GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

137 publications using GAP in the category "Algebraic geometry"

[A97] Adler, A., The Mathieu group $M_11$ and the modular curve $X(11)$, Proc. London Math. Soc. (3), 74 (1) (1997), 1–28.

[A16] Adrianov, N., Primitive monodromy groups of rational functions with one multiple pole, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 446 (Kombinatorika i Teoriya Grafov. V) (2016), 12–30.

[AH10] Allcock, D. and Hall, C., Monodromy groups of Hurwitz-type problems, Adv. Math., 225 (1) (2010), 69–80.

[AW14] Anderson, J. W. and Wootton, A., Gaps in the space of skeletal signatures, Arch. Math. (Basel), 102 (2) (2014), 181–190.

[AW12] Anderson, J. W. and Wootton, A., A lower bound for the number of group actions on a compact Riemann surface, Algebr. Geom. Topol., 12 (1) (2012), 19–35.

[A97] Artal Bartolo, E., A curve of degree five with non-abelian fundamental group, Topology Appl., 79 (1) (1997), 13–29.

[A97] Artal Bartolo, E., Fundamental group of a class of rational cuspidal curves, Manuscripta Math., 93 (3) (1997), 273–281.

[AC98] Artal Bartolo, E. and Carmona Ruber, J., Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan, 50 (3) (1998), 521–543.

[ACC04] Artal Bartolo, E., Carmona Ruber, J., and Cogolludo Agustín, J. I., Essential coordinate components of characteristic varieties, Math. Proc. Cambridge Philos. Soc., 136 (2) (2004), 287–299.

[ACC07] Artal Bartolo, E., Carmona Ruber, J., and Cogolludo Agustín, J. I., Effective invariants of braid monodromy, Trans. Amer. Math. Soc., 359 (1) (2007), 165–183.

[AC+05] Artal Bartolo, E., Carmona Ruber, J., Cogolludo-Agustín, J. I., and Marco Buzunáriz, M., Topology and combinatorics of real line arrangements, Compos. Math., 141 (6) (2005), 1578–1588.

[AC10] Artal Bartolo, E. and Cogolludo-Agustín, J. I., On the connection between fundamental groups and pencils with multiple fibers, J. Singul., 2 (2010), 1–18.

[ACO14] Artal Bartolo, E., Cogolludo-Agustín, J. I., and Ortigas-Galindo, J., Kummer covers and braid monodromy, J. Inst. Math. Jussieu, 13 (3) (2014), 633–670.

[AC+01] Artal, E., Carmona, J., Cogolludo, J. I., and Tokunaga, H., Sextics with singular points in special position, J. Knot Theory Ramifications, 10 (4) (2001), 547–578.

[AG16] Assi, A. and García-Sánchez, P. A., Algorithms for curves with one place at infinity, J. Symbolic Comput., 74 (2016), 475–492.

[AGM17] Assi, A., García-Sánchez, P. A., and Micale, V., Bases of subalgebras of $\BbbK[\![x]\!]$ and $\BbbK[x]$, J. Symbolic Comput., 79 (part 1) (2017), 4–22.

[BB16] Badr, E. and Bars, F., Automorphism groups of nonsingular plane curves of degree 5, Comm. Algebra, 44 (10) (2016), 4327–4340.

[BB16] Badr, E. and Bars, F., Non-singular plane curves with an element of ``large'' order in its automorphism group, Internat. J. Algebra Comput., 26 (2) (2016), 399–433.

[BL14] Barakat, M. and Lange-Hegermann, M., On the Ext-computability of Serre quotient categories, J. Algebra, 420 (2014), 333–349.

[BD04] Baur, K. and Draisma, J., Higher secant varieties of the minimal adjoint orbit, J. Algebra, 280 (2) (2004), 743–761.

[BDG07] Baur, K., Draisma, J., and de Graaf, W. A., Secant dimensions of minimal orbits: computations and conjectures, Experiment. Math., 16 (2) (2007), 239–250.

