GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

1741 publications using GAP in the category "Group theory and generalizations"

[AI15] Abdolghafourian, A. and Iranmanesh, M. A., Divisibility graph for symmetric and alternating groups, Comm. Algebra, 43 (7) (2015), 2852–2862.

[AIN17] Abdolghafourian, A., Iranmanesh, M. A., and Niemeyer, A. C., The divisibility graph of finite groups of Lie type, J. Pure Appl. Algebra, 221 (10) (2017), 2482–2493.

[A01] Abdollahi, A., Some Engel conditions on finite subsets of certain groups, Houston J. Math., 27 (3) (2001), 511–522.

[A15] Abdollahi, A., Non-solvable groups generated by involutions in which every involution is left 2-Engel, J. Group Theory, 18 (1) (2015), 111–114.

[A07] Abdollahi, A., Engel graph associated with a group, J. Algebra, 318 (2) (2007), 680–691.

[A11] Abdollahi, A., Cohomologically trivial modules over finite groups of prime power order, J. Algebra, 342 (2011), 154–160.

[AAG17] Abdollahi, A., Ahmadi, M., and Ghoraishi, S. M., Finite $p$-groups with the least number of outer $p$-automorphisms, J. Algebra Appl., 16 (6) (2017), 1750111, 12.

[AAS07] Abdollahi, A., Ashraf, F., and Shaker, S. M., The symmetric group of degree six can be covered by 13 and no fewer proper subgroups, Bull. Malays. Math. Sci. Soc. (2), 30 (1) (2007), 57–58.

[AAH08] Abdollahi, A., Ataei, M. J., and Hassanabadi, A. M., Minimal blocking sets in $\rm PG(n,2)$ and covering groups by subgroups, Comm. Algebra, 36 (2) (2008), 365–380.

[AA+05] Abdollahi, A., Ataei, M. J., Jafarian Amiri, S. M., and Hassanabadi, A. M., Groups with a maximal irredundant 6-cover, Comm. Algebra, 33 (9) (2005), 3225–3238.

[ABT11] Abdollahi, A., Brandl, R., and Tortora, A., Groups generated by a finite Engel set, J. Algebra, 347 (2011), 53–59.

[AD+17] Abdollahi, A., Daoud, B., Farrokhi D. G. , M., and Guerboussa, Y., Groups of prime generalized exponent, Internat. J. Algebra Comput., 27 (7) (2017), 849–862.

[AFH08] Abdollahi, A., Faghihi, A., and Hassanabadi, A. M., Minimal number of generators and minimum order of a non-abelian group whose elements commute with their endomorphic images, Comm. Algebra, 36 (5) (2008), 1976–1987.

[AF+10] Abdollahi, A., Faghihi, A., Linton, S. A., and O'Brien, E. A., Finite 3-groups of class 3 whose elements commute with their automorphic images, Arch. Math. (Basel), 95 (1) (2010), 1–7.

[AFM08] Abdollahi, A., Faghihi, A., and Mohammadi Hassanabadi, A., 3-generator groups whose elements commute with their endomorphic images are abelian, Comm. Algebra, 36 (10) (2008), 3783–3791.

[AGG17] Abdollahi, A., Guedri, M., and Guerboussa, Y., Non-triviality of Tate cohomology for certain classes of finite $p$-groups, Comm. Algebra, 45 (12) (2017), 5188–5192.

[AH09] Abdollahi, A. and Hassanabadi, A. M., Non-cyclic graph associated with a group, J. Algebra Appl., 8 (2) (2009), 243–257.

[AH05] Abdollahi, A. and Hassanabadi, A. M., 3-rewritable nilpotent 2-groups of class 2, Comm. Algebra, 33 (5) (2005), 1417–1425.

[AJ07] Abdollahi, A. and Jafarian Amiri, S. M., On groups with an irredundant 7-cover, J. Pure Appl. Algebra, 209 (2) (2007), 291–300.

[AJH07] Abdollahi, A., Jafarian Amiri, S. M., and Hassanabadi, A. M., Groups with specific number of centralizers, Houston J. Math., 33 (1) (2007), 43–57.

[AJJ16] Abdollahi, A., Janbaz, S., and Jazaeri, M., Groups all of whose undirected Cayley graphs are determined by their spectra, J. Algebra Appl., 15 (9) (2016), 1650175, 15.

[AK10] Abdollahi, A. and Khosravi, H., Right 4-Engel elements of a group, J. Algebra Appl., 9 (5) (2010), 763–769.

[AK10] Abdollahi, A. and Khosravi, H., On the right and left 4-Engel elements, Comm. Algebra, 38 (3) (2010), 933–943.

[ADJ17] Abdollahi, A., van Dam, E. R., and Jazaeri, M., Distance-regular Cayley graphs with least eigenvalue $-2$, Des. Codes Cryptogr., 84 (1-2) (2017), 73–85.

[AV09] Abdollahi, A. and Vatandoost, E., Which Cayley graphs are integral?, Electron. J. Combin., 16 (1) (2009), Research Paper 122, 17.

[AZ15] Abdollahi, A. and Zallaghi, M., Character sums for Cayley graphs, Comm. Algebra, 43 (12) (2015), 5159–5167.

[AZ10] Abdollahi, A. and Zarrin, M., Non-nilpotent graph of a group, Comm. Algebra, 38 (12) (2010), 4390–4403.

[A00] Abduh, A. A., On the representations of subgroups of the Janko sporadic simple group $J_1$, Far East J. Math. Sci. (FJMS), 2 (6) (2000), 963–971.

[AC+13] Abel, R. J. R., Combe, D., Nelson, A. M., and Palmer, W. D., GBRDs over supersolvable groups and solvable groups of order prime to 3, Des. Codes Cryptogr., 69 (2) (2013), 189–201.

[AV16] Aboras, M. and Vojtěchovský, P., Automorphisms of dihedral-like automorphic loops, Comm. Algebra, 44 (2) (2016), 613–627.

[AH11] Adan-Bante, E. and Harris, J. M., On similar matrices and their products, Bol. Soc. Mat. Mexicana (3), 17 (2) (2011), 117–126.

[AI17] Adhami, S. R. and Iranmanesh, A., On sharp characters of type $1,3\$ or $3,1\$, J. Algebra Appl., 16 (1) (2017), 1750004, 10.

[A97] Adler, A., The Mathieu group $M_11$ and the modular curve $X(11)$, Proc. London Math. Soc. (3), 74 (1) (1997), 1–28.

[A16] Adrianov, N., Primitive monodromy groups of rational functions with one multiple pole, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 446 (Kombinatorika i Teoriya Grafov. V) (2016), 12–30.

[AI12] Ahanjideh, N. and Iranmanesh, A., On the Sylow normalizers of some simple classical groups, Bull. Malays. Math. Sci. Soc. (2), 35 (2) (2012), 459–467.

[AMT17] Ahanjideh, N., Mousavi, L., and Taeri, B., NSE characterization of some linear groups, Bull. Iranian Math. Soc., 43 (5) (2017), 1531–1542.

[AT14] Ahmadi, H. and Taeri, B., On the planarity of a graph related to the join of subgroups of a finite group, Bull. Iranian Math. Soc., 40 (6) (2014), 1413–1431.

[A02] Aichinger, E., The polynomial functions on certain semidirect products of groups, Acta Sci. Math. (Szeged), 68 (1-2) (2002), 63–81.

[AM14] Akbari, M. and Moghaddamfar, A. R., The existence or nonexistence of non-commuting graphs with particular properties, J. Algebra Appl., 13 (1) (2014), 1350064, 11.

[AB+12] Akhlaghi, Z., Beltrán, A., Felipe, M. J., and Khatami, M., Structure of normal subgroups with three $G$-class sizes, Monatsh. Math., 167 (1) (2012), 1–12.

[AK16] Akhlaghi, Z. and Khatami, M., Improving Thompson's conjecture for Suzuki groups, Comm. Algebra, 44 (9) (2016), 3927–3932.

[AGK15] Al Fares, A., Golvin, E., and Krebs, M., A class of 2-groups of derived length three, Serdica Math. J., 41 (2-3) (2015), 329–332.

[AD17] Alavi, S. H. and Daneshkhah, A., On semi-rational finite simple groups, Monatsh. Math., 184 (2) (2017), 175–184.

[ADJ16] Alavi, S. H., Daneshkhah, A., and Jafari, A., Groups with the same character degrees as sporadic almost simple groups, Bull. Aust. Math. Soc., 94 (2) (2016), 254–265.

[AD+13] Alavi, S. H., Daneshkhah, A., Tong-Viet, H. P., and Wakefield, T. P., On Huppert's conjecture for the Conway and Fischer families of sporadic simple groups, J. Aust. Math. Soc., 94 (3) (2013), 289–303.

[AS09] Aleev, R. Z. and Sokolov, V. V., On central unit groups of integral group rings of alternating groups, Proc. Steklov Inst. Math., 267 (suppl. 1) (2009), S1–S9.

[ABC03] Alejandro, P. P., Bailey, R. A., and Cameron, P. J., Association schemes and permutation groups, Discrete Math., 266 (1-3) (2003), 47–67
(The 18th British Combinatorial Conference (Brighton, 2001)).

[AK16] Alekseeva, O. A. and Kondratʹev, A. S., Finite groups whose prime graphs are triangle-free. II, Tr. Inst. Mat. Mekh., 22 (1) (2016), 3–13.

[AB+00] Alexander, J., Balasubramanian, R., Martin, J., Monahan, K., Pollatsek, H., and Sen, A., Ruling out $(160,54,18)$ difference sets in some nonabelian groups, J. Combin. Des., 8 (4) (2000), 221–231.

[A07] Ali, F., On the ranks of O'N and Ly, Discrete Appl. Math., 155 (3) (2007), 394–399.

[A14] Ali, F., On the ranks of $Fi_22$, Quaest. Math., 37 (4) (2014), 591–600.

[AI05] Ali, F. and Ibrahim, M. A. F., On the ranks of Conway group $\rm Co_1$, Proc. Japan Acad. Ser. A Math. Sci., 81 (6) (2005), 95–98.

[AI05] Ali, F. and Ibrahim, M. A. F., On the ranks of the Conway groups $\rm Co_2$ and $\rm Co_3$, J. Algebra Appl., 4 (5) (2005), 557–565.

[AI12] Ali, F. and Ibrahim, M. A. F., On the simple sporadic group He generated by the $(2,3,t)$ generators, Bull. Malays. Math. Sci. Soc. (2), 35 (3) (2012), 745–753.

[AM03] Ali, F. and Moori, J., The Fischer-Clifford matrices of a maximal subgroup of $\rm Fi'_24$, Represent. Theory, 7 (2003), 300–321.

[AM08] Ali, F. and Moori, J., Fischer-Clifford matrices of the non-split group extension $2^6 \cdot U_4(2)$, Quaest. Math., 31 (1) (2008), 27–36.

[AS08] Ali, M. H. and Schaps, M., Lifting McKay graphs and relations to prime extensions, Rocky Mountain J. Math., 38 (2) (2008), 373–393.

[ABC17] Aljohani, M., Bamberg, J., and Cameron, P. J., Synchronization and separation in the Johnson schemes, Port. Math., 74 (3) (2017), 213–232.

[A12] Allcock, D., Triangles of Baumslag-Solitar groups, Canad. J. Math., 64 (2) (2012), 241–253.

[AC13] Almeida, J. and Costa, A., Presentations of Schützenberger groups of minimal subshifts, Israel J. Math., 196 (1) (2013), 1–31.

[AD05] Almeida, J. and Delgado, M., Tameness of the pseudovariety of abelian groups, Internat. J. Algebra Comput., 15 (2) (2005), 327–338.

[A98] Alp, M., Special cases of $\rm cat^1$-groups, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 47 (1-2) (1998), 1–10.

[A01] Alp, M., Sections in GAP, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 14 (2001), 18–26, 206.

[A00] Alp, M., Special cases of $\rm cat^1$-groups, Algebras Groups Geom., 17 (4) (2000), 468–478.

