GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

173 publications using GAP in the category "Associative rings and algebras"

[A08] Abdollahi, A., Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl., 428 (11-12) (2008), 2947–2954.

[A01] Aichinger, E., On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions of $\Omega$-groups, Quaest. Math., 24 (4) (2001), 453–480.

[A02] Aichinger, E., The polynomial functions on certain semidirect products of groups, Acta Sci. Math. (Szeged), 68 (1-2) (2002), 63–81.

[AF04] Aichinger, E. and Farag, M., On when the multiplicative center of a near-ring is a subnear-ring, Aequationes Math., 68 (1-2) (2004), 46–59.

[AKS08] Aleev, R. Z., Kargapolov, A. V., and Sokolov, V. V., The ranks of central unit groups of integral group rings of alternating groups, Fundam. Prikl. Mat., 14 (7) (2008), 15–21.

[AS09] Aleev, R. Z. and Sokolov, V. V., On central unit groups of integral group rings of alternating groups, Proc. Steklov Inst. Math., 267 (suppl. 1) (2009), S1–S9.

[A02] Alp, M., Enumeration of Whitehead groups of low order, Internat. J. Algebra Comput., 12 (5) (2002), 645–658.

[A00] Alp, M., Some results on derivation groups, Turkish J. Math., 24 (2) (2000), 121–128.

[AA+14] Andruskiewitsch, N., Angiono, I., García Iglesias, A., Masuoka, A., and Vay, C., Lifting via cocycle deformation, J. Pure Appl. Algebra, 218 (4) (2014), 684–703.

[AF07] Andruskiewitsch, N. and Fantino, F., On pointed Hopf algebras associated with alternating and dihedral groups, Rev. Un. Mat. Argentina, 48 (3) (2007), 57–71 (2008).

[AF+10] Andruskiewitsch, N., Fantino, F., García, G. A., and Vendramin, L., On twisted homogeneous racks of type D, Rev. Un. Mat. Argentina, 51 (2) (2010), 1–16.

[AF+11] Andruskiewitsch, N., Fantino, F., García, G. A., and Vendramin, L., On Nichols algebras associated to simple racks, in Groups, algebras and applications, Amer. Math. Soc., Providence, RI, Contemp. Math., 537 (2011), 31–56.

[AF+10] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., Pointed Hopf algebras over some sporadic simple groups, C. R. Math. Acad. Sci. Paris, 348 (11-12) (2010), 605–608.

[AF+11] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., Finite-dimensional pointed Hopf algebras with alternating groups are trivial, Ann. Mat. Pura Appl. (4), 190 (2) (2011), 225–245.

[AF+11] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., The logbook of pointed Hopf algebras over the sporadic simple groups, J. Algebra, 325 (2011), 282–304.

[AF+11] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., Pointed Hopf algebras over the sporadic simple groups, J. Algebra, 325 (2011), 305–320.

[AGM17] Andruskiewitsch, N., Galindo, C., and Müller, M., Examples of finite-dimensional Hopf algebras with the dual Chevalley property, Publ. Mat., 61 (2) (2017), 445–474.

[AKS04] Araújo, I. M., Kelarev, A. V., and Solomon, A., An algorithm for commutative semigroup algebras which are principal ideal rings, Comm. Algebra, 32 (4) (2004), 1237–1254.

[X07] Ðoković, D. Ž., Poincaré series of some pure and mixed trace algebras of two generic matrices, J. Algebra, 309 (2) (2007), 654–671.

[BK07] Bagiński, C. and Konovalov, A., The modular isomorphism problem for finite $p$-groups with a cyclic subgroup of index $p^2$, in Groups St. Andrews 2005. Vol. 1, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 339 (2007), 186–193.

[BP12] Balagović, M. and Policastro, C., Category $\scr O$ for the rational Cherednik algebra associated to the complex reflection group $G_12$, J. Pure Appl. Algebra, 216 (4) (2012), 857–875.