[BP10] Bisi, C. and Polizzi, F., On proper polynomial maps of $\Bbb C^2$, J. Geom. Anal., 20 (1) (2010), 72–89.

[BP11] Bisi, C. and Polizzi, F., Proper polynomial self-maps of the affine space: state of the art and new results, in Complex analysis and dynamical systems IV. Part 1, Amer. Math. Soc., Providence, RI, Contemp. Math., 553 (2011), 15–25.

[BG03] Boe, B. D. and Graham, W., A lookup conjecture for rational smoothness, Amer. J. Math., 125 (2) (2003), 317–356.

[BGM16] Bravi, P., Gandini, J., and Maffei, A., Projective normality of model varieties and related results, Represent. Theory, 20 (2016), 39–93.

[BC+17] Breda d'Azevedo, A., Catalano, D. A., Karabáš, J., and Nedela, R., Quadrangle groups inclusions, Beitr. Algebra Geom., 58 (2) (2017), 369–394.

[BD+15] Brendel, P., Dłotko, P., Ellis, G., Juda, M., and Mrozek, M., Computing fundamental groups from point clouds, Appl. Algebra Engrg. Comm. Comput., 26 (1-2) (2015), 27–48.

[B00] Breuer, T., Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, 280 (2000), xii+199 pages.

[BW07] Broughton, S. A. and Wootton, A., Finite abelian subgroups of the mapping class group, Algebr. Geom. Topol., 7 (2007), 1651–1697.

[BCT12] Bujalance, E., Cirre, F., and Turbek, P., Symmetry types of cyclic covers of the sphere, Israel J. Math., 191 (1) (2012), 61–83.

[BCG09] Bujalance, E., Cirre, F. J., and Gromadzki, G., Groups of automorphisms of cyclic trigonal Riemann surfaces, J. Algebra, 322 (4) (2009), 1086–1103.

[B11] Bulois, M., Irregular locus of the commuting variety of reductive symmetric Lie algebras and rigid pairs, Transform. Groups, 16 (4) (2011), 1027–1061.

[B07] Burness, T. C., Fixed point ratios in actions of finite classical groups. I, J. Algebra, 309 (1) (2007), 69–79.

[C06] Cardona, G., Representations of $G_k$-groups and twists of the genus two curve $y^2=x^5-x$, J. Algebra, 303 (2) (2006), 707–721.

[CP09] Carnovale, G. and Polizzi, F., The classification of surfaces with $p_g=q=1$ isogenous to a product of curves, Adv. Geom., 9 (2) (2009), 233–256.

[CR09] Catanese, F. and Rollenske, S., Double Kodaira fibrations, J. Reine Angew. Math., 628 (2009), 205–233.

[CS16] Cheltsov, I. and Shramov, C., Two rational nodal quartic 3-folds, Q. J. Math., 67 (4) (2016), 573–601.

[CH+15] Chu, H., Hoshi, A., Hu, S., and Kang, M., Noether's problem for groups of order 243, J. Algebra, 442 (2015), 233–259.

[CH+10] Chu, H., Hu, S., Kang, M., and Kunyavskii, B. E., Noether's problem and the unramified Brauer group for groups of order 64, Int. Math. Res. Not. IMRN (12) (2010), 2329–2366.

[CJ+13] Conder, M. D. E., Jones, G. A., Streit, M., and Wolfart, J., Galois actions on regular dessins of small genera, Rev. Mat. Iberoam., 29 (1) (2013), 163–181.

[CK03] Cornelissen, G. and Kato, F., Mumford curves with maximal automorphism group. II. Lamé type groups in genus 5–8, Geom. Dedicata, 102 (2003), 127–142.

[CKK01] Cornelissen, G., Kato, F., and Kontogeorgis, A., Discontinuous groups in positive characteristic and automorphisms of Mumford curves, Math. Ann., 320 (1) (2001), 55–85.

[GVY12] de Graaf, W. A., Vinberg, E. B., and Yakimova, O. S., An effective method to compute closure ordering for nilpotent orbits of $\theta$-representations, J. Algebra, 371 (2012), 38–62.