[AP00] Alp, M. and Pak, S., Underlying groupoids, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 49 (1-2) (2000), 25–31.

[AW10] Alp, M. and Wensley, C. D., Automorphisms and homotopies of groupoids and crossed modules, Appl. Categ. Structures, 18 (5) (2010), 473–504.

[AW00] Alp, M. and Wensley, C. D., Enumeration of $\rm cat^1$-groups of low order, Internat. J. Algebra Comput., 10 (4) (2000), 407–424.

[AN+05] Ambrose, S., Neunhöffer, M., Praeger, C. E., and Schneider, C., Generalised sifting in black-box groups, LMS J. Comput. Math., 8 (2005), 217–250.

[AA16] Amiri, S. M. J. and Amiri, M., Finite groups in which at least $\frac 13$ of the elements are involutions, J. Algebra Appl., 15 (10) (2016), 1650184, 14.

[AC+08] An, J., Cannon, J. J., O'Brien, E. A., and Unger, W. R., The Alperin weight conjecture and Dade's conjecture for the simple group $\rm Fi_24'$, LMS J. Comput. Math., 11 (2008), 100–145.

[AD12] An, J. and Dietrich, H., The AWC-goodness and essential rank of sporadic simple groups, J. Algebra, 356 (2012), 325–354.

[AE11] An, J. and Eaton, C. W., Nilpotent blocks of quasisimple groups for odd primes, J. Reine Angew. Math., 656 (2011), 131–177.

[AE13] An, J. and Eaton, C. W., Nilpotent blocks of quasisimple groups for the prime two, Algebr. Represent. Theory, 16 (1) (2013), 1–28.

[AHH10] An, J., Himstedt, F., and Huang, S., Dade's invariant conjecture for the symplectic group $\rm Sp_4(2^n)$ and the special unitary group $\rm SU_4(2^2n)$ in defining characteristic, Comm. Algebra, 38 (6) (2010), 2364–2403.

[AHH07] An, J., Himstedt, F., and Huang, S., Uno's invariant conjecture for Steinberg's triality groups in defining characteristic, J. Algebra, 316 (1) (2007), 79–108.

[AH06] An, J. and Hiss, G., Restricting the Steinberg character in finite symplectic groups, J. Group Theory, 9 (2) (2006), 251–264.

[AH10] An, J. and Huang, S., Dade's invariant conjecture for the general unitary group $\rm GU_4(q^2)$ in defining characteristic, Internat. J. Algebra Comput., 20 (3) (2010), 357–380.

[AO03] An, J. and O'Brien, E. A., Conjectures on the character degrees of the Harada-Norton simple group HN, Israel J. Math., 137 (2003), 157–181.

[AO05] An, J. and O'Brien, E. A., The Alperin and Uno conjectures for the Fischer simple group $\rm Fi_22$, Comm. Algebra, 33 (5) (2005), 1529–1557.

[AO04] An, J. and O'Brien, E. A., The Alperin and Dade conjectures for the Conway simple group $\rm Co_1$, Algebr. Represent. Theory, 7 (2) (2004), 139–158.

[AO99] An, J. and O'Brien, E. A., The Alperin and Dade conjectures for the Fischer simple group $\rm Fi_23$, Internat. J. Algebra Comput., 9 (6) (1999), 621–670.

[AOW03] An, J., O'Brien, E. A., and Wilson, R. A., The Alperin weight conjecture and Dade's conjecture for the simple group $J_4$, LMS J. Comput. Math., 6 (2003), 119–140.

[AH15] Anabanti, C. S. and Hart, S. B., On a conjecture of Street and Whitehead on locally maximal product-free sets, Australas. J. Combin., 63 (2015), 385–398.

[AOV17] Andersen, K. K. S., Oliver, B., and Ventura, J., Reduced fusion systems over 2-groups of small order, J. Algebra, 489 (2017), 310–372.

[AAC16] André, J., Araújo, J., and Cameron, P. J., The classification of partition homogeneous groups with applications to semigroup theory, J. Algebra, 452 (2016), 288–310.

[A05] André, J. M., The maximum inverse subsemigroup of a near permutation semigroup, Comm. Algebra, 33 (10) (2005), 3607–3617.

[AF+10] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., Pointed Hopf algebras over some sporadic simple groups, C. R. Math. Acad. Sci. Paris, 348 (11-12) (2010), 605–608.

[AF+11] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., The logbook of pointed Hopf algebras over the sporadic simple groups, J. Algebra, 325 (2011), 282–304.

[AF+11] Andruskiewitsch, N., Fantino, F., Graña, M., and Vendramin, L., Pointed Hopf algebras over the sporadic simple groups, J. Algebra, 325 (2011), 305–320.

[AS11] Ankaralioglu, N. and Seress, Á., Computing tensor decompositions of finite matrix groups, Discrete Math. Theor. Comput. Sci., 13 (4) (2011), 5–13.

[A09] Anton, M. F., Homological symbols and the Quillen conjecture, J. Pure Appl. Algebra, 213 (4) (2009), 440–453.

[AKS04] Araújo, I. M., Kelarev, A. V., and Solomon, A., An algorithm for commutative semigroup algebras which are principal ideal rings, Comm. Algebra, 32 (4) (2004), 1237–1254.

[AS00] Araújo, I. M. and Solomon, A., Computing with semigroups in $ßfGAP$—a tutorial, in Semigroups (Braga, 1999), World Sci. Publ., River Edge, NJ (2000), 1–18.

[AA+17] Araújo, J., Araújo, J. P., Cameron, P. J., Dobson, T., Hulpke, A., and Lopes, P., Imprimitive permutations in primitive groups, J. Algebra, 486 (2017), 396–416.

[AB+10] Araújo, J., Bünau, P. V., Mitchell, J. D., and Neunhöffer, M., Computing automorphisms of semigroups, J. Symbolic Comput., 45 (3) (2010), 373–392.

[ABK15] Araújo, J., Bentz, W., and Konieczny, J., The commuting graph of the symmetric inverse semigroup, Israel J. Math., 207 (1) (2015), 103–149.

[AB+15] Araújo, J., Bentz, W., Mitchell, J. D., and Schneider, C., The rank of the semigroup of transformations stabilising a partition of a finite set, Math. Proc. Cambridge Philos. Soc., 159 (2) (2015), 339–353.

[AC17] Araújo, J. and Cameron, P. J., Special issue on computational algebra, Port. Math., 74 (3) (2017), 171–172.

[AC16] Araújo, J. and Cameron, P. J., Two generalizations of homogeneity in groups with applications to regular semigroups, Trans. Amer. Math. Soc., 368 (2) (2016), 1159–1188.

[AC+13] Araújo, J., Cameron, P. J., Mitchell, J. D., and Neunhöffer, M., The classification of normalizing groups, J. Algebra, 373 (2013), 481–490.

[ACS17] Araújo, J., Cameron, P. J., and Steinberg, B., Between primitive and 2-transitive: synchronization and its friends, EMS Surv. Math. Sci., 4 (2) (2017), 101–184.

[AK+17] Araújo, J., Kinyon, M., Konieczny, J., and Malheiro, A., Four notions of conjugacy for abstract semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 147 (6) (2017), 1169–1214.

[AMO04] Arad, Z., Muzychuk, M., and Oliver, A., On groups with conjugacy classes of distinct sizes, J. Algebra, 280 (2) (2004), 537–576.

[ACK05] Archer, C., Cara, P., and Krempa, J., Using the Frattini subgroup and independent generating sets to study RWPri geometries, Beiträge Algebra Geom., 46 (1) (2005), 169–177.

[AD11] Arjomandfar, A. and Doostie, H., Proving the efficiency of pro-2-groups of fixed co-classes, Bull. Iranian Math. Soc., 37 (4) (2011), 73–80.

[AK17] Arora, H. and Karan, R., What is the probability an automorphism fixes a group element?, Comm. Algebra, 45 (3) (2017), 1141–1150.

[AC+05] Artal Bartolo, E., Carmona Ruber, J., Cogolludo-Agustín, J. I., and Marco Buzunáriz, M., Topology and combinatorics of real line arrangements, Compos. Math., 141 (6) (2005), 1578–1588.

[AA+13] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., and Tehranian, A., A characterization of sporadic simple groups by nse and order, J. Algebra Appl., 12 (2) (2013), 1250158, 3.

[A00] Ashrafi, A. R., On finite groups with a given number of centralizers, Algebra Colloq., 7 (2) (2000), 139–146.

[A04] Ashrafi, A. R., On decomposability of finite groups, J. Korean Math. Soc., 41 (3) (2004), 479–487.

[A06] Ashrafi, A. R., $(p,q,r)$-generation of the sporadic group HN, Taiwanese J. Math., 10 (3) (2006), 613–629.

[AT05] Ashrafi, A. R. and Taeri, B., On finite groups with a certain number of centralizers, J. Appl. Math. Comput., 17 (1-2) (2005), 217–227.

[AV04] Ashrafi, A. R. and Venkataraman, G., On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes, Proc. Indian Acad. Sci. Math. Sci., 114 (3) (2004), 217–224.

[AG13] Assi, A. and García-Sánchez, P. A., Constructing the set of complete intersection numerical semigroups with a given Frobenius number, Appl. Algebra Engrg. Comm. Comput., 24 (2) (2013), 133–148.

[AG16] Assi, A. and García-Sánchez, P. A., Algorithms for curves with one place at infinity, J. Symbolic Comput., 74 (2016), 475–492.

[AE05] Assmann, B. and Eick, B., Computing polycyclic presentations for polycyclic rational matrix groups, J. Symbolic Comput., 40 (6) (2005), 1269–1284.

[AE07] Assmann, B. and Eick, B., Testing polycyclicity of finitely generated rational matrix groups, Math. Comp., 76 (259) (2007), 1669–1682.

[AL07] Assmann, B. and Linton, S., Using the Malʹcev correspondence for collection in polycyclic groups, J. Algebra, 316 (2) (2007), 828–848.

[AFP13] Atanasov, R., Foguel, T., and Penland, A., Equal quasi-partition of $p$-groups, Results Math., 64 (1-2) (2013), 185–191.

[A12] Attar, M. S., Finite $p$-groups in which each central automorphism fixes centre elementwise, Comm. Algebra, 40 (3) (2012), 1096–1102.

[AMR96] Aubert, A., Michel, J., and Rouquier, R., Correspondance de Howe pour les groupes réductifs sur les corps finis, Duke Math. J., 83 (2) (1996), 353–397.

[AP09] Azad, A. and Praeger, C. E., Maximal subsets of pairwise noncommuting elements of three-dimensional general linear groups, Bull. Aust. Math. Soc., 80 (1) (2009), 91–104.

[AT+16] Azizi, A., Talbi, M., Talbi, M., Derhem, A., and Mayer, D. C., The group $\textGal(k_3^(2)|k)$ for $k=\BbbQ(\sqrt-3,\sqrtd)$ of type $(3,3)$, Int. J. Number Theory, 12 (7) (2016), 1951–1986.

[XA+12] Álvarez, V., Armario, J. A., Frau, M. D., and Real, P., Homological models for semidirect products of finitely generated Abelian groups, Appl. Algebra Engrg. Comm. Comput., 23 (1-2) (2012), 101–127.

[XD00] Ðoković, D. Ž. and Doniz, D., The complex indecomposable representations of $\rm Aut(F_2)$ of degree less than six, Internat. J. Algebra Comput., 10 (2) (2000), 229–260.

[XP96] Ðoković, D. Ž. and Platonov, V. P., Low-dimensional representations of $\rm Aut(F_2)$, Manuscripta Math., 89 (4) (1996), 475–509.

[B97] Babai, L., Randomization in group algorithms: conceptual questions, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 1–17.

[BP00] Babai, L. and Pak, I., Strong bias of group generators: an obstacle to the ``product replacement algorithm'', in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000), ACM, New York (2000), 627–635.

[BKM97] Bacon, M. R., Kappe, L., and Morse, R. F., On the nonabelian tensor square of a $2$-Engel group, Arch. Math. (Basel), 69 (5) (1997), 353–364.