[B07] Balogh, Z., Further results on a filtered multiplicative basis of group algebras, Math. Commun., 12 (2) (2007), 229–238.

[BJ11] Balogh, Z. and Juhász, T., Nilpotency class of symmetric units of group algebras, Publ. Math. Debrecen, 79 (1-2) (2011), 171–180.

[BL07] Balogh, Z. and Li, Y., On the derived length of the group of units of a group algebra, J. Algebra Appl., 6 (6) (2007), 991–999.

[B06] Bartholdi, L., Branch rings, thinned rings, tree enveloping rings, Israel J. Math., 154 (2006), 93–139.

[BC17] Bächle, A. and Caicedo, M., On the prime graph question for almost simple groups with an alternating socle, Internat. J. Algebra Comput., 27 (3) (2017), 333–347.

[BK11] Bächle, A. and Kimmerle, W., On torsion subgroups in integral group rings of finite groups, J. Algebra, 326 (2011), 34–46.

[BM17] Bächle, A. and Margolis, L., On the prime graph question for integral group rings of 4-primary groups I, Internat. J. Algebra Comput., 27 (6) (2017), 731–767.

[BM17] Bächle, A. and Margolis, L., Rational conjugacy of torsion units in integral group rings of non-solvable groups, Proc. Edinb. Math. Soc. (2), 60 (4) (2017), 813–830.

[BM05] Benini, A. and Morini, F., Partially balanced incomplete block designs from weakly divisible nearrings, Discrete Math., 301 (1) (2005), 34–45.

[BGK10] Bilgin, T., Gorentas, N., and Kelebek, I. G., Characterization of central units of $\Bbb ZA_n$, J. Korean Math. Soc., 47 (6) (2010), 1239–1252.

[BM01] Binder, F. and Mayr, P., Algorithms for finite near-rings and their $N$-groups, J. Symbolic Comput., 32 (1-2) (2001), 23–38
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[B01] Blanchard, P. F., Exceptional group ring automorphisms for groups of order 96, Comm. Algebra, 29 (11) (2001), 4823–4830.

[B08] Bocklandt, R., Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra, 212 (1) (2008), 14–32.

[BZ17] Bouc, S. and Zimmermann, A., On a question of Rickard on tensor products of stably equivalent algebras, Exp. Math., 26 (1) (2017), 31–44.

[BE00] Bovdi, A. and Erdei, L., Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28 (2) (2000), 625–630.

[B12] Bovdi, V., Group rings in which the group of units is hyperbolic, J. Group Theory, 15 (2) (2012), 227–235.

[BJK11] Bovdi, V. A., Jespers, E., and Konovalov, A. B., Torsion units in integral group rings of Janko simple groups, Math. Comp., 80 (273) (2011), 593–615.

[BK10] Bovdi, V. A. and Konovalov, A. B., Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar., 47 (1) (2010), 1–11.

[BK09] Bovdi, V. A. and Konovalov, A. B., Integral group ring of Rudvalis simple group, Ukraïn. Mat. Zh., 61 (1) (2009), 3–13.

[BK08] Bovdi, V. A. and Konovalov, A. B., Integral group ring of the Mathieu simple group $M_23$, Comm. Algebra, 36 (7) (2008), 2670–2680.

[BKL11] Bovdi, V. A., Konovalov, A. B., and Linton, S., Torsion units in integral group rings of Conway simple groups, Internat. J. Algebra Comput., 21 (4) (2011), 615–634.

[BKL08] Bovdi, V. A., Konovalov, A. B., and Linton, S., Torsion units in integral group ring of the Mathieu simple group $\rm M_22$, LMS J. Comput. Math., 11 (2008), 28–39.

[BKS07] Bovdi, V. A., Konovalov, A. B., and Siciliano, S., Integral group ring of the Mathieu simple group $M_12$, Rend. Circ. Mat. Palermo (2), 56 (1) (2007), 125–136.