[GY12] de Graaf, W. A. and Yakimova, O. S., Good index behaviour of $\theta$-representations, I, Algebr. Represent. Theory, 15 (4) (2012), 613–638.

[D08] Degtyarev, A., Fundamental groups of symmetric sextics, J. Math. Kyoto Univ., 48 (4) (2008), 765–792.

[D10] Degtyarev, A., Plane sextics via dessins d'enfants, Geom. Topol., 14 (1) (2010), 393–433.

[D10] Degtyarev, A., Plane sextics with a type $E_8$ singular point, Tohoku Math. J. (2), 62 (3) (2010), 329–355.

[D11] Degtyarev, A., Hurwitz equivalence of braid monodromies and extremal elliptic surfaces, Proc. Lond. Math. Soc. (3), 103 (6) (2011), 1083–1120.

[D12] Degtyarev, A., Topology of algebraic curves, Walter de Gruyter \& Co., Berlin, De Gruyter Studies in Mathematics, 44 (2012), xvi+393 pages
(An approach via dessins d'enfants).

[D13] Degtyarev, A., On plane sextics with double singular points, Pacific J. Math., 265 (2) (2013), 327–348.

[D11] Degtyarev, A., Plane sextics with a type-$\bold E_6$ singular point, Michigan Math. J., 60 (2) (2011), 243–269.

[DIS17] Degtyarev, A., Itenberg, I., and Sertöz, A. S., Lines on quartic surfaces, Math. Ann., 368 (1-2) (2017), 753–809.

[DM05] Del Padrone, A. and Mazza, C., Schur finiteness and nilpotency, C. R. Math. Acad. Sci. Paris, 341 (5) (2005), 283–286.

[DEJ14] Derenthal, U., Elsenhans, A., and Jahnel, J., On the factor alpha in Peyre's constant, Math. Comp., 83 (286) (2014), 965–977.

[DM14] Digne, F. and Michel, J., Parabolic Deligne-Lusztig varieties, Adv. Math., 257 (2014), 136–218.

[D11] Donten, M., On Kummer 3-folds, Rev. Mat. Complut., 24 (2) (2011), 465–492.

[D16] Donten-Bury, M., Cox rings of minimal resolutions of surface quotient singularities, Glasg. Math. J., 58 (2) (2016), 325–355.

[D13] Dudas, O., Cohomology of Deligne-Lusztig varieties for short-length regular elements in exceptional groups, J. Algebra, 392 (2013), 276–298.

[FMP13] Fairbairn, B., Magaard, K., and Parker, C., Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, Proc. Lond. Math. Soc. (3), 107 (4) (2013), 744–798.

[FP15] Fairbairn, B. and Pierro, E., New examples of mixed Beauville groups, J. Group Theory, 18 (5) (2015), 761–792.

[FL13] Fité, F. and Lario, J., The twisting representation of the $L$-function of a curve, Rev. Mat. Iberoam., 29 (3) (2013), 749–764.

[FR08] Fowler, R. and Röhrle, G., Spherical nilpotent orbits in positive characteristic, Pacific J. Math., 237 (2) (2008), 241–286.

[FG+13] Fuertes, Y., González-Diez, G., Hidalgo, R. A., and Leyton, M., Automorphisms group of generalized Fermat curves of type $(k,3)$, J. Pure Appl. Algebra, 217 (10) (2013), 1791–1806.

[GP+13] Gaberdiel, M. R., Persson, D., Ronellenfitsch, H., and Volpato, R., Generalized Mathieu Moonshine, Commun. Number Theory Phys., 7 (1) (2013), 145–223.

[G16] Gannon, T., Much ado about Mathieu, Adv. Math., 301 (2016), 322–358.

[GTV03] Garber, D., Teicher, M., and Vishne, U., $\pi_1$-classification of real arrangements with up to eight lines, Topology, 42 (1) (2003), 265–289.

[GH+17] García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ., and Rosales, J. C., Parametrizing Arf numerical semigroups, J. Algebra Appl., 16 (11) (2017), 1750209, 31.