[BK04] Bagiński, C. and Konovalov, A., On 2-groups of almost maximal class, Publ. Math. Debrecen, 65 (1-2) (2004), 97–131.

[BK07] Bagiński, C. and Konovalov, A., The modular isomorphism problem for finite $p$-groups with a cyclic subgroup of index $p^2$, in Groups St. Andrews 2005. Vol. 1, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 339 (2007), 186–193.

[BFS16] Bailey, A., Finn-Sell, M., and Snocken, R., Subsemigroup, ideal and congruence growth of free semigroups, Israel J. Math., 215 (1) (2016), 459–501.

[B09] Bailey, R. F., Error-correcting codes from permutation groups, Discrete Math., 309 (13) (2009), 4253–4265.

[B06] Bailey, R. F., Uncoverings-by-bases for base-transitive permutation groups, Des. Codes Cryptogr., 41 (2) (2006), 153–176.

[BD07] Bailey, R. F. and Dixon, J. P., Distance enumerators for permutation groups, Comm. Algebra, 35 (10) (2007), 3045–3051.

[BP12] Bailey, R. F. and Prellberg, T., Decoding generalised hyperoctahahedral groups and asymptotic analysis of correctible error patterns, Contrib. Discrete Math., 7 (1) (2012), 1–14.

[B14] Baishya, S. J., Revisiting the Leinster groups, C. R. Math. Acad. Sci. Paris, 352 (1) (2014), 1–6.

[BD14] Baishya, S. J. and Das, A. K., Harmonic numbers and finite groups, Rend. Semin. Mat. Univ. Padova, 132 (2014), 33–43.

[B01] Baker, M. D., Link complements and the Bianchi modular groups, Trans. Amer. Math. Soc., 353 (8) (2001), 3229–3246.

[BP12] Balagović, M. and Policastro, C., Category $\scr O$ for the rational Cherednik algebra associated to the complex reflection group $G_12$, J. Pure Appl. Algebra, 216 (4) (2012), 857–875.

[BBR15] Ballantyne, J., Bates, C., and Rowley, P., The maximal subgroups of $E_7(2)$, LMS J. Comput. Math., 18 (1) (2015), 323–371.

[BR15] Ballantyne, J. and Rowley, P., Local fusion graphs and sporadic simple groups, Electron. J. Combin., 22 (3) (2015), Paper 3.18, 13.

[BCE13] Ballester-Bolinches, A., Cosme-Llópez, E., and Esteban-Romero, R., Algorithms for permutability in finite groups, Cent. Eur. J. Math., 11 (11) (2013), 1914–1922.

[BE02] Ballester-Bolinches, A. and Esteban-Romero, R., On a question of Beidleman and Robinson, Comm. Algebra, 30 (12) (2002), 5757–5770.

[BEL17] Ballester-Bolinches, A., Esteban-Romero, R., and Lu, J., On finite groups with many supersoluble subgroups, Arch. Math. (Basel), 109 (1) (2017), 3–8.

[B07] Balogh, Z., Further results on a filtered multiplicative basis of group algebras, Math. Commun., 12 (2) (2007), 229–238.

[BJ11] Balogh, Z. and Juhász, T., Nilpotency class of symmetric units of group algebras, Publ. Math. Debrecen, 79 (1-2) (2011), 171–180.

[BL07] Balogh, Z. and Li, Y., On the derived length of the group of units of a group algebra, J. Algebra Appl., 6 (6) (2007), 991–999.

[BGS15] Bamberg, J., Glasby, S. P., and Swartz, E., AS-configurations and skew-translation generalised quadrangles, J. Algebra, 421 (2015), 311–330.

[BLS18] Bamberg, J., Li, C. H., and Swartz, E., A classification of finite antiflag-transitive generalized quadrangles, Trans. Amer. Math. Soc., 370 (3) (2018), 1551–1601.

[BP08] Bamberg, J. and Penttila, T., Overgroups of cyclic Sylow subgroups of linear groups, Comm. Algebra, 36 (7) (2008), 2503–2543.

[BC12] Barakat, M. and Cuntz, M., Coxeter and crystallographic arrangements are inductively free, Adv. Math., 229 (1) (2012), 691–709.

[BV03] Bardakov, V. G. and Vesnin, A. Y., On a generalization of Fibonacci groups, Algebra Logika, 42 (2) (2003), 131–160, 255.

[B99] Bardoe, M. K., The universal embedding for the involution geometry of $\rm Co_1$, J. Algebra, 217 (2) (1999), 555–572.

[B96] Bardoe, M. K., The universal embedding for the involution geometry of the Suzuki sporadic simple group, J. Algebra, 186 (2) (1996), 447–460.

[B96] Bardoe, M. K., The universal embedding for the $U_4(3)$ involution geometry, J. Algebra, 186 (2) (1996), 368–383.

[B10] Barraclough, R. W., The character table of a group of shape $(2 \times 2 \cdot G)\colon 2$, LMS J. Comput. Math., 13 (2010), 82–89.

[BW07] Barraclough, R. W. and Wilson, R. A., The character table of a maximal subgroup of the Monster, LMS J. Comput. Math., 10 (2007), 161–175.

[BOP17] Barron, T., O'Neill, C., and Pelayo, R., On dynamic algorithms for factorization invariants in numerical monoids, Math. Comp., 86 (307) (2017), 2429–2447.

[BMN06] Barry, F., MacHale, D., and Ní Shé, Á., Some supersolvability conditions for finite groups, Math. Proc. R. Ir. Acad., 106A (2) (2006), 163–177.

[B13] Bartholdi, L., Automorphisms of free groups. I, New York J. Math., 19 (2013), 395–421.

[B17] Bartholdi, L., Representation zeta functions of self-similar branched groups, Groups Geom. Dyn., 11 (1) (2017), 29–56.

[B05] Bartholdi, L., Lie algebras and growth in branch groups, Pacific J. Math., 218 (2) (2005), 241–282.

[B04] Bartholdi, L., The 2-dimension series of the just-nonsolvable BSV group, New Zealand J. Math., 33 (1) (2004), 17–23.

[B03] Bartholdi, L., Endomorphic presentations of branch groups, J. Algebra, 268 (2) (2003), 419–443.

[B06] Bartholdi, L., Branch rings, thinned rings, tree enveloping rings, Israel J. Math., 154 (2006), 93–139.

[BB07] Bartholdi, L. and Bush, M. R., Maximal unramified 3-extensions of imaginary quadratic fields and $\rm SL_2(\Bbb Z_3)$, J. Number Theory, 124 (1) (2007), 159–166.

[BH10] Bartholdi, L. and de la Harpe, P., Representation zeta functions of wreath products with finite groups, Groups Geom. Dyn., 4 (2) (2010), 209–249.

[BS06] Bartholdi, L. and Sidki, S. N., The automorphism tower of groups acting on rooted trees, Trans. Amer. Math. Soc., 358 (1) (2006), 329–358.

[BM15] Basheer, A. B. M. and Moori, J., On the non-split extension $2^2n \cdot Sp(2n,2)$, Bull. Iranian Math. Soc., 41 (2) (2015), 499–518.

[BM13] Basheer, A. B. M. and Moori, J., On the non-split extension group $2^6 \cdot Sp(6,2)$, Bull. Iranian Math. Soc., 39 (6) (2013), 1189–1212.

[BM17] Basheer, A. B. M. and Moori, J., Clifford-Fischer theory applied to a group of the form $2^1+6_-:((3^1+2:8):2)$, Bull. Iranian Math. Soc., 43 (1) (2017), 41–52.

[BS16] Basheer, A. B. M. and Seretlo, T. T., On a group of the form $2^14:Sp(6,2)$, Quaest. Math., 39 (1) (2016), 45–57.

[BD16] Bastos, R. and Dantas, A. C., On finite groups with few automorphism orbits, Comm. Algebra, 44 (7) (2016), 2953–2958.

[BB+07] Bates, C., Bundy, D., Hart, S., and Rowley, P., Commuting involution graphs for sporadic simple groups, J. Algebra, 316 (2) (2007), 849–868.

[BR09] Bates, C. and Rowley, P., Normalizers of $p$-subgroups in finite groups, Arch. Math. (Basel), 92 (1) (2009), 7–13.

[BR05] Bates, C. and Rowley, P., Centralizers of real elements in finite groups, Arch. Math. (Basel), 85 (6) (2005), 485–489.

[BR04] Bates, C. and Rowley, P., Involutions in Conway's largest simple group, LMS J. Comput. Math., 7 (2004), 337–351.

[BG+17] Baumeister, B., Gobet, T., Roberts, K., and Wegener, P., On the Hurwitz action in finite Coxeter groups, J. Group Theory, 20 (1) (2017), 103–131.

[BKL16] Baumeister, B., Kaplan, G., and Levy, D., Covering a finite group by the conjugates of a coset, J. Algebra, 448 (2016), 84–103.

[BMT17] Baumeister, B., Maróti, A., and Tong-Viet, H. P., Finite groups have more conjugacy classes, Forum Math., 29 (2) (2017), 259–275.

[BCH04] Baumslag, G., Cleary, S., and Havas, G., Experimenting with infinite groups. I, Experiment. Math., 13 (4) (2004), 495–502.

[BH+15] Bäärnhielm, H., Holt, D., Leedham-Green, C. R., and O'Brien, E. A., A practical model for computation with matrix groups, J. Symbolic Comput., 68 (part 1) (2015), 27–60.

[BL12] Bäärnhielm, H. and Leedham-Green, C. R., The product replacement Prospector, J. Symbolic Comput., 47 (1) (2012), 64–75.

[BC17] Bächle, A. and Caicedo, M., On the prime graph question for almost simple groups with an alternating socle, Internat. J. Algebra Comput., 27 (3) (2017), 333–347.

[BK11] Bächle, A. and Kimmerle, W., On torsion subgroups in integral group rings of finite groups, J. Algebra, 326 (2011), 34–46.

[BM17] Bächle, A. and Margolis, L., On the prime graph question for integral group rings of 4-primary groups I, Internat. J. Algebra Comput., 27 (6) (2017), 731–767.

[BM17] Bächle, A. and Margolis, L., Rational conjugacy of torsion units in integral group rings of non-solvable groups, Proc. Edinb. Math. Soc. (2), 60 (4) (2017), 813–830.

[B01] Beals, R., Improved algorithms for the Tits alternative, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 63–77.

[B99] Beals, R., Algorithms for matrix groups and the Tits alternative, J. Comput. System Sci., 58 (2) (1999), 260–279
(36th IEEE Symposium on the Foundations of Computer Science (Milwaukee, WI, 1995)).

[BB93] Beals, R. and Babai, L., Las Vegas algorithms for matrix groups, in 34th Annual Symposium on Foundations of Computer Science (Palo Alto, CA, 1993), IEEE Comput. Soc. Press, Los Alamitos, CA (1993), 427–436.

[BL+05] Beals, R., Leedham-Green, C. R., Niemeyer, A. C., Praeger, C. E., and Seress, Á., Constructive recognition of finite alternating and symmetric groups acting as matrix groups on their natural permutation modules, J. Algebra, 292 (1) (2005), 4–46.

[B05] Becker, P. E., Investigation of solvable (120, 35, 10) difference sets, J. Combin. Des., 13 (2) (2005), 79–107.

[BD+17] Becker, P. E., Derka, M., Houghten, S., and Ulrich, J., Build a sporadic group in your basement, Amer. Math. Monthly, 124 (4) (2017), 291–305.

[BKK07] Beidar, K. I., Ke, W., and Kiechle, H., Automorphisms of certain design groups. II, J. Algebra, 313 (2) (2007), 672–686.

[BKK05] Beidar, K. I., Ke, W., and Kiechle, H., Circularity of finite groups without fixed points, Monatsh. Math., 144 (4) (2005), 265–273.

[BR07] Beidleman, J. C. and Ragland, M. F., The intersection map of subgroups and certain classes of finite groups, Ric. Mat., 56 (2) (2007), 217–227.