[BHK04] Bovdi, V., Höfert, C., and Kimmerle, W., On the first Zassenhaus conjecture for integral group rings, Publ. Math. Debrecen, 65 (3-4) (2004), 291–303.

[BH08] Bovdi, V. and Hertweck, M., Zassenhaus conjecture for central extensions of $S_5$, J. Group Theory, 11 (1) (2008), 63–74.

[BK12] Bovdi, V. and Konovalov, A., Integral group ring of the Mathieu simple group $M_24$, J. Algebra Appl., 11 (1) (2012), 1250016, 10.

[BK07] Bovdi, V. and Konovalov, A., Integral group ring of the first Mathieu simple group, in Groups St. Andrews 2005. Vol. 1, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 339 (2007), 237–245.

[BW16] Boykett, T. and Wendt, G., Units in near-rings, Comm. Algebra, 44 (4) (2016), 1478–1495.

[BH+06] Breuer, T., Héthelyi, L., Horváth, E., Külshammer, B., and Murray, J., Cartan invariants and central ideals of group algebras, J. Algebra, 296 (1) (2006), 177–195.

[BP06] Broche Cristo, O. and Polcino Milies, C., Central idempotents in group algebras, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 75–87.

[BJR09] Broche, O., Jespers, E., and Ruiz, M., Antisymmetric elements in group rings with an orientation morphism, Forum Math., 21 (3) (2009), 427–454.

[BW15] Brooksbank, P. A. and Wilson, J. B., The module isomorphism problem reconsidered, J. Algebra, 421 (2015), 541–559.

[CM06] Carlson, J. F. and Matthews, G., Generators and relations for matrix algebras, J. Algebra, 300 (1) (2006), 134–159.

[CC99] Carnahan, S. and Childs, L., Counting Hopf Galois structures on non-abelian Galois field extensions, J. Algebra, 218 (1) (1999), 81–92.

[CH04] Chen, H. and Hiss, G., Projective summands in tensor products of simple modules of finite dimensional Hopf algebras, Comm. Algebra, 32 (11) (2004), 4247–4264.

[CH+10] Chu, H., Hu, S., Kang, M., and Kunyavskii, B. E., Noether's problem and the unramified Brauer group for groups of order 64, Int. Math. Res. Not. IMRN (12) (2010), 2329–2366.

[CGW05] Cohen, A. M., Gijsbers, D. A. H., and Wales, D. B., BMW algebras of simply laced type, J. Algebra, 286 (1) (2005), 107–153.

[CGW14] Cohen, A. M., Gijsbers, D. A. H., and Wales, D. B., The Birman-Murakami-Wenzl algebras of type $D_n$, Comm. Algebra, 42 (1) (2014), 22–55.

[CW11] Cohen, A. M. and Wales, D. B., The Birman-Murakami-Wenzl algebras of type $\bold E_n$, Transform. Groups, 16 (3) (2011), 681–715.

[CZ13] Coquereaux, R. and Zuber, J., Drinfeld doubles for finite subgroups of $\rm SU(2)$ and $\rm SU(3)$ Lie groups, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 039, 36.

[CG11] Creedon, L. and Gildea, J., The structure of the unit group of the group algebra $\Bbb F_2^kD_8$, Canad. Math. Bull., 54 (2) (2011), 237–243.

[DEM13] Danz, S., Ellers, H., and Murray, J., The centralizer of a subgroup in a group algebra, Proc. Edinb. Math. Soc. (2), 56 (1) (2013), 49–56.

[D18] De Graaf, W. A., Classification of nilpotent associative algebras of small dimension, Internat. J. Algebra Comput., 28 (1) (2018), 133–161.

[KDX11] de Klerk, E., Dobre, C., and Pasechnik, D. V., Numerical block diagonalization of matrix $\ast$-algebras with application to semidefinite programming, Math. Program., 129 (1, Ser. B) (2011), 91–111.