[G03] Girondo, E., Multiply quasiplatonic Riemann surfaces, Experiment. Math., 12 (4) (2003), 463–475.

[G05] Goodwin, S., Algorithmic testing for dense orbits of Borel subgroups, J. Pure Appl. Algebra, 197 (1-3) (2005), 171–181.

[G05] Goodwin, S. M., Relative Springer isomorphisms, J. Algebra, 290 (1) (2005), 266–281.

[GWW10] Gromadzki, G., Weaver, A., and Wootton, A., On gonality of Riemann surfaces, Geom. Dedicata, 149 (2010), 1–14.

[GS15] Gruson, L. and Sam, S. V., Alternating trilinear forms on a nine-dimensional space and degenerations of $(3,3)$-polarized Abelian surfaces, Proc. Lond. Math. Soc. (3), 110 (3) (2015), 755–785.

[GM12] Guralnick, R. and Malle, G., Simple groups admit Beauville structures, J. Lond. Math. Soc. (2), 85 (3) (2012), 694–721.

[GT12] Guralnick, R. M. and Tiep, P. H., A problem of Kollár and Larsen on finite linear groups and crepant resolutions, J. Eur. Math. Soc. (JEMS), 14 (3) (2012), 605–657.

[H12] Hashimoto, K., Finite symplectic actions on the $K3$ lattice, Nagoya Math. J., 206 (2012), 99–153.

[HRS14] Hauenstein, J., Rodriguez, J. I., and Sturmfels, B., Maximum likelihood for matrices with rank constraints, J. Algebr. Stat., 5 (1) (2014), 18–38.

[HK15] Hausen, J. and Keicher, S., A software package for Mori dream spaces, LMS J. Comput. Math., 18 (1) (2015), 647–659.

[HMR13] He, Y., McKay, J., and Read, J., Modular subgroups, \it dessins d'enfants and elliptic K3 surfaces, LMS J. Comput. Math., 16 (2013), 271–318.

[H07] Helfgott, H. A., Power-free values, large deviations and integer points on irrational curves, J. Théor. Nombres Bordeaux, 19 (2) (2007), 433–472.

[HJ+09] Herrmann, S., Jensen, A., Joswig, M., and Sturmfels, B., How to draw tropical planes, Electron. J. Combin., 16 (2, Special volume in honor of Anders Björner) (2009), Research Paper 6, 26.

[HS15] Hofmann, J. and van Straten, D., Some monodromy groups of finite index in $Sp_4(\BbbZ)$, J. Aust. Math. Soc., 99 (1) (2015), 48–62.

[HR16] Hoge, T. and Röhrle, G., Nice reflection arrangements, Electron. J. Combin., 23 (2) (2016), Paper 2.9, 24.

[H16] Hoshi, A., Birational classification of fields of invariants for groups of order 128, J. Algebra, 445 (2016), 394–432.

[HKK14] Hoshi, A., Kang, M., and Kitayama, H., Quasi-monomial actions and some 4-dimensional rationality problems, J. Algebra, 403 (2014), 363–400.

[HKK13] Hoshi, A., Kang, M., and Kunyavskii, B. E., Noether's problem and unramified Brauer groups, Asian J. Math., 17 (4) (2013), 689–713.

[HKY11] Hoshi, A., Kitayama, H., and Yamasaki, A., Rationality problem of three-dimensional monomial group actions, J. Algebra, 341 (2011), 45–108.

[HY17] Hoshi, A. and Yamasaki, A., Rationality problem for algebraic tori, Mem. Amer. Math. Soc., 248 (1176) (2017), v+215.

[JZ14] Jafari, R. and Zarzuela Armengou, S., On monomial curves obtained by gluing, Semigroup Forum, 88 (2) (2014), 397–416.

[JSW10] Jones, G. A., Streit, M., and Wolfart, J., Wilson's map operations on regular dessins and cyclotomic fields of definition, Proc. Lond. Math. Soc. (3), 100 (2) (2010), 510–532.

[JV09] Joshua, R. and Van Ault, S., Implementation of Stanley's algorithm for projective group imbeddings, J. Symbolic Comput., 44 (6) (2009), 655–672.