[B16] Beltrán, A., Invariant Sylow subgroups and solvability of finite groups, Arch. Math. (Basel), 106 (2) (2016), 101–106.

[BF04] Beltrán, A. and Felipe, M. J., Finite groups with a disconnected $p$-regular conjugacy class graph, Comm. Algebra, 32 (9) (2004), 3503–3516.

[BF+16] Beltrán, A., Felipe, M. J., Malle, G., Moretó, A., Navarro, G., Sanus, L., Solomon, R., and Tiep, P. H., Nilpotent and abelian Hall subgroups in finite groups, Trans. Amer. Math. Soc., 368 (4) (2016), 2497–2513.

[BFM16] Beltrán, A., Felipe, M. J., and Melchor, C., Landau's theorem on conjugacy classes for normal subgroups, Internat. J. Algebra Comput., 26 (7) (2016), 1453–1466.

[BFM16] Beltrán, A., Felipe, M. J., and Melchor, C., Normal subgroups whose conjugacy class graph has diameter three, Bull. Aust. Math. Soc., 94 (2) (2016), 266–272.

[BFM15] Beltrán, A., Felipe, M. J., and Melchor, C., Graphs associated to conjugacy classes of normal subgroups in finite groups, J. Algebra, 443 (2015), 335–348.

[BFM17] Beltrán, A., Felipe, M. J., and Melchor, C., Triangles in the graph of conjugacy classes of normal subgroups, Monatsh. Math., 182 (1) (2017), 5–21.

[BFS15] Beltrán, A., Felipe, M. J., and Shao, C., Class sizes of prime-power order $p'$-elements and normal subgroups, Ann. Mat. Pura Appl. (4), 194 (5) (2015), 1527–1533.

[BFS15] Beltrán, A., Felipe, M. J., and Shao, C., $p$-divisibility of conjugacy class sizes and normal $p$-complements, J. Group Theory, 18 (1) (2015), 133–141.

[B10] Benesh, B., The probabilistic zeta function, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 1–9.

[BS04] Bennett, C. D. and Shpectorov, S., A new proof of a theorem of Phan, J. Group Theory, 7 (3) (2004), 287–310.

[B00] Bereczky, Á., Maximal overgroups of Singer elements in classical groups, J. Algebra, 234 (1) (2000), 187–206.

[BM+14] Berman, L. W., Mixer, M., Monson, B., Oliveros, D., and Williams, G., The monodromy group of the $n$-pyramid, Discrete Math., 320 (2014), 55–63.

[BM+15] Berman, L. W., Monson, B., Oliveros, D., and Williams, G. I., The monodromy group of a truncated simplex, J. Algebraic Combin., 42 (3) (2015), 745–761.

[BE01] Besche, H. U. and Eick, B., The groups of order $q^n \cdot p$, Comm. Algebra, 29 (4) (2001), 1759–1772.

[BE99] Besche, H. U. and Eick, B., The groups of order at most 1000 except 512 and 768, J. Symbolic Comput., 27 (4) (1999), 405–413.

[BEO02] Besche, H. U., Eick, B., and O'Brien, E. A., A millennium project: constructing small groups, Internat. J. Algebra Comput., 12 (5) (2002), 623–644.

[BEO01] Besche, H. U., Eick, B., and O'Brien, E. A., The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc., 7 (2001), 1–4.

[BB04] Bessenrodt, C. and Behns, C., On the Durfee size of Kronecker products of characters of the symmetric group and its double covers, J. Algebra, 280 (1) (2004), 132–144.

[BB17] Bessenrodt, C. and Bowman, C., Multiplicity-free Kronecker products of characters of the symmetric groups, Adv. Math., 322 (2017), 473–529.

[BK00] Bessenrodt, C. and Kleshchev, A. S., Irreducible tensor products over alternating groups, J. Algebra, 228 (2) (2000), 536–550.

[BMO06] Bessenrodt, C., Malle, G., and Olsson, J. B., Separating characters by blocks, J. London Math. Soc. (2), 73 (2) (2006), 493–505.

[BTZ17] Bessenrodt, C., Tong-Viet, H. P., and Zhang, J., Huppert's conjecture for alternating groups, J. Algebra, 470 (2017), 353–378.

[B97] Bessis, D., Sur le corps de définition d'un groupe de réflexions complexe, Comm. Algebra, 25 (8) (1997), 2703–2716.

[B03] Bessis, D., The dual braid monoid, Ann. Sci. École Norm. Sup. (4), 36 (5) (2003), 647–683.

[BM04] Bessis, D. and Michel, J., Explicit presentations for exceptional braid groups, Experiment. Math., 13 (3) (2004), 257–266.

[BD+09] Betten, A., Delandtsheer, A., Law, M., Niemeyer, A. C., Praeger, C. E., and Zhou, S., Finite line-transitive linear spaces: theory and search strategies, Acta Math. Sin. (Engl. Ser.), 25 (9) (2009), 1399–1436.

[B08] Bidwell, J. N. S., Automorphisms of direct products of finite groups. II, Arch. Math. (Basel), 91 (2) (2008), 111–121.

[BC06] Bidwell, J. N. S. and Curran, M. J., The automorphism group of a split metacyclic $p$-group, Arch. Math. (Basel), 87 (6) (2006), 488–497.

[BC09] Bidwell, J. N. S. and Curran, M. J., Corrigendum to ``The automorphism group of a split metacyclic $p$-group''. [Arch. Math. 87 (2006) 488–497] [MR2283679], Arch. Math. (Basel), 92 (1) (2009), 14–18.

[BC10] Bidwell, J. N. S. and Curran, M. J., Automorphisms of finite abelian groups, Math. Proc. R. Ir. Acad., 110A (1) (2010), 57–71.

[BM17] Biliotti, M. and Montinaro, A., On flag-transitive symmetric designs of affine type, J. Combin. Des., 25 (2) (2017), 85–97.

[BM13] Biliotti, M. and Montinaro, A., On $PGL(2,q)$-invariant unitals embedded in Desarguesian or in Hughes planes, Finite Fields Appl., 24 (2013), 66–87.

[BAE17] Bin Ahmad, A. G., Al-Mulla, M. A., and Edjvet, M., Asphericity of a length four relative group presentation, J. Algebra Appl., 16 (4) (2017), 1750076, 27.

[BD16] Bishnoi, A. and De Bruyn, B., A new near octagon and the Suzuki tower, Electron. J. Combin., 23 (2) (2016), Paper 2.35, 24.

[BD+13] Bishop, M., Douglass, J. M., Pfeiffer, G., and Röhrle, G., Computations for Coxeter arrangements and Solomon's descent algebra: Groups of rank three and four, J. Symbolic Comput., 50 (2013), 139–158.

[BD+13] Bishop, M., Douglass, J. M., Pfeiffer, G., and Röhrle, G., Computations for Coxeter arrangements and Solomon's descent algebra II: Groups of rank five and six, J. Algebra, 377 (2013), 320–332.

[BD+15] Bishop, M., Douglass, J. M., Pfeiffer, G., and Röhrle, G., Computations for Coxeter arrangements and Solomon's descent algebra III: Groups of rank seven and eight, J. Algebra, 423 (2015), 1213–1232.

[BGG11] Blanco, V., García-Sánchez, P. A., and Geroldinger, A., Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math., 55 (4) (2011), 1385–1414 (2013).

[BGP11] Blanco, V., García-Sánchez, P. A., and Puerto, J., Counting numerical semigroups with short generating functions, Internat. J. Algebra Comput., 21 (7) (2011), 1217–1235.

[BP12] Blanco, V. and Puerto, J., An application of integer programming to the decomposition of numerical semigroups, SIAM J. Discrete Math., 26 (3) (2012), 1210–1237.

[BR11] Blanco, V. and Rosales, J. C., Irreducibility in the set of numerical semigroups with fixed multiplicity, Internat. J. Algebra Comput., 21 (5) (2011), 731–744.

[BR12] Blanco, V. and Rosales, J. C., On the enumeration of the set of numerical semigroups with fixed Frobenius number, Comput. Math. Appl., 63 (7) (2012), 1204–1211.

[B99] Bleher, F. M., Finite groups of Lie type of small rank, Pacific J. Math., 187 (2) (1999), 215–239.

[B95] Bleher, F. M., Tensor products and a conjecture of Zassenhaus, Arch. Math. (Basel), 64 (4) (1995), 289–298.

[BGK97] Bleher, F. M., Geck, M., and Kimmerle, W., Automorphisms of generic Iwahori-Hecke algebras and integral group rings of finite Coxeter groups, J. Algebra, 197 (2) (1997), 615–655.

[BHK95] Bleher, F. M., Hiss, G., and Kimmerle, W., Autoequivalences of blocks and a conjecture of Zassenhaus, J. Pure Appl. Algebra, 103 (1) (1995), 23–43.

[BMM08] Blyth, R. D., Moravec, P., and Morse, R. F., On the nonabelian tensor squares of free nilpotent groups of finite rank, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 27–43.

[BM09] Blyth, R. D. and Morse, R. F., Computing the nonabelian tensor squares of polycyclic groups, J. Algebra, 321 (8) (2009), 2139–2148.

[BMR04] Blyth, R. D., Morse, R. F., and Redden, J. L., On computing the non-abelian tensor squares of the free 2-Engel groups, Proc. Edinb. Math. Soc. (2), 47 (2) (2004), 305–323.

[B01] Boe, B. D., Geometry of the Jantzen region in Lusztig's conjecture, Math. Comp., 70 (235) (2001), 1265–1280.

[B14] Bogley, W. A., On shift dynamics for cyclically presented groups, J. Algebra, 418 (2014), 154–173.

[BW16] Bogley, W. A. and Williams, G., Efficient finite groups arising in the study of relative asphericity, Math. Z., 284 (1-2) (2016), 507–535.

[BS+05] Bohli, J., Steinwandt, R., González Vasco, M. I., and Martínez, C., Weak keys in $MST_1$, Des. Codes Cryptogr., 37 (3) (2005), 509–524.

[BB+13] Bondarenko, I. V., Bondarenko, N. V., Sidki, S. N., and Zapata, F. R., On the conjugacy problem for finite-state automorphisms of regular rooted trees, Groups Geom. Dyn., 7 (2) (2013), 323–355
(With an appendix by Raphaël M. Jungers).

[BB14] Bonisoli, A. and Bonvicini, S., On the existence spectrum for sharply transitive $G$-designs, $G$ a $[k]$-matching, Discrete Math., 332 (2014), 60–68.

[BK02] Bonisoli, A. and Korchmáros, G., Irreducible collineation groups fixing a hyperoval, J. Algebra, 252 (2) (2002), 431–448.

[BR03] Bonisoli, A. and Rinaldi, G., Primitive collineation groups of ovals with a fixed point, European J. Combin., 24 (7) (2003), 797–807.

[BM11] Bonnafé, C. and Michel, J., Computational proof of the Mackey formula for $q>2$, J. Algebra, 327 (2011), 506–526.

[B08] Bonvicini, S., Frattini-based starters in 2-groups, Discrete Math., 308 (2-3) (2008), 380–381.

[BR10] Bonvicini, S. and Ruini, B., Symmetric bowtie decompositions of the complete graph, Electron. J. Combin., 17 (1) (2010), Research Paper 101, 19.

[B06] Booker, A. R., Artin's conjecture, Turing's method, and the Riemann hypothesis, Experiment. Math., 15 (4) (2006), 385–407.

[BP01] Borges Trenard, M. A. and Pérez Rosés, H., Characterizing the normal forms of a finitely presented monoid, in Fourth Italian-Latin American Conference on Applied and Industrial Mathematics (Havana, 2001), Inst. Cybern. Math. Phys., Havana (2001), 294–300.

[BB+06] Borges-Trenard, M. A., Borges-Quintana, M., Castellanos-Garzón, J. A., and Martínez-Moro, E., The symmetric group given by a Gröbner basis, J. Pure Appl. Algebra, 207 (1) (2006), 149–154.