[RRZ11] del Río, Á., Ruiz Marín, M., and Zalesskii, P., Subgroup separability in integral group rings, J. Algebra, 347 (2011), 60–68.

[DS14] Devadas, S. and Sam, S. V., Representations of rational Cherednik algebras of $G(m,r,n)$ in positive characteristic, J. Commut. Algebra, 6 (4) (2014), 525–559.

[DZ17] Dokuchaev, M. and Zalesski, A., On the automorphism group of rational group algebras of finite groups, in Groups, rings, group rings, and Hopf algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 688 (2017), 33–51.

[DNV15] Dong, J., Natale, S., and Vendramin, L., Frobenius property for fusion categories of small integral dimension, J. Algebra Appl., 14 (2) (2015), 1550011, 17.

[DJK10] Dooms, A., Jespers, E., and Konovalov, A., From Farey symbols to generators for subgroups of finite index in integral group rings of finite groups, J. K-Theory, 6 (2) (2010), 263–283.

[DZ10] Dzhumadilʹdaev, A. and Zusmanovich, P., Commutative 2-cocycles on Lie algebras, J. Algebra, 324 (4) (2010), 732–748.

[E08] Eick, B., Computing automorphism groups and testing isomorphisms for modular group algebras, J. Algebra, 320 (11) (2008), 3895–3910.

[E11] Eick, B., Computing nilpotent quotients of associative algebras and algebras satisfying a polynomial identity, Internat. J. Algebra Comput., 21 (8) (2011), 1339–1355.

[EK16] Eick, B. and King, S., The isomorphism problem for graded algebras and its application to $\rm mod$-$p$ cohomology rings of small $p$-groups, J. Algebra, 452 (2016), 487–501.

[EM17] Eick, B. and Moede, T., Coclass theory for finite nilpotent associative algebras: algorithms and a periodicity conjecture, Exp. Math., 26 (3) (2017), 267–274.

[EKV15] Eisele, F., Kiefer, A., and Van Gelder, I., Describing units of integral group rings up to commensurability, J. Pure Appl. Algebra, 219 (7) (2015), 2901–2916.

[EG+08] Estrada, S., García-Rozas, J. R., Peralta, J., and Sánchez-García, E., Group convolutional codes, Adv. Math. Commun., 2 (1) (2008), 83–94.

[FV13] Fantino, F. and Vendramin, L., On twisted conjugacy classes of type D in sporadic simple groups, in Hopf algebras and tensor categories, Amer. Math. Soc., Providence, RI, Contemp. Math., 585 (2013), 247–259.

[FK15] Ferraz, R. A. and Kitani, P. M., Units of $\Bbb ZC_p^n$, Comm. Algebra, 43 (11) (2015), 4936–4950.

[FW11] Fong, Y. and Wang, C. -., On derivations of centralizer near-rings, Taiwanese J. Math., 15 (4) (2011), 1437–1446.

[FGV10] Freyre, S., Graña, M., and Vendramin, L., On Nichols algebras over $\rm PGL(2,q)$ and $\rm PSL(2,q)$, J. Algebra Appl., 9 (2) (2010), 195–208.

[FGV07] Freyre, S., Graña, M., and Vendramin, L., On Nichols algebras over $\rm SL(2,\Bbb F_q)$ and $\rm GL(2,\Bbb F_q)$, J. Math. Phys., 48 (12) (2007), 123513, 11.

[GG17] García Iglesias, A. and Giraldi, J. M. J., Liftings of Nichols algebras of diagonal type III. Cartan type $G_2$, J. Algebra, 478 (2017), 506–568.

[GM11] García Iglesias, A. and Mombelli, M., Representations of the category of modules over pointed Hopf algebras over $\Bbb S_3$ and $\Bbb S_4$, Pacific J. Math., 252 (2) (2011), 343–378.