[JK06] Joyner, D. and Ksir, A., Automorphism groups of some AG codes, IEEE Trans. Inform. Theory, 52 (7) (2006), 3325–3329.

[JK07] Joyner, D. and Ksir, A., Decomposition representations of finite groups on Riemann-Roch spaces, Proc. Amer. Math. Soc., 135 (11) (2007), 3465–3476.

[K15] Kato, S., A homological study of Green polynomials, Ann. Sci. Éc. Norm. Supér. (4), 48 (5) (2015), 1035–1074.

[K07] Katz, N. M., $G_2$ and hypergeometric sheaves, Finite Fields Appl., 13 (2) (2007), 175–223.

[KKL17] Kim, H. K., Kim, Y., and Lee, K., Quasiphantom categories on a family of surfaces isogenous to a higher product, J. Algebra, 473 (2017), 591–606.

[KSV11] Kiming, I., Schütt, M., and Verrill, H. A., Lifts of projective congruence groups, J. Lond. Math. Soc. (2), 83 (1) (2011), 96–120.

[KN13] Korchmáros, G. and Nagy, G. P., Lower bounds on the minimum distance in Hermitian one-point differential codes, Sci. China Math., 56 (7) (2013), 1449–1455.

[KN13] Korchmáros, G. and Nagy, G. P., Hermitian codes from higher degree places, J. Pure Appl. Algebra, 217 (12) (2013), 2371–2381.

[LS15] Lavrauw, M. and Sheekey, J., Canonical forms of $2 \times 3 \times 3$ tensors over the real field, algebraically closed fields, and finite fields, Linear Algebra Appl., 476 (2015), 133–147.

[LS09] Leykin, A. and Sottile, F., Galois groups of Schubert problems via homotopy computation, Math. Comp., 78 (267) (2009), 1749–1765.

[L17] Lorenzo García, E., Twists of non-hyperelliptic curves, Rev. Mat. Iberoam., 33 (1) (2017), 169–182.

[MS+02] Magaard, K., Shaska, T., Shpectorov, S., and Völklein, H., The locus of curves with prescribed automorphism group, Sūrikaisekikenkyūsho Kōkyūroku (1267) (2002), 112–141
(Communications in arithmetic fundamental groups (Kyoto, 1999/2001)).

[MSV03] Magaard, K., Shpectorov, S., and Völklein, H., A GAP package for braid orbit computation and applications, Experiment. Math., 12 (4) (2003), 385–393.

[MSW12] Magaard, K., Shpectorov, S., and Wang, G., Generating sets of affine groups of low genus, in Computational algebraic and analytic geometry, Amer. Math. Soc., Providence, RI, Contemp. Math., 572 (2012), 173–192.

[MV04] Magaard, K. and Völklein, H., The monodromy group of a function on a general curve, Israel J. Math., 141 (2004), 355–368.

[MR06] Müller, J. and Ritzenthaler, C., On the ring of invariants of ordinary quartic curves in characteristic 2, J. Algebra, 303 (2) (2006), 530–542.

[M13] Müller, P., Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2) (2013), 369–438.

[M15] Michałek, M., Toric varieties in phylogenetics, Dissertationes Math. (Rozprawy Mat.), 511 (2015), 86.

[M11] Michailov, I. M., The rationality problem for three- and four-dimensional permutational group actions, Internat. J. Algebra Comput., 21 (8) (2011), 1317–1337.

[MP10] Mistretta, E. and Polizzi, F., Standard isotrivial fibrations with $p_g=q=1$. II, J. Pure Appl. Algebra, 214 (4) (2010), 344–369.

[M12] Moravec, P., Unramified Brauer groups of finite and infinite groups, Amer. J. Math., 134 (6) (2012), 1679–1704.

[M05] Moreno Mejía, I., The trace of an automorphism on $H^0(J,\scr O(n\Theta))$, Michigan Math. J., 53 (1) (2005), 57–69.