[BP01] Borges-Trenard, M. A. and Pérez-Rosés, H., Enumerating words in finitely presented monoids, Investigación Oper., 22 (1) (2001), 62–66
(4th International Conference on Operations Research (Havana, 2000)).

[BB08] Borovik, A. and Burdges, J., A new trichotomy theorem for groups of finite Morley rank, J. Lond. Math. Soc. (2), 77 (1) (2008), 1–14.

[B17] Bors, A., Finite groups with an automorphism of large order, J. Group Theory, 20 (4) (2017), 681–717.

[B17] Bors, A., Fibers of word maps and the multiplicities of non-abelian composition factors, Internat. J. Algebra Comput., 27 (8) (2017), 1121–1148.

[B17] Bors, A., Classification of finite group automorphisms with a large cycle II, Comm. Algebra, 45 (5) (2017), 2029–2042.

[B16] Bors, A., Classification of finite group automorphisms with a large cycle, Comm. Algebra, 44 (11) (2016), 4823–4843.

[BS14] Bou-Rabee, K. and Seward, B., Generalizing Magnus' characterization of free groups to some free products, Comm. Algebra, 42 (9) (2014), 3950–3962.

[B15] Bouc, S., The Roquette category of finite $p$-groups, J. Eur. Math. Soc. (JEMS), 17 (11) (2015), 2843–2886.

[BST13] Bouc, S., Stancu, R., and Thévenaz, J., Simple biset functors and double Burnside ring, J. Pure Appl. Algebra, 217 (3) (2013), 546–566.

[BZ17] Bouc, S. and Zimmermann, A., On a question of Rickard on tensor products of stably equivalent algebras, Exp. Math., 26 (1) (2017), 31–44.

[BWY16] Bouyuklieva, S., Willems, W., and Yankov, N., On the automorphisms of order 15 for a binary self-dual $[96, 48, 20]$ code, Des. Codes Cryptogr., 79 (1) (2016), 171–182.

[BE00] Bovdi, A. and Erdei, L., Unitary units in modular group algebras of $2$-groups, Comm. Algebra, 28 (2) (2000), 625–630.

[B12] Bovdi, V., Group rings in which the group of units is hyperbolic, J. Group Theory, 15 (2) (2012), 227–235.

[BJK11] Bovdi, V. A., Jespers, E., and Konovalov, A. B., Torsion units in integral group rings of Janko simple groups, Math. Comp., 80 (273) (2011), 593–615.

[BK10] Bovdi, V. A. and Konovalov, A. B., Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar., 47 (1) (2010), 1–11.

[BK09] Bovdi, V. A. and Konovalov, A. B., Integral group ring of Rudvalis simple group, Ukraïn. Mat. Zh., 61 (1) (2009), 3–13.

[BK08] Bovdi, V. A. and Konovalov, A. B., Integral group ring of the Mathieu simple group $M_23$, Comm. Algebra, 36 (7) (2008), 2670–2680.

[BKL11] Bovdi, V. A., Konovalov, A. B., and Linton, S., Torsion units in integral group rings of Conway simple groups, Internat. J. Algebra Comput., 21 (4) (2011), 615–634.

[BKL08] Bovdi, V. A., Konovalov, A. B., and Linton, S., Torsion units in integral group ring of the Mathieu simple group $\rm M_22$, LMS J. Comput. Math., 11 (2008), 28–39.

[BKM08] Bovdi, V. A., Konovalov, A. B., and Marcos, E. d. N., Integral group ring of the Suzuki sporadic simple group, Publ. Math. Debrecen, 72 (3-4) (2008), 487–503.

[BKS07] Bovdi, V. A., Konovalov, A. B., and Siciliano, S., Integral group ring of the Mathieu simple group $M_12$, Rend. Circ. Mat. Palermo (2), 56 (1) (2007), 125–136.

[BHK04] Bovdi, V., Höfert, C., and Kimmerle, W., On the first Zassenhaus conjecture for integral group rings, Publ. Math. Debrecen, 65 (3-4) (2004), 291–303.

[BH08] Bovdi, V. and Hertweck, M., Zassenhaus conjecture for central extensions of $S_5$, J. Group Theory, 11 (1) (2008), 63–74.

[BK12] Bovdi, V. and Konovalov, A., Integral group ring of the Mathieu simple group $M_24$, J. Algebra Appl., 11 (1) (2012), 1250016, 10.

[BK07] Bovdi, V. and Konovalov, A., Integral group ring of the first Mathieu simple group, in Groups St. Andrews 2005. Vol. 1, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 339 (2007), 237–245.

[BH16] Boykett, T. and Howell, K., The multiplicative automorphisms of a finite nearfield, with an application, Comm. Algebra, 44 (6) (2016), 2336–2350.

[BG14] Bradley, J. D. and Goodwin, S. M., Conjugacy classes in Sylow $p$-subgroups of finite Chevalley groups in bad characteristic, Comm. Algebra, 42 (8) (2014), 3245–3258.

[BMV15] Braić, S., Mandić, J., and Vučičić, T., Primitive block designs with automorphism group $\rm PSL(2,q)$, Glas. Mat. Ser. III, 50(70) (1) (2015), 1–15.

[B17] Brandl, R., Groups with few non-nilpotent subgroups, J. Algebra Appl., 16 (10) (2017), 1750188, 10.

[BGM16] Bravi, P., Gandini, J., and Maffei, A., Projective normality of model varieties and related results, Represent. Theory, 20 (2016), 39–93.

[BC04] Bray, J. N. and Curtis, R. T., Double coset enumeration of symmetrically generated groups, J. Group Theory, 7 (2) (2004), 167–185.

[BS+01] Bray, J. N., Suleiman, I. A. I., Walsh, P. G., and Wilson, R. A., Generating maximal subgroups of sporadic simple groups, Comm. Algebra, 29 (3) (2001), 1325–1337.

[BC+17] Breda d'Azevedo, A., Catalano, D. A., Karabáš, J., and Nedela, R., Quadrangle groups inclusions, Beitr. Algebra Geom., 58 (2) (2017), 369–394.

[BJ09] Breda D'Azevedo, A. and Jones, G. A., Totally chiral maps and hypermaps of small genus, J. Algebra, 322 (11) (2009), 3971–3996.

[B94] Bremke, K., The decomposition numbers of Hecke algebras of type $F_4$ with unequal parameters, Manuscripta Math., 83 (3-4) (1994), 331–346.

[BM97] Bremke, K. and Malle, G., Reduced words and a length function for $G(e,1,n)$, Indag. Math. (N.S.), 8 (4) (1997), 453–469.

[BD+14] Bremner, D., Dutour Sikirić, M., Pasechnik, D. V., Rehn, T., and Schürmann, A., Computing symmetry groups of polyhedra, LMS J. Comput. Math., 17 (1) (2014), 565–581.

[BF11] Bretto, A. and Faisant, A., Cayley graphs and $G$-graphs: some applications, J. Symbolic Comput., 46 (12) (2011), 1403–1412.

[BFG07] Bretto, A., Faisant, A., and Gillibert, L., $G$-graphs: a new representation of groups, J. Symbolic Comput., 42 (5) (2007), 549–560.

[B00] Breuer, T., Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, 280 (2000), xii+199 pages.

[B11] Breuer, T., Computing character tables of groups of type $M.G.A$, LMS J. Comput. Math., 14 (2011), 173–178.

[B99] Breuer, T., Computing possible class fusions from character tables, Comm. Algebra, 27 (6) (1999), 2733–2748.

[B95] Breuer, T., Subgroups of $J_4$ inducing the same permutation character, Comm. Algebra, 23 (9) (1995), 3173–3176.

[BGK08] Breuer, T., Guralnick, R. M., and Kantor, W. M., Probabilistic generation of finite simple groups. II, J. Algebra, 320 (2) (2008), 443–494.

[BG+10] Breuer, T., Guralnick, R. M., Lucchini, A., Maróti, A., and Nagy, G. P., Hamiltonian cycles in the generating graphs of finite groups, Bull. Lond. Math. Soc., 42 (4) (2010), 621–633.

[BH+06] Breuer, T., Héthelyi, L., Horváth, E., Külshammer, B., and Murray, J., Cartan invariants and central ideals of group algebras, J. Algebra, 296 (1) (2006), 177–195.

[BH01] Breuer, T. and Horváth, E., On block induction, J. Algebra, 242 (1) (2001), 213–224.

[BL96] Breuer, T. and Lux, K., The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups, Comm. Algebra, 24 (7) (1996), 2293–2316.

[BMO17] Breuer, T., Malle, G., and O'Brien, E. A., Reliability and reproducibility of \it Atlas information, in Finite simple groups: thirty years of the atlas and beyond, Amer. Math. Soc., Providence, RI, Contemp. Math., 694 (2017), 21–31.

[BP98] Breuer, T. and Pfeiffer, G., Finding possible permutation characters, J. Symbolic Comput., 26 (3) (1998), 343–354.

[BSS17] Britnell, J. R., Saunders, N., and Skyner, T., On exceptional groups of order $p^5$, J. Pure Appl. Algebra, 221 (11) (2017), 2647–2665.

[BP06] Broche Cristo, O. and Polcino Milies, C., Central idempotents in group algebras, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 75–87.

[BCR95] Brookes, M. J., Campbell, C. M., and Robertson, E. F., Efficiency and direct products of groups, in Groups—Korea '94 (Pusan), de Gruyter, Berlin (1995), 25–33.

[B08] Brooksbank, P. A., Fast constructive recognition of black box symplectic groups, J. Algebra, 320 (2) (2008), 885–909.

[B03] Brooksbank, P. A., Fast constructive recognition of black-box unitary groups, LMS J. Comput. Math., 6 (2003), 162–197.

[B03] Brooksbank, P. A., Constructive recognition of classical groups in their natural representation, J. Symbolic Comput., 35 (2) (2003), 195–239.

[B01] Brooksbank, P. A., A constructive recognition algorithm for the matrix group $\Omega(d,q)$, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 79–93.

[BQ+04] Brooksbank, P., Qin, H., Robertson, E., and Seress, Á., On Dowling geometries of infinite groups, J. Combin. Theory Ser. A, 108 (1) (2004), 155–158.

[BW07] Broughton, S. A. and Wootton, A., Finite abelian subgroups of the mapping class group, Algebr. Geom. Topol., 7 (2007), 1651–1697.

[BKR98] Brouwer, A. E., Koolen, J. H., and Riebeek, R. J., A new distance-regular graph associated to the Mathieu group $M_10$, J. Algebraic Combin., 8 (2) (1998), 153–156.

[B00] Brown, K. S., The coset poset and probabilistic zeta function of a finite group, J. Algebra, 225 (2) (2000), 989–1012.

[BG+06] Brown, R., Ghani, N., Heyworth, A., and Wensley, C. D., String rewriting for double coset systems, J. Symbolic Comput., 41 (5) (2006), 573–590.

[BW95] Brown, R. and Wensley, C. D., On finite induced crossed modules, and the homotopy $2$-type of mapping cones, Theory Appl. Categ., 1 (1995), No. 3, 54–70.

[BS16] Brozovic, D. P. and Sin, P. K., A note on point stabilizers in sharp permutation groups of type $\0,k\$, Comm. Algebra, 44 (8) (2016), 3324–3339.

[B07] Brunat, O., On Lusztig's conjecture for connected and disconnected exceptional groups, J. Algebra, 316 (1) (2007), 303–325.

[B09] Brunat, O., Basic sets in defining characteristic for general linear groups of small rank, J. Pure Appl. Algebra, 213 (5) (2009), 698–710.

[B09] Brunat, O., On the inductive McKay condition in the defining characteristic, Math. Z., 263 (2) (2009), 411–424.

[BG10] Brunat, O. and Gramain, J., A basic set for the alternating group, J. Reine Angew. Math., 641 (2010), 177–202.

[BM15] Brunat, O. and Malle, G., Characters of positive height in blocks of finite quasi-simple groups, Int. Math. Res. Not. IMRN (17) (2015), 7763–7786.

[BK01] Brundan, J. and Kleshchev, A. S., Representations of the symmetric group which are irreducible over subgroups, J. Reine Angew. Math., 530 (2001), 145–190.