[GV14] García Iglesias, A. and Vay, C., Finite-dimensional pointed or copointed Hopf algebras over affine racks, J. Algebra, 397 (2014), 379–406.

[GS10] Gilbert, N. D. and Samman, M., Endomorphism seminear-rings of Brandt semigroups, Comm. Algebra, 38 (11) (2010), 4028–4041.

[G16] Gildea, J., Torsion units for a Ree group, Tits group and a Steinberg triality group, Rend. Circ. Mat. Palermo (2), 65 (1) (2016), 139–157.

[G13] Gildea, J., Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl., 12 (6) (2013), 1350016, 10.

[G10] Gildea, J., The structure of the unit group of the group algebra of Pauli's group over any field of characteristic 2, Internat. J. Algebra Comput., 20 (5) (2010), 721–729.

[GO16] Gildea, J. and O'Brien, K., Torsion unit for some untwisted exceptional groups of Lie type, Acta Sci. Math. (Szeged), 82 (3-4) (2016), 451–466.

[GT16] Gildea, J. and Tylyshchak, A., Torsion units in the integral group ring of $\rm PSL(3, 4)$, J. Algebra Appl., 15 (1) (2016), 1650013, 9.

[GD11] Gonçalves, J. Z. and Del Río, Á., Bass cyclic units as factors in a free group in integral group ring units, Internat. J. Algebra Comput., 21 (4) (2011), 531–545.

[GGR14] Gonçalves, J. Z., Guralnick, R. M., and del Río, Á., Bass units as free factors in integral group rings of simple groups, J. Algebra, 404 (2014), 100–123.

[GHV11] Graña, M., Heckenberger, I., and Vendramin, L., Nichols algebras of group type with many quadratic relations, Adv. Math., 227 (5) (2011), 1956–1989.

[G11] Grabowski, J. E., Braided enveloping algebras associated to quantum parabolic subalgebras, Comm. Algebra, 39 (10) (2011), 3491–3514.

[GHS01] Green, E. L., Heath, L. S., and Struble, C. A., Constructing homomorphism spaces and endomorphism rings, J. Symbolic Comput., 32 (1-2) (2001), 101–117
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[GHS00] Green, E. L., Heath, L. S., and Struble, C. A., Constructing endomorphism rings via duals, in Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), ACM, New York (2000), 129–136.

[GNS15] Grishkov, A., Nunes, R., and Sidki, S., On groups with cubic polynomial conditions, J. Algebra, 437 (2015), 344–364.

[GS10] Grundman, H. G. and Smith, T. L., Galois realizability of groups of order 64, Cent. Eur. J. Math., 8 (5) (2010), 846–854.

[HSL98] Héthelyi, L., Szőke, M., and Lux, K., The restriction of indecomposable modules of group algebras and the quasi-Green correspondence, Comm. Algebra, 26 (1) (1998), 83–95.

[HLV12] Heckenberger, I., Lochmann, A., and Vendramin, L., Braided racks, Hurwitz actions and Nichols algebras with many cubic relations, Transform. Groups, 17 (1) (2012), 157–194.

[HP08] Henke, A. and Paget, R., Brauer algebras with parameter $n=2$ acting on tensor space, Algebr. Represent. Theory, 11 (6) (2008), 545–575.

[HS15] Herman, A. and Singh, G., Revisiting the Zassenhaus conjecture on torsion units for the integral group rings of small groups, Proc. Indian Acad. Sci. Math. Sci., 125 (2) (2015), 167–172.

[H08] Hertweck, M., Zassenhaus conjecture for $A_6$, Proc. Indian Acad. Sci. Math. Sci., 118 (2) (2008), 189–195.

[H07] Hertweck, M., A note on the modular group algebras of odd $p$-groups of $M$-length three, Publ. Math. Debrecen, 71 (1-2) (2007), 83–93.