[M14] Moreno-Mejía, I., A canonical curve of genus 17, Results Math., 66 (1-2) (2014), 65–86.

[M10] Moreno-Mejía, I., The quadrics through the Hurwitz curves of genus 14, J. Lond. Math. Soc. (2), 81 (2) (2010), 374–388.

[MS11] Morrison, I. and Swinarski, D., Gröbner techniques for low-degree Hilbert stability, Exp. Math., 20 (1) (2011), 34–56.

[M16] Moscariello, A., On the type of an almost Gorenstein monomial curve, J. Algebra, 456 (2016), 266–277.

[N15] Nikulin, V. V., Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups, Izv. Ross. Akad. Nauk Ser. Mat., 79 (4) (2015), 103–158.

[P08] Paulhus, J., Decomposing Jacobians of curves with extra automorphisms, Acta Arith., 132 (3) (2008), 231–244.

[P11] Penegini, M., The classification of isotrivially fibred surfaces with $p_g=q=2$, Collect. Math., 62 (3) (2011), 239–274
(With an appendix by Sönke Rollenske).

[PP13] Penegini, M. and Polizzi, F., Surfaces with $p_g=q=2$, $K^2=6$, and Albanese map of degree $2$, Canad. J. Math., 65 (1) (2013), 195–221.

[P10] Polizzi, F., Numerical properties of isotrivial fibrations, Geom. Dedicata, 147 (2010), 323–355.

[P09] Polizzi, F., Standard isotrivial fibrations with $p_g=q=1$, J. Algebra, 321 (6) (2009), 1600–1631.

[QS11] Qureshi, M. I. and Szendrői, B., Constructing projective varieties in weighted flag varieties, Bull. Lond. Math. Soc., 43 (4) (2011), 786–798.

[RT+13] Riener, C., Theobald, T., Andrén, L. J., and Lasserre, J. B., Exploiting symmetries in SDP-relaxations for polynomial optimization, Math. Oper. Res., 38 (1) (2013), 122–141.

[R07] Rojas, A. M., Group actions on Jacobian varieties, Rev. Mat. Iberoam., 23 (2) (2007), 397–420.

[R15] Rossmann, T., Computing topological zeta functions of groups, algebras, and modules, II, J. Algebra, 444 (2015), 567–605.

[SW06] Schlage-Puchta, J. and Wolfart, J., How many quasiplatonic surfaces?, Arch. Math. (Basel), 86 (2) (2006), 129–132.

[S04] Shaska, T., Some special families of hyperelliptic curves, J. Algebra Appl., 3 (1) (2004), 75–89.

[S06] Shaska, T., Subvarieties of the hyperelliptic moduli determined by group actions, Serdica Math. J., 32 (4) (2006), 355–374.

[S17] Shimada, I., Holes of the Leech lattice and the projective models of $K3$ surfaces, Math. Proc. Cambridge Philos. Soc., 163 (1) (2017), 125–143.

[SS17] Shimada, I. and Shioda, T., On a smooth quartic surface containing 56 lines which is isomorphic as a $K3$ surface to the Fermat quartic, Manuscripta Math., 153 (1-2) (2017), 279–297.

[SK11] Spreer, J. and Kühnel, W., Combinatorial properties of the $K3$ surface: simplicial blowups and slicings, Exp. Math., 20 (2) (2011), 201–216.

[S01] Suciu, A. I., Fundamental groups of line arrangements: enumerative aspects, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Amer. Math. Soc., Providence, RI, Contemp. Math., 276 (2001), 43–79.

[T04] Totaro, B., Splitting fields for $E_8$-torsors, Duke Math. J., 121 (3) (2004), 425–455.

[T16] Totaro, B., The motive of a classifying space, Geom. Topol., 20 (4) (2016), 2079–2133.

[T17] Tsunogai, H., Toward Noether's problem for the fields of cross-ratios, Tokyo J. Math., 39 (3) (2017), 901–922.

[U05] Uludağ, A. M., Galois coverings of the plane by $K3$ surfaces, Kyushu J. Math., 59 (2) (2005), 393–419.