[BD+15] Bryant, R. M., Danz, S., Erdmann, K., and Müller, J., Vertices of Lie modules, J. Pure Appl. Algebra, 219 (11) (2015), 4816–4839.

[BMN15] Buckley, S., MacHale, D., and Ní Shé, Á., Degree sum deficiency in finite groups, Math. Proc. R. Ir. Acad., 115A (1) (2015), 12.

[BDW09] Buczyńska, W., Donten, M., and Wiśniewski, J. A., Isotropic models of evolution with symmetries, in Interactions of classical and numerical algebraic geometry, Amer. Math. Soc., Providence, RI, Contemp. Math., 496 (2009), 111–131.

[BR11] Bueno, T. P. and Rocco, N. R., On the $q$-tensor square of a group, J. Group Theory, 14 (5) (2011), 785–805.

[BE16] Bui, A. T. and Ellis, G., Computing Bredon homology of groups, J. Homotopy Relat. Struct., 11 (4) (2016), 715–734.

[BCT12] Bujalance, E., Cirre, F., and Turbek, P., Symmetry types of cyclic covers of the sphere, Israel J. Math., 191 (1) (2012), 61–83.

[BH09] Bundy, D. and Hart, S., The case of equality in the Livingstone-Wagner theorem, J. Algebraic Combin., 29 (2) (2009), 215–227.

[BL+17] Burkett, S., Lamar, J., Lewis, M. L., and Wynn, C., Groups with exactly two supercharacter theories, Comm. Algebra, 45 (3) (2017), 977–982.

[B07] Burness, T. C., Fixed point ratios in actions of finite classical groups. I, J. Algebra, 309 (1) (2007), 69–79.

[B07] Burness, T. C., Fixed point ratios in actions in finite classical groups. II, J. Algebra, 309 (1) (2007), 80–138.

[B07] Burness, T. C., Fixed point ratios in actions of finite classical groups. III, J. Algebra, 314 (2) (2007), 693–748.

[B07] Burness, T. C., Fixed point ratios in actions of finite classical groups. IV, J. Algebra, 314 (2) (2007), 749–788.

[BGS14] Burness, T. C., Guralnick, R. M., and Saxl, J., Base sizes for $\scr S$-actions of finite classical groups, Israel J. Math., 199 (2) (2014), 711–756.

[BOW10] Burness, T. C., O'Brien, E. A., and Wilson, R. A., Base sizes for sporadic simple groups, Israel J. Math., 177 (2010), 307–333.

[BPS12] Burness, T. C., Praeger, C. E., and Seress, Á., Extremely primitive sporadic and alternating groups, Bull. Lond. Math. Soc., 44 (6) (2012), 1147–1154.

[BT16] Burness, T. C. and Tong-Viet, H. P., Primitive permutation groups and derangements of prime power order, Manuscripta Math., 150 (1-2) (2016), 255–291.

[CM14] Callegaro, F. and Marin, I., Homology computations for complex braid groups, J. Eur. Math. Soc. (JEMS), 16 (1) (2014), 103–164.

[C13] Cameron, P. J., Dixon's theorem and random synchronization, Discrete Math., 313 (11) (2013), 1233–1236.

[C99] Cameron, P. J., Permutation groups, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, 45 (1999), x+220 pages.

[C03] Cameron, P. J., Coherent configurations, association schemes and permutation groups, in Groups, combinatorics \& geometry (Durham, 2001), World Sci. Publ., River Edge, NJ (2003), 55–71.

[C05] Cameron, P. J., Partitions and permutations, Discrete Math., 291 (1-3) (2005), 45–54.

[CC02] Cameron, P. J. and Cara, P., Independent generating sets and geometries for symmetric groups, J. Algebra, 258 (2) (2002), 641–650.

[CG+17] Cameron, P. J., Gadouleau, M., Mitchell, J. D., and Peresse, Y., Chains of subsemigroups, Israel J. Math., 220 (1) (2017), 479–508.

[CGM08] Cameron, P. J., Gewurz, D. A., and Merola, F., Product action, Discrete Math., 308 (2-3) (2008), 386–394.

[CK03] Cameron, P. J. and Ku, C. Y., Intersecting families of permutations, European J. Combin., 24 (7) (2003), 881–890.

[CM05] Cameron, P. J. and Müller, T. W., A descent principle in modular subgroup arithmetic, J. Pure Appl. Algebra, 203 (1-3) (2005), 189–203.

[CR07] Cameron, P. J. and Rudvalis, A., A design and a geometry for the group $\rm Fi_22$, Des. Codes Cryptogr., 44 (1-3) (2007), 11–14.

[CS15] Cameron, P. J. and Spiga, P., Most switching classes with primitive automorphism groups contain graphs with trivial groups, Australas. J. Combin., 62 (2015), 76–90.

[CC06] Camina, A. R. and Camina, R. D., Recognising nilpotent groups, J. Algebra, 300 (1) (2006), 16–24.

[CS00] Camina, A. R. and Spiezia, F., Sporadic groups and automorphisms of linear spaces, J. Combin. Des., 8 (5) (2000), 353–362.

[CT13] Camina, R. and Thillaisundaram, A., A note on $p$-central groups, Glasg. Math. J., 55 (2) (2013), 449–456.

[CH+98] Campbell, C., Havas, G., Linton, S., and Robertson, E., Symmetric presentations and orthogonal groups, in The atlas of finite groups: ten years on (Birmingham, 1995), Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 249 (1998), 1–10.

[CC05] Campbell, C. M. and Campbell, P. P., The Fibonacci length of certain centro-polyhedral groups, J. Appl. Math. Comput., 19 (1-2) (2005), 231–240.

[CC04] Campbell, C. M. and Campbell, P. P., On the minimal length of semigroup presentations, Novi Sad J. Math., 34 (2) (2004), 17–26.

[CC+04] Campbell, C. M., Campbell, P. P., Doostie, H., and Robertson, E. F., Fibonacci lengths for certain metacyclic groups, Algebra Colloq., 11 (2) (2004), 215–222.

[CC+04] Campbell, C. M., Campbell, P. P., Doostie, H., and Robertson, E. F., On the Fibonacci length of powers of dihedral groups, in Applications of Fibonacci numbers. Vol. 9, Kluwer Acad. Publ., Dordrecht (2004), 69–85.

[CC+03] Campbell, C. M., Campbell, P. P., Hopson, B. T. K., and Robertson, E. F., On the efficiency of direct powers of $\rm PGL(2,p)$, in Recent advances in group theory and low-dimensional topology (Pusan, 2000), Heldermann, Lemgo, Res. Exp. Math., 27 (2003), 27–34.

[CH+02] Campbell, C. M., Havas, G., Hulpke, A., and Robertson, E. F., Efficient simple groups, Comm. Algebra, 30 (9) (2002), 4613–4619.

[CH+02] Campbell, C. M., Havas, G., Hulpke, A., and Robertson, E. F., Efficient simple groups, Comm. Algebra, 30 (2) (2002), 971–975.

[CH+03] Campbell, C. M., Havas, G., Hulpke, A., and Robertson, E. F., Efficient simple groups, Comm. Algebra, 31 (10) (2003), 5191–5197.

[CH+07] Campbell, C. M., Havas, G., Ramsay, C., and Robertson, E. F., On the efficiency of the simple groups of order less than a million and their covers, Experiment. Math., 16 (3) (2007), 347–358.

[CH+04] Campbell, C. M., Havas, G., Ramsay, C., and Robertson, E. F., Nice efficient presentations for all small simple groups and their covers, LMS J. Comput. Math., 7 (2004), 266–283.

[C07] Campbell, P. S., Steinberg characters for Chevalley groups over finite local rings, J. Algebra, 313 (2) (2007), 486–530.

[CN10] Campbell, P. S. and Nevins, M., Branching rules for ramified principal series representations of GL(3) over a $p$-adic field, Canad. J. Math., 62 (1) (2010), 34–51.

[CG+16] Cannon, J., Garonzi, M., Levy, D., Maróti, A., and Simion, I. I., Groups equal to a product of three conjugate subgroups, Israel J. Math., 215 (1) (2016), 31–52.

[CEL04] Cannon, J. J., Eick, B., and Leedham-Green, C. R., Special polycyclic generating sequences for finite soluble groups, J. Symbolic Comput., 38 (5) (2004), 1445–1460.

[CH08] Cannon, J. J. and Holt, D. F., The transitive permutation groups of degree 32, Experiment. Math., 17 (3) (2008), 307–314.

[CH03] Cannon, J. J. and Holt, D. F., Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput., 35 (3) (2003), 241–267.

[CRV14] Cara, P., Rottey, S., and Van de Voorde, G., A construction for infinite families of semisymmetric graphs revealing their full automorphism group, J. Algebraic Combin., 39 (4) (2014), 967–988.

[CRV14] Cara, P., Rottey, S., and Van de Voorde, G., The isomorphism problem for linear representations and their graphs, Adv. Geom., 14 (2) (2014), 353–367.

[CDS09] Caranti, A., Dalla Volta, F., and Sala, M., An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher, Des. Codes Cryptogr., 52 (3) (2009), 293–301.

[CNR09] Carlson, J. F., Neunhöffer, M., and Roney-Dougal, C. M., A polynomial-time reduction algorithm for groups of semilinear or subfield class, J. Algebra, 322 (3) (2009), 613–637.

[CT16] Caroli, M. and Teillaud, M., Delaunay triangulations of closed Euclidean $d$-orbifolds, Discrete Comput. Geom., 55 (4) (2016), 827–853.

[C02] Casselman, B., Computation in Coxeter groups. I. Multiplication, Electron. J. Combin., 9 (1) (2002), Research Paper 25, 22.

[CC+11] Catalano, D. A., Conder, M. D. E., Du, S. F., Kwon, Y. S., Nedela, R., and Wilson, S., Classification of regular embeddings of $n$-dimensional cubes, J. Algebraic Combin., 33 (2) (2011), 215–238.

[CK15] Cavallo, B. and Kahrobaei, D., Secret sharing using non-commutative groups and the shortlex order, in Algorithmic problems of group theory, their complexity, and applications to cryptography, Amer. Math. Soc., Providence, RI, Contemp. Math., 633 (2015), 1–8.

[CL97] Celler, F. and Leedham-Green, C. R., Calculating the order of an invertible matrix, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 55–60.

[CL+95] Celler, F., Leedham-Green, C. R., Murray, S. H., Niemeyer, A. C., and O'Brien, E. A., Generating random elements of a finite group, Comm. Algebra, 23 (13) (1995), 4931–4948.

[CNW90] Celler, F., Neubüser, J., and Wright, C. R. B., Some remarks on the computation of complements and normalizers in soluble groups, Acta Appl. Math., 21 (1-2) (1990), 57–76.

[CFS14] Chaboksavar, M., Farrokhi Derakhshandeh Ghouchan, M., and Saeedi, F., Finite groups with a given absolute central factor group, Arch. Math. (Basel), 102 (5) (2014), 401–409.

[CC+17] Chapman, S. T., Corrales, M., Miller, A., Miller, C., and Patel, D., The catenary degrees of elements in numerical monoids generated by arithmetic sequences, Comm. Algebra, 45 (12) (2017), 5443–5452.

[CC+14] Chapman, S. T., Corrales, M., Miller, A., Miller, C., and Patel, D., The catenary and tame degrees on a numerical monoid are eventually periodic, J. Aust. Math. Soc., 97 (3) (2014), 289–300.

[CGL09] Chapman, S. T., García-Sánchez, P. A., and Llena, D., The catenary and tame degree of numerical monoids, Forum Math., 21 (1) (2009), 117–129.

[CG+11] Chapman, S. T., García-Sánchez, P. A., Llena, D., and Marshall, J., Elements in a numerical semigroup with factorizations of the same length, Canad. Math. Bull., 54 (1) (2011), 39–43.

[CG+06] Chapman, S. T., García-Sánchez, P. A., Llena, D., Ponomarenko, V., and Rosales, J. C., The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscripta Math., 120 (3) (2006), 253–264.