[HN04] Hertweck, M. and Nebe, G., On group ring automorphisms, Algebr. Represent. Theory, 7 (2) (2004), 189–210.

[HS07] Hertweck, M. and Soriano, M., Parametrization of central Frattini extensions and isomorphisms of small group rings, Israel J. Math., 157 (2007), 63–102.

[HS06] Hertweck, M. and Soriano, M., On the modular isomorphism problem: groups of order $2^6$, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 177–213.

[HM14] Hille, L. and Müller, J., On tensor products of path algebras of type $A$, Linear Algebra Appl., 448 (2014), 222–244.

[HK00] Hiss, G. and Kessar, R., Scopes reduction and Morita equivalence classes of blocks in finite classical groups, J. Algebra, 230 (2) (2000), 378–423.

[HKN12] Hiss, G., Koenig, S., and Naehrig, N., On the socle of an endomorphism algebra, J. Pure Appl. Algebra, 216 (6) (2012), 1288–1294.

[H16] Hoshi, A., Birational classification of fields of invariants for groups of order 128, J. Algebra, 445 (2016), 394–432.

[IMM14] Iovanov, M., Mason, G., and Montgomery, S., $FSZ$-groups and Frobenius-Schur indicators of quantum doubles, Math. Res. Lett., 21 (4) (2014), 757–779.

[IL00] Ivanyos, G. and Lux, K., Treating the exceptional cases of the MeatAxe, Experiment. Math., 9 (3) (2000), 373–381.

[JRV14] Jespers, E., del Río, Á., and Van Gelder, I., Writing units of integral group rings of finite abelian groups as a product of Bass units, Math. Comp., 83 (285) (2014), 461–473.

[JO+13] Jespers, E., Olteanu, G., del Río, Á., and Van Gelder, I., Group rings of finite strongly monomial groups: central units and primitive idempotents, J. Algebra, 387 (2013), 99–116.

[K10] Kawai, H., Construction of maximal ideals of commutative group algebras, Internat. J. Algebra Comput., 20 (3) (2010), 381–389.

[K04] Künzer, M., On representations of twisted group rings, J. Group Theory, 7 (2) (2004), 197–229.

[K15] Keilberg, M., Automorphisms of the doubles of purely non-abelian finite groups, Algebr. Represent. Theory, 18 (5) (2015), 1267–1297.

[K18] Keilberg, M., Examples of non-$FSZ$ $p$-groups for primes greater than three, Proc. Amer. Math. Soc., 146 (1) (2018), 85–92.

[K13] Kimmerle, W., Unit groups of integral group rings: old and new, Jahresber. Dtsch. Math.-Ver., 115 (2) (2013), 101–112.

[K06] Kimmerle, W., On the prime graph of the unit group of integral group rings of finite groups, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 215–228.

[KK17] Kimmerle, W. and Konovalov, A., On the Gruenberg-Kegel graph of integral group rings of finite groups, Internat. J. Algebra Comput., 27 (6) (2017), 619–631.

[KPS13] Kochetov, M., Parsons, N., and Sadov, S., Counting fine grading on matrix algebras and on classical simple Lie algebras, Internat. J. Algebra Comput., 23 (7) (2013), 1755–1781.

[K07] Kohl, T., Groups of order $4p$, twisted wreath products and Hopf-Galois theory, J. Algebra, 314 (1) (2007), 42–74.

[K13] Kohl, T., Regular permutation groups of order $mp$ and Hopf Galois structures, Algebra Number Theory, 7 (9) (2013), 2203–2240.

[K07] Konovalov, A., Wreath products in modular group algebras of some finite 2-groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 23 (2) (2007), 125–127.

[KK07] Konovalov, A. and Krivokhata, A., On the isomorphism problem for unit groups of modular group algebras, Acta Sci. Math. (Szeged), 73 (1-2) (2007), 53–59.

