J. Number Theory, 130 (6) (2010), 1282–1291.

[J11] Jones, J. W., Wild ramification bounds and simple group Galois extensions ramified only at 2, Proc. Amer. Math. Soc., 139 (3) (2011), 807–821.

[J13] Jones, J. W., Minimal solvable nonic fields, LMS J. Comput. Math., 16 (2013), 130–138.

[JR08] Jones, J. W. and Roberts, D. P., Octic 2-adic fields, J. Number Theory, 128 (6) (2008), 1410–1429.

[JR14] Jones, J. W. and Roberts, D. P., A database of number fields, LMS J. Comput. Math., 17 (1) (2014), 595–618.

[JW12] Jones, J. W. and Wallington, R., Number fields with solvable Galois groups and small Galois root discriminants, Math. Comp., 81 (277) (2012), 555–567.

[K18] Karakaş, H. İ., Parametrizing numerical semigroups with multiplicity up to 5, Internat. J. Algebra Comput., 28 (1) (2018), 69–95.

[KP06] Karve, A. and Pauli, S., GiANT: graphical algebraic number theory, J. Théor. Nombres Bordeaux, 18 (3) (2006), 721–727.

[K04] Katz, N. M., Notes on $G_2$, determinants, and equidistribution, Finite Fields Appl., 10 (2) (2004), 221–269.

[K07] Katz, N. M., $G_2$ and hypergeometric sheaves, Finite Fields Appl., 13 (2) (2007), 175–223.

[K07] Kedlaya, K. S., Mass formulas for local Galois representations, Int. Math. Res. Not. IMRN (17) (2007), Art. ID rnm021, 26
(With an appendix by Daniel Gulotta).

[KMS12] Keller, W., Martinet, J., and Schürmann, A., On classifying Minkowskian sublattices, Math. Comp., 81 (278) (2012), 1063–1092
(With an appendix by Mathieu Dutour Sikirić).

[KOP16] Kiers, C., O'Neill, C., and Ponomarenko, V., Numerical semigroups on compound sequences, Comm. Algebra, 44 (9) (2016), 3842–3852.

[KSV11] Kiming, I., Schütt, M., and Verrill, H. A., Lifts of projective congruence groups, J. Lond. Math. Soc. (2), 83 (1) (2011), 96–120.

[K07] Kohl, S., Wildness of iteration of certain residue-class-wise affine mappings, Adv. in Appl. Math., 39 (3) (2007), 322–328.

[K08] Kohl, S., On conjugates of Collatz-type mappings, Int. J. Number Theory, 4 (1) (2008), 117–120.

[K17] Kohl, S., The Collatz conjecture in a group theoretic context, J. Group Theory, 20 (5) (2017), 1025–1030.

[KN13] Korchmáros, G. and Nagy, G. P., Lower bounds on the minimum distance in Hermitian one-point differential codes, Sci. China Math., 56 (7) (2013), 1449–1455.

[KN13] Korchmáros, G. and Nagy, G. P., Hermitian codes from higher degree places, J. Pure Appl. Algebra, 217 (12) (2013), 2371–2381.

[LP02] Lansky, J. and Pollack, D., Hecke algebras and automorphic forms, Compositio Math., 130 (1) (2002), 21–48.

[L14] Leshin, J., Solvable Artin representations ramified at one prime, Bull. Lond. Math. Soc., 46 (1) (2014), 59–75.

[LW99] Lindenbergh, R. C. and van der Waall, R. W., Ergebnisse über Dedekind-Zeta-Funktionen, monomiale Charaktere und Konjugationsklassen endlicher Gruppen, unter Benutzung von GAP, Bayreuth. Math. Schr. (56) (1999), 79–148.

[L17] Lorenzo García, E., Twists of non-hyperelliptic curves, Rev. Mat. Iberoam., 33 (1) (2017), 169–182.

[M04] Martin, K., Modularity of hypertetrahedral representations, C. R. Math. Acad. Sci. Paris, 339 (2) (2004), 99–102.

[M03] Martin, K., A symplectic case of Artin's conjecture, Math. Res. Lett., 10 (4) (2003), 483–492.

[MW17] Martin, K. and Walji, N., Distinguishing finite group characters and refined local-global phenomena, Acta Arith., 179 (3) (2017), 277–300.

[M14] Mayer, D. C., Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux, 26 (2) (2014), 415–464.

[M13] Mayer, D. C., The distribution of second $p$-class groups on coclass graphs, J. Théor. Nombres Bordeaux, 25 (2) (2013), 401–456.

[M98] Müller, P., Kronecker conjugacy of polynomials, Trans. Amer. Math. Soc., 350 (5) (1998), 1823–1850.

[M16] Mizusawa, Y., On certain 2-extensions of $\BbbQ$ unramified at 2 and $\infty$, Osaka J. Math., 53 (4) (2016), 1063–1088.

[N98] Nebe, G., Finite quaternionic matrix groups, Represent. Theory, 2 (1998), 106–223.

[N00] Nebe, G., Invariants of orthogonal $G$-modules from the character table, Experiment. Math., 9 (4) (2000), 623–629.

[NP95] Nebe, G. and Plesken, W., Finite rational matrix groups, Mem. Amer. Math. Soc., 116 (556) (1995), viii+144.

[N15] Nikulin, V. V., Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups, Izv. Ross. Akad. Nauk Ser. Mat., 79 (4) (2015), 103–158.

[N07] Nomura, A., A note on the 3-class field tower of a cyclic cubic field, Proc. Japan Acad. Ser. A Math. Sci., 83 (2) (2007), 14–15.

[N08] Nomura, A., Notes on the minimal number of ramified primes in some $l$-extensions of $\bf Q$, Arch. Math. (Basel), 90 (6) (2008), 501–510.