[CG+06] Chapman, S. T., García-Sánchez, P. A., Llena, D., and Rosales, J. C., Presentations of finitely generated cancellative commutative monoids and nonnegative solutions of systems of linear equations, Discrete Appl. Math., 154 (14) (2006), 1947–1959.

[CG+16] Chapman, S. T., García-Sánchez, P. A., Tripp, Z., and Viola, C., Measuring primality in numerical semigroups with embedding dimension three, J. Algebra Appl., 15 (1) (2016), 1650007, 16.

[CGP14] Chapman, S. T., Gotti, F., and Pelayo, R., On delta sets and their realizable subsets in Krull monoids with cyclic class groups, Colloq. Math., 137 (1) (2014), 137–146.

[C16] Chavli, E., Universal deformations of the finite quotients of the braid group on 3 strands, J. Algebra, 459 (2016), 238–271.

[CCM12] Chebolu, S. K., Christensen, J. D., and Mináč, J., Freyd's generating hypothesis for groups with periodic cohomology, Canad. Math. Bull., 55 (1) (2012), 48–59.

[CS13] Chelʹtsov, I. A. and Shramov, K. A., Sporadic simple groups and quotient singularities, Izv. Ross. Akad. Nauk Ser. Mat., 77 (4) (2013), 215–224.

[CP17] Chen, G. and Ponomarenko, I., Coherent configurations associated with TI-subgroups, J. Algebra, 488 (2017), 201–229.

[CC+17] Chen, X., Cossey, J. P., Lewis, M. L., and Tong-Viet, H. P., Blocks of small defect in alternating groups and squares of Brauer character degrees, J. Group Theory, 20 (6) (2017), 1155–1173.

[CDH14] Cheng, M. C. N., Duncan, J. F. R., and Harvey, J. A., Umbral moonshine and the Niemeier lattices, Res. Math. Sci., 1 (2014), Art. 3, 81.

[CDH14] Cheng, M. C. N., Duncan, J. F. R., and Harvey, J. A., Umbral moonshine, Commun. Number Theory Phys., 8 (2) (2014), 101–242.

[COS08] Chermak, A., Oliver, B., and Shpectorov, S., The linking systems of the Solomon 2-local finite groups are simply connected, Proc. Lond. Math. Soc. (3), 97 (1) (2008), 209–238.

[C15] Chirik, I. K., On a factorizable group with large cyclic subgroups in factors, Ukrainian Math. J., 67 (7) (2015), 1133–1136
(Translation of Ukraïn. Mat. Zh. \bf67 (2015), no. 7, 1006–1008).

[CLY04] Chua, K. S., Lang, M. L., and Yang, Y., On Rademacher's conjecture: congruence subgroups of genus zero of the modular group, J. Algebra, 277 (1) (2004), 408–428.

[CGV12] Cicalò, S., de Graaf, W. A., and Vaughan-Lee, M., An effective version of the Lazard correspondence, J. Algebra, 352 (2012), 430–450.

[CS01] Cid, C. and Schulz, T., Computation of five- and six-dimensional Bieberbach groups, Experiment. Math., 10 (1) (2001), 109–115.

[CGM16] Ciolan, E., García-Sánchez, P. A., and Moree, P., Cyclotomic numerical semigroups, SIAM J. Discrete Math., 30 (2) (2016), 650–668.

[CE10] Clancy, M. and Ellis, G., Homology of some Artin and twisted Artin groups, J. K-Theory, 6 (1) (2010), 171–196.

[CCG05] Cohen, A. M., Cuypers, H., and Gramlich, R., Local recognition of non-incident point-hyperplane graphs, Combinatorica, 25 (3) (2005), 271–296.

[CCS99] Cohen, A. M., Cuypers, H., and Sterk, H., Algebra interactive!, Springer-Verlag, Berlin (1999), viii+159 pages
(Learning algebra in an exciting way, With 1 CD-ROM (Windows, LINUX and UNIX)).

[CGW05] Cohen, A. M., Gijsbers, D. A. H., and Wales, D. B., BMW algebras of simply laced type, J. Algebra, 286 (1) (2005), 107–153.

[CGW14] Cohen, A. M., Gijsbers, D. A. H., and Wales, D. B., The Birman-Murakami-Wenzl algebras of type $D_n$, Comm. Algebra, 42 (1) (2014), 22–55.

[CGL93] Cohen, A. M., Griess Jr. , R. L., and Lisser, B., The group $L(2,61)$ embeds in the Lie group of type $E_8$, Comm. Algebra, 21 (6) (1993), 1889–1907.

[CMS99] Cohen, A. M., Magaard, K., and Shpectorov, S., Affine distance-transitive graphs: the cross characteristic case, European J. Combin., 20 (5) (1999), 351–373.

[CMT04] Cohen, A. M., Murray, S. H., and Taylor, D. E., Computing in groups of Lie type, Math. Comp., 73 (247) (2004), 1477–1498.

[CR09] Cohen, A. M. and Roozemond, D., Computing Chevalley bases in small characteristics, J. Algebra, 322 (3) (2009), 703–721.

[CW11] Cohen, A. M. and Wales, D. B., The Birman-Murakami-Wenzl algebras of type $\bold E_n$, Transform. Groups, 16 (3) (2011), 681–715.

[CK17] Colton, S. and Kaplan, N., The realization problem for delta sets of numerical semigroups, J. Commut. Algebra, 9 (3) (2017), 313–339.

[CG+18] Conaway, R., Gotti, F., Horton, J., O'Neill, C., Pelayo, R., Pracht, M., and Wissman, B., Minimal presentations of shifted numerical monoids, Internat. J. Algebra Comput., 28 (1) (2018), 53–68.

[C94] Conder, M., Regular maps with small parameters, J. Austral. Math. Soc. Ser. A, 57 (1) (1994), 103–112.

[CM+03] Conder, M., Maclachlan, C., Todorovic Vasiljevic, S., and Wilson, S., Bounds for the number of automorphisms of a compact non-orientable surface, J. London Math. Soc. (2), 68 (1) (2003), 65–82.

[CT11] Conder, M. and Tucker, T., Motion and distinguishing number two, Ars Math. Contemp., 4 (1) (2011), 63–72.

[CD+01] Conway, J. H., Delgado Friedrichs, O., Huson, D. H., and Thurston, W. P., On three-dimensional space groups, Beiträge Algebra Geom., 42 (2) (2001), 475–507.

[CH95] Conway, J. H. and Hsu, T., Quilts and $T$-systems, J. Algebra, 174 (3) (1995), 856–908.

[CHM98] Conway, J. H., Hulpke, A., and McKay, J., On transitive permutation groups, LMS J. Comput. Math., 1 (1998), 1–8.

[C01] Cooperman, G., Parallel GAP: mature interactive parallel computing, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 123–138.

[CF94] Cooperman, G. and Finkelstein, L., A random base change algorithm for permutation groups, J. Symbolic Comput., 17 (6) (1994), 513–528.

[CH+97] Cooperman, G., Hiss, G., Lux, K., and Müller, J., The Brauer tree of the principal $19$-block of the sporadic simple Thompson group, Experiment. Math., 6 (4) (1997), 293–300.

[CL+99] Cooperman, G. D., Lempken, W., Michler, G. O., and Weller, M., A new existence proof of Janko's simple group $J_4$, in Computational methods for representations of groups and algebras (Essen, 1997), Birkhäuser, Basel, Progr. Math., 173 (1999), 161–175.

[CD06] Cordeiro, E. and Delgado, M., Computing relative abelian kernels of finite monoids, J. Algebra, 303 (2) (2006), 642–654.

[CDF06] Cordeiro, E., Delgado, M., and Fernandes, V. H., Relative abelian kernels of some classes of transformation monoids, Bull. Austral. Math. Soc., 73 (3) (2006), 375–404.

[CPP15] Corr, B. P., Popiel, T., and Praeger, C. E., Nilpotent-independent sets and estimation in matrix algebras, LMS J. Comput. Math., 18 (1) (2015), 404–418.

[CH+15] Cossey, J. P., Halasi, Z., Maróti, A., and Nguyen, H. N., On a conjecture of Gluck, Math. Z., 279 (3-4) (2015), 1067–1080.

[CE+11] Craven, D. A., Eaton, C. W., Kessar, R., and Linckelmann, M., The structure of blocks with a Klein four defect group, Math. Z., 268 (1-2) (2011), 441–476.

[CR16] Craven, M. J. and Robertz, D., A parallel evolutionary approach to solving systems of equations in polycyclic groups, Groups Complex. Cryptol., 8 (2) (2016), 109–125.

[CG11] Creedon, L. and Gildea, J., The structure of the unit group of the group algebra $\Bbb F_2^kD_8$, Canad. Math. Bull., 54 (2) (2011), 237–243.

[CMR10] Crnković, D., Mikulić, V., and Rodrigues, B. G., Some strongly regular graphs and self-orthogonal codes from the unitary group $\rm U_4(3)$, Glas. Mat. Ser. III, 45(65) (2) (2010), 307–323.

[CR13] Crnković, D. and Rodrigues, B. G., Self-orthogonal codes from some Bush-type Hadamard matrices, Quaest. Math., 36 (3) (2013), 341–352.

[C07] Curran, M. J., Direct products with abelian automorphism groups, Comm. Algebra, 35 (1) (2007), 389–397.

[C07] Curran, M. J., The automorphism group of a split metacyclic 2-group, Arch. Math. (Basel), 89 (1) (2007), 10–23.

[CH11] Curran, M. J. and Higgs, R. J., On minimal orders of groups with odd order automorphism groups, Comm. Algebra, 39 (1) (2011), 199–208.

[CM01] Curran, M. J. and McCaughan, D. J., Central automorphisms that are almost inner, Comm. Algebra, 29 (5) (2001), 2081–2087.

[C06] Cutolo, G., On a question about automorphisms of finite $p$-groups, J. Group Theory, 9 (2) (2006), 231–250.

[CK+97] Cutolo, G., Khukhro, E. I., Lennox, J. C., Wiegold, J., Rinauro, S., and Smith, H., Finite core-$p$ $p$-groups, J. Algebra, 188 (2) (1997), 701–719.

[CSW01] Cutolo, G., Smith, H., and Wiegold, J., On core-2 groups, J. Algebra, 237 (2) (2001), 813–841.

[C06] Cuypers, H., The geometry of $k$-transvection groups, J. Algebra, 300 (2) (2006), 455–471.

[CH+12] Cuypers, H., Horn, M., in 't panhuis, J., and Shpectorov, S., Lie algebras and 3-transpositions, J. Algebra, 368 (2012), 21–39.

[CSS99] Cuypers, H., Soicher, L. H., and Sterk, H., The small Mathieu groups, in Some tapas of computer algebra, Springer, Berlin, Algorithms Comput. Math., 4 (1999), 323–337.

[CSS99] Cuypers, H., Soicher, L. H., and Sterk, H., Working with finite groups, in Some tapas of computer algebra, Springer, Berlin, Algorithms Comput. Math., 4 (1999), 184–207.

[DD13] Dabbaghian, V. and Dixon, J. D., Computing characters of groups with central subgroups, LMS J. Comput. Math., 16 (2013), 398–406.

[DD10] Dabbaghian, V. and Dixon, J. D., Computing matrix representations, Math. Comp., 79 (271) (2010), 1801–1810.

[D07] Dabbaghian-Abdoly, V., Characters of some finite groups of Lie type with a restriction containing a linear character once, J. Algebra, 309 (2) (2007), 543–558.

[D06] Dabbaghian-Abdoly, V., Constructing representations of the finite symplectic group $\rm Sp(4,q)$, J. Algebra, 303 (2) (2006), 618–625.

[D05] Dabbaghian-Abdoly, V., An algorithm for constructing representations of finite groups, J. Symbolic Comput., 39 (6) (2005), 671–688.

[D06] Dabbaghian-Abdoly, V., Constructing representations of finite simple groups and covers, Canad. J. Math., 58 (1) (2006), 23–38.