[KT04] Konovalov, A. B. and Tsapok, A. G., Symmetric subgroups of a normalized multiplicative group of the modular group algebra of a finite $p$-group, Nauk. Vīsn. Uzhgorod. Univ. Ser. Mat. \=Inform. (9) (2004), 20–24.

[KP15] Kukharev, A. V. and Puninskiĭ, G. E., Semiserial group rings of finite groups. Sporadic simple groups and Suzuki groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 435 (Voprosy Teorii Predstavleniĭ Algebr i Grupp. 28) (2015), 73–94.

[LL09] La Scala, R. and Levandovskyy, V., Letterplace ideals and non-commutative Gröbner bases, J. Symbolic Comput., 44 (10) (2009), 1374–1393.

[LS17] Landrock, P. and Sambale, B., On centers of blocks with one simple module, J. Algebra, 472 (2017), 339–368.

[LS14] Levandovskyy, V. and Shepler, A. V., Quantum Drinfeld Hecke algebras, Canad. J. Math., 66 (4) (2014), 874–901.

[LBP06] Li, Y., Bell, H. E., and Phipps, C., On reversible group rings, Bull. Austral. Math. Soc., 74 (1) (2006), 139–142.

[L13] Liu, S., Brauer algebras of type $\rm F_4$, Indag. Math. (N.S.), 24 (2) (2013), 428–442.

[LZZ17] Liu, Y., Zhou, G., and Zimmermann, A., Stable equivalences of Morita type do not preserve tensor products and trivial extensions of algebras, Proc. Amer. Math. Soc., 145 (5) (2017), 1881–1890.

[L01] Lorenz, M., Multiplicative invariants and semigroup algebras, Algebr. Represent. Theory, 4 (3) (2001), 293–304.

[LMR94] Lux, K., Müller, J., and Ringe, M., Peakword condensation and submodule lattices: an application of the MEAT-AXE, J. Symbolic Comput., 17 (6) (1994), 529–544.

[ME04] Martin, P. P. and Elgamal, A., Ramified partition algebras, Math. Z., 246 (3) (2004), 473–500.

[MM02] Mayr, P. and Morini, F., Nearrings whose set of $N$-subgroups is linearly ordered, Results Math., 42 (3-4) (2002), 339–348.

[M03] Müller, J., A note on applications of the `Vector Enumerator' algorithm, Linear Algebra Appl., 365 (2003), 291–300
(Special issue on linear algebra methods in representation theory).

[M06] Meyer, H., On a subalgebra of the centre of a group ring, J. Algebra, 295 (1) (2006), 293–302.

[M08] Meyer, H., On a subalgebra of the centre of a group ring. II, Arch. Math. (Basel), 90 (2) (2008), 112–122.

[M02] Meyer, H., Konjugationsklassensummen in endlichen Gruppenringen, Bayreuth. Math. Schr. (66) (2002), viii+160
(Dissertation, Universität Bayreuth, Bayreuth, 2002).

[OR03] Olivieri, A. and del Río, Á., An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra, J. Symbolic Comput., 35 (6) (2003), 673–687.

[ORS04] Olivieri, A., del Río, Á., and Simón, J. J., On monomial characters and central idempotents of rational group algebras, Comm. Algebra, 32 (4) (2004), 1531–1550.

[O07] Olteanu, G., Computing the Wedderburn decomposition of group algebras by the Brauer-Witt theorem, Math. Comp., 76 (258) (2007), 1073–1087.

[OR07] Olteanu, G. and del Río, Á., Group algebras of Kleinian type and groups of units, J. Algebra, 318 (2) (2007), 856–870.

[OR09] Olteanu, G. and del Río, Á., An algorithm to compute the Wedderburn decomposition of semisimple group algebras implemented in the GAP package \tt wedderga, J. Symbolic Comput., 44 (5) (2009), 507–516.