[OS97] Omrani, A. and Shokrollahi, A., Computing irreducible representations of supersolvable groups over small finite fields, Math. Comp., 66 (218) (1997), 779–786.

[OP17] O'Neill, C. and Pelayo, R., Factorization invariants in numerical monoids, in Algebraic and geometric methods in discrete mathematics, Amer. Math. Soc., Providence, RI, Contemp. Math., 685 (2017), 231–249.

[OP15] O'Neill, C. and Pelayo, R., How do you measure primality?, Amer. Math. Monthly, 122 (2) (2015), 121–137.

[OP14] O'Neill, C. and Pelayo, R., On the linearity of $\omega$-primality in numerical monoids, J. Pure Appl. Algebra, 218 (9) (2014), 1620–1627.

[O97] Oura, M., The dimension formula for the ring of code polynomials in genus $4$, Osaka J. Math., 34 (1) (1997), 53–72.

[OPY08] Oura, M., Poor, C., and Yuen, D. S., Towards the Siegel ring in genus four, Int. J. Number Theory, 4 (4) (2008), 563–586.

[PK07] Park, S. and Kwon, S., Class number one problem for normal CM-fields, J. Number Theory, 125 (1) (2007), 59–84.

[P08] Paulhus, J., Decomposing Jacobians of curves with extra automorphisms, Acta Arith., 132 (3) (2008), 231–244.

[PS10] Pernet, C. and Stein, W., Fast computation of Hermite normal forms of random integer matrices, J. Number Theory, 130 (7) (2010), 1675–1683.

[PP93] Plesken, W. and Pohst, M., Constructing integral lattices with prescribed minimum. II, Math. Comp., 60 (202) (1993), 817–825.

[R05] Rattaggi, D., Anti-tori in square complex groups, Geom. Dedicata, 114 (2005), 189–207.

[R00] Reeder, M., Formal degrees and $L$-packets of unipotent discrete series representations of exceptional $p$-adic groups, J. Reine Angew. Math., 520 (2000), 37–93
(With an appendix by Frank Lübeck).

[RR17] Robles-Pérez, A. M. and Rosales, J. C., Numerical semigroups in a problem about cost-effective transport, Forum Math., 29 (2) (2017), 329–345.

[R15] Rossmann, T., Computing topological zeta functions of groups, algebras, and modules, II, J. Algebra, 444 (2015), 567–605.

[S10] Sawa, M., Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4, IEEE Trans. Inform. Theory, 56 (7) (2010), 3613–3620.

[S17] Schönnenbeck, S., Resolutions for unit groups of orders, J. Homotopy Relat. Struct., 12 (4) (2017), 837–852.

[S10] Schürmann, A., Perfect, strongly eutactic lattices are periodic extreme, Adv. Math., 225 (5) (2010), 2546–2564.

[SW18] Shareshian, J. and Woodroofe, R., Divisibility of binomial coefficients and generation of alternating groups, Pacific J. Math., 292 (1) (2018), 223–238.

[S17] Shimada, I., Holes of the Leech lattice and the projective models of $K3$ surfaces, Math. Proc. Cambridge Philos. Soc., 163 (1) (2017), 125–143.

[S18] Shimada, I., An even extremal lattice of rank 64, J. Number Theory, 185 (2018), 1–15.

[SSV07] Sikirić, M. D., Schürmann, A., and Vallentin, F., Classification of eight-dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc., 13 (2007), 21–32.

[SZ05] Silverberg, A. and Zarhin, Y. G., Inertia groups and abelian surfaces, J. Number Theory, 110 (1) (2005), 178–198.

[S13] Sodaïgui, B., Classes de Steinitz d'extensions galoisiennes à groupe de Galois un 2-groupe, Funct. Approx. Comment. Math., 48 (part 2) (2013), 183–196.

[S94] Souvignier, B., Irreducible finite integral matrix groups of degree $8$ and $10$, Math. Comp., 63 (207) (1994), 335–350
(With microfiche supplement).

[S16] Stokes, K., Patterns of ideals of numerical semigroups, Semigroup Forum, 93 (1) (2016), 180–200.

[T99] Terras, A., Fourier analysis on finite groups and applications, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, 43 (1999), x+442 pages.

[TZ13] Topalova, S. and Zhelezova, S., On transitive parallelisms of $PG(3,4)$, Appl. Algebra Engrg. Comm. Comput., 24 (3-4) (2013), 159–164.

[T04] Totaro, B., Splitting fields for $E_8$-torsors, Duke Math. J., 121 (3) (2004), 425–455.

[T17] Tsunogai, H., Toward Noether's problem for the fields of cross-ratios, Tokyo J. Math., 39 (3) (2017), 901–922.

[U13] Ugolini, S., Graphs associated with the map $X\mapsto X+X^-1$ in finite fields of characteristic three and five, J. Number Theory, 133 (4) (2013), 1207–1228.

[U12] Ugolini, S., Graphs associated with the map $x\mapsto x+x^-1$ in finite fields of characteristic two, in Theory and applications of finite fields, Amer. Math. Soc., Providence, RI, Contemp. Math., 579 (2012), 187–204.

[U15] Ugolini, S., Sequences of irreducible polynomials over odd prime fields via elliptic curve endomorphisms, J. Number Theory, 152 (2015), 21–37.

[V08] Valibouze, A., Sur les relations entre les racines d'un polynôme, Acta Arith., 131 (1) (2008), 1–27.

[W17] Wong, P., Langlands reciprocity for certain Galois extensions, J. Number Theory, 178 (2017), 126–145.

[YAG17] Yankov, N., Anev, D., and Gürel, M., Self-dual codes with an automorphism of order 13, Adv. Math. Commun., 11 (3) (2017), 635–645.