[OV15] Olteanu, G. and Van Gelder, I., Construction of minimal non-abelian left group codes, Des. Codes Cryptogr., 75 (3) (2015), 359–373.

[PS13] Peterson, G. L. and Scott, S. D., Units of compatible nearrings, III, Monatsh. Math., 171 (1) (2013), 103–124.

[P09] Pfeiffer, G., A quiver presentation for Solomon's descent algebra, Adv. Math., 220 (5) (2009), 1428–1465.

[Q13] Quadrat, A., Grade filtration of linear functional systems, Acta Appl. Math., 127 (2013), 27–86.

[RS10] Reiner, V. and Stamate, D. I., Koszul incidence algebras, affine semigroups, and Stanley-Reisner ideals, Adv. Math., 224 (6) (2010), 2312–2345.

[R00] Rossmanith, R., Lie centre-by-metabelian group algebras in even characteristic. I, II, Israel J. Math., 115 (2000), 51–75, 77–99.

[S07] Salim, M. A. M., Torsion units in the integral group ring of the alternating group of degree 6, Comm. Algebra, 35 (12) (2007), 4198–4204.

[S92] Sandling, R., Presentations for unit groups of modular group algebras of groups of order $16$, Math. Comp., 59 (200) (1992), 689–701.

[S16] Schauenburg, P., Computing higher Frobenius-Schur indicators in fusion categories constructed from inclusions of finite groups, Pacific J. Math., 280 (1) (2016), 177–201.

[S17] Schönnenbeck, S., Resolutions for unit groups of orders, J. Homotopy Relat. Struct., 12 (4) (2017), 837–852.

[S01] Seidel, U., Exceptional sequences for quivers of Dynkin type, Comm. Algebra, 29 (3) (2001), 1373–1386.

[S09] Sidki, S. N., Functionally recursive rings of matrices—two examples, J. Algebra, 322 (12) (2009), 4408–4429.

[S01] Swallow, J. R., Quadratic descent for quaternion algebras, Comm. Algebra, 29 (10) (2001), 4523–4544.

[SS17] Szántó, C. and Szöllősi, I., A short solution to the subpencil problem involving only column minimal indices, Linear Algebra Appl., 517 (2017), 99–119.

[SS15] Szántó, C. and Szöllősi, I., Hall polynomials and the Gabriel-Roiter submodules of simple homogeneous modules, Bull. Lond. Math. Soc., 47 (2) (2015), 206–216.

[S14] Szöllősi, I., Computing the extensions of preinjective and preprojective Kronecker modules, J. Algebra, 408 (2014), 205–221.

[T14] Thiel, U., A counter-example to Martino's conjecture about generic Calogero-Moser families, Algebr. Represent. Theory, 17 (5) (2014), 1323–1348.

[T15] Thiel, U., Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., 18 (1) (2015), 266–307.

[T17] Timmer, J., Indicators of bismash products from exact symmetric group factorizations, Comm. Algebra, 45 (10) (2017), 4444–4465.

[U95] Ufnarovskij, V. A., Combinatorial and asymptotic methods in algebra [ MR1060321 (92h:16024)], in Algebra, VI, Springer, Berlin, Encyclopaedia Math. Sci., 57 (1995), 1–196.

[VO11] Van Gelder, I. and Olteanu, G., Finite group algebras of nilpotent groups: a complete set of orthogonal primitive idempotents, Finite Fields Appl., 17 (2) (2011), 157–165.

[W10] Wendt, G., Minimal left ideals of near-rings, Acta Math. Hungar., 127 (1-2) (2010), 52–63.

[Y05] Yoshikawa, M., The intersection of normal closed subsets of an association scheme is not always normal, J. Fac. Sci. Shinshu Univ., 40 (2005), 37–40 (2006).

[Z13] Zelikson, S., On crystal operators in Lusztig's parametrizations and string cone defining inequalities, Glasg. Math. J., 55 (1) (2013), 177–200.