[D07] Dabbaghian-Abdoly, V., Constructing representations of higher degrees of finite simple groups and covers, Math. Comp., 76 (259) (2007), 1661–1668.

[DDP03] Dalla Volta, F., Di Martino, L., and Previtali, A., On minimally irreducible groups of degree the product of two primes, J. Group Theory, 6 (1) (2003), 11–56.

[DL99] Dalla Volta, F. and Lucchini, A., The smallest group with non-zero presentation rank, J. Group Theory, 2 (2) (1999), 147–155.

[DLM03] Dalla Volta, F., Lucchini, A., and Morini, F., Some remarks on the probability of generating an almost simple group, Glasg. Math. J., 45 (2) (2003), 281–291.

[DV09] Daly, D. and Vojtěchovský, P., Enumeration of nilpotent loops via cohomology, J. Algebra, 322 (11) (2009), 4080–4098.

[DS18] Dantas, A. C. and Sidki, S. N., On state-closed representations of restricted wreath product of groups $G_p,d =C_pwrC^d$, J. Algebra, 500 (2018), 335–361.

[DEM13] Danz, S., Ellers, H., and Murray, J., The centralizer of a subgroup in a group algebra, Proc. Edinb. Math. Soc. (2), 56 (1) (2013), 49–56.

[DM12] Danz, S. and Müller, J., Source algebras of blocks, sources of simple modules, and a conjecture of Feit, J. Algebra, 353 (2012), 187–211.

[DM11] Danz, S. and Müller, J., The vertices and sources of the natural simple module for the alternating group in even characteristic, Comm. Algebra, 39 (9) (2011), 3187–3211.

[DHM13] Daoud, B., Hamitouche, M., and Merikhi, K., On the nilpotency class of a generalized 3-abelian group, Mediterr. J. Math., 10 (3) (2013), 1189–1194.

[D08] Darafsheh, M. R., On the recognition of the simple groups $L_7(3)$ and $L_8(3)$ by the spectrum, Internat. J. Algebra Comput., 18 (5) (2008), 925–933.

[DAM04] Darafsheh, M. R., Ashrafi, A. R., and Moghani, G. A., $nX$-complementary generations of the sporadic group $\rm Co_1$, Acta Math. Vietnam., 29 (1) (2004), 57–75.

[DFM08] Darafsheh, M. R., Farjami, Y., and Mahmiani, A., Recognition of the linear groups over the binary field by the set of their element orders, Acta Math. Vietnam., 33 (1) (2008), 27–38.

[DM11] Darafsheh, M. R. and Monfared, M. D., Characterization of $\Bbb A_16$ by a noncommuting graph, Ukrainian Math. J., 62 (11) (2011), 1673–1679.

[DN11] Das, A. K. and Nath, R. K., A characterisation of certain finite groups of odd order, Math. Proc. R. Ir. Acad., 111A (2) (2011), 69–78.

[DA14] Davvaz, B. and Alp, M., $\rm cat^1$-polygroups and pullback $\rm cat^1$-polygroups, Bull. Iranian Math. Soc., 40 (3) (2014), 721–735.

[DGV12] De Barros, D. A. S., Grishkov, A., and Vojtěchovský, P., Commutative automorphic loops of order $p^3$, J. Algebra Appl., 11 (5) (2012), 1250100, 15.

[GN02] de Graaf, W. A. and Nickel, W., Constructing faithful representations of finitely-generated torsion-free nilpotent groups, J. Symbolic Comput., 33 (1) (2002), 31–41.

[GP09] de Graaf, W. A. and Pavan, A., Constructing arithmetic subgroups of unipotent groups, J. Algebra, 322 (11) (2009), 3950–3970.

[D14] Decelle, S., The $L_2(11)$-subalgebra of the Monster algebra, Ars Math. Contemp., 7 (1) (2014), 83–103.

[D11] Degtyarev, A., Hurwitz equivalence of braid monodromies and extremal elliptic surfaces, Proc. Lond. Math. Soc. (3), 103 (6) (2011), 1083–1120.

[D12] Degtyarev, A., Topology of algebraic curves, Walter de Gruyter \& Co., Berlin, De Gruyter Studies in Mathematics, 44 (2012), xvi+393 pages
(An approach via dessins d'enfants).

[DE02] Dekimpe, K. and Eick, B., Computational aspects of group extensions and their applications in topology, Experiment. Math., 11 (2) (2002), 183–200.

[DIM01] Dekimpe, K., Igodt, P., and Malfait, W., Infra-nilmanifolds and their fundamental groups, J. Korean Math. Soc., 38 (5) (2001), 883–914
(Mathematics in the new millennium (Seoul, 2000)).

[RRZ11] del Río, Á., Ruiz Marín, M., and Zalesskii, P., Subgroup separability in integral group rings, J. Algebra, 347 (2011), 60–68.

[D01] Delgado, M., Commutative images of rational languages and the abelian kernel of a monoid, Theor. Inform. Appl., 35 (5) (2001), 419–435.

[DF+13] Delgado, M., Farrán, J. I., García-Sánchez, P. A., and Llena, D., On the generalized Feng-Rao numbers of numerical semigroups generated by intervals, Math. Comp., 82 (283) (2013), 1813–1836.

[DF00] Delgado, M. and Fernandes, V. H., Abelian kernels of some monoids of injective partial transformations and an application, Semigroup Forum, 61 (3) (2000), 435–452.

[DF04] Delgado, M. and Fernandes, V. H., Abelian kernels of monoids of order-preserving maps and of some of its extensions, Semigroup Forum, 68 (3) (2004), 335–356.

[DF13] Delgado, M. and Fernandes, V. H., Rees quotients of numerical semigroups, Port. Math., 70 (2) (2013), 93–112.

[DF05] Delgado, M. and Fernandes, V. H., Solvable monoids with commuting idempotents, Internat. J. Algebra Comput., 15 (3) (2005), 547–570.

[DGR16] Delgado, M., García-Sánchez, P. A., and Robles-Pérez, A. M., Numerical semigroups with a given set of pseudo-Frobenius numbers, LMS J. Comput. Math., 19 (1) (2016), 186–205.

[DG+08] Delgado, M., García-Sánchez, P. A., Rosales, J. C., and Urbano-Blanco, J. M., Systems of proportionally modular Diophantine inequalities, Semigroup Forum, 76 (3) (2008), 469–488.

[DH03] Delgado, M. and Héam, P., A polynomial time algorithm to compute the abelian kernel of a finite monoid, Semigroup Forum, 67 (1) (2003), 97–110.

[DS11] Delgado, M. and Steinberg, B., On iterated Mal'cev products with a pseudovariety of groups, Internat. J. Algebra Comput., 21 (7) (2011), 1285–1304.

[DMN13] Delizia, C., Moravec, P., and Nicotera, C., Groups with all centralizers subnormal of defect at most two, J. Algebra, 374 (2013), 132–140.

[DK17] Dellnitz, M. and Klus, S., Sensing and control in symmetric networks, Dyn. Syst., 32 (1) (2017), 61–79.

[D06] Dempwolff, U., Automorphisms and equivalence of bent functions and of difference sets in elementary abelian 2-groups, Comm. Algebra, 34 (3) (2006), 1077–1131.

[D14] Denoncin, D., Inductive AM condition for the alternating groups in characteristic 2, J. Algebra, 404 (2014), 1–17.

[DMP10] Deriziotis, D., McDonough, T. P., and Pallikaros, C. A., On root subsystems and involutions in $S_n$, Glasg. Math. J., 52 (2) (2010), 357–369.

[DR05] Descalço, L. and Ruškuc, N., Subsemigroups of the bicyclic monoid, Internat. J. Algebra Comput., 15 (1) (2005), 37–57.

[DFH18] Detinko, A., Flannery, D. L., and Hulpke, A., Zariski density and computing in arithmetic groups, Math. Comp., 87 (310) (2018), 967–986.

[D99] Detinko, A. S., A new GAP group library for irreducible maximal solvable subgroups of prime degree classical groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 258 (Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 4) (1999), 71–81, 355–356.

[DF04] Detinko, A. S. and Flannery, D. L., Classification of nilpotent primitive linear groups over finite fields, Glasg. Math. J., 46 (3) (2004), 585–594.

[DF17] Detinko, A. S. and Flannery, D. L., L. G. Kovács and linear groups, J. Aust. Math. Soc., 102 (1) (2017), 55–62.

[DF08] Detinko, A. S. and Flannery, D. L., Algorithms for computing with nilpotent matrix groups over infinite domains, J. Symbolic Comput., 43 (1) (2008), 8–26.

[DFH15] Detinko, A. S., Flannery, D. L., and Hulpke, A., Algorithms for arithmetic groups with the congruence subgroup property, J. Algebra, 421 (2015), 234–259.

[DFO09] Detinko, A. S., Flannery, D. L., and O'Brien, E. A., Deciding finiteness of matrix groups in positive characteristic, J. Algebra, 322 (11) (2009), 4151–4160.

[DFO13] Detinko, A. S., Flannery, D. L., and O'Brien, E. A., Recognizing finite matrix groups over infinite fields, J. Symbolic Comput., 50 (2013), 100–109.

[DFO11] Detinko, A. S., Flannery, D. L., and O'Brien, E. A., Algorithms for the Tits alternative and related problems, J. Algebra, 344 (2011), 397–406.

[DL13] Detomi, E. and Lucchini, A., Probabilistic generation of finite groups with a unique minimal normal subgroup, J. Lond. Math. Soc. (2), 87 (3) (2013), 689–706.

[DS14] Devadas, S. and Sam, S. V., Representations of rational Cherednik algebras of $G(m,r,n)$ in positive characteristic, J. Commut. Algebra, 6 (4) (2014), 525–559.

[DKC10] Deveci, Ö., Karaduman, E., and Campbell, C. M., The periods of $k$-nacci sequences in centro-polyhedral groups and related groups, Ars Combin., 97A (2010), 193–210.

[DDS08] Deza, M., Dutour Sikirić, M., and Shpectorov, S., Hypercube embeddings of Wythoffians, Ars Math. Contemp., 1 (1) (2008), 99–111.

[DPW09] Di Martino, L., Pellegrini, M. A., and Weigel, T., Minimal irreducibility and the unipotent characters of groups of type $B_m$ and $C_m$, J. Algebra Appl., 8 (3) (2009), 413–451.

[DPZ14] Di Martino, L., Pellegrini, M. A., and Zalesski, A. E., On generators and representations of the sporadic simple groups, Comm. Algebra, 42 (2) (2014), 880–908.

[DV94] Di Martino, L. and Vavilov, N., $(2,3)$-generation of $\rm SL(n,q)$. I. Cases $n=5,6,7$, Comm. Algebra, 22 (4) (1994), 1321–1347.

[DV96] Di Martino, L. and Vavilov, N., $(2,3)$-generation of $\rm SL(n,q)$. II. Cases $n\geq 8$, Comm. Algebra, 24 (2) (1996), 487–515.

[DZ08] Di Martino, L. and Zalesskii, A. E., Eigenvalues of unipotent elements in cross-characteristic representations of finite classical groups, J. Algebra, 319 (7) (2008), 2668–2722.

[DG13] Dietrich, H. and de Graaf, W. A., A computational approach to the Kostant-Sekiguchi correspondence, Pacific J. Math., 265 (2) (2013), 349–379.

[DE17] Dietrich, H. and Eick, B., Finite $p$-groups of maximal class with `large' automorphism groups, J. Group Theory, 20 (2) (2017), 227–256.

[DE05] Dietrich, H. and Eick, B., On the groups of cube-free order, J. Algebra, 292 (1) (2005), 122–137.

[DEF08] Dietrich, H., Eick, B., and Feichtenschlager, D., Investigating $p$-groups by coclass with GAP, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 45–61.

[DW18] Dietrich, H. and Wanless, I. M., Small partial Latin squares that embed in an infinite group but not into any finite group, J. Symbolic Comput., 86 (2018), 142–152.

[D12] Dietz, J., Automorphism groups of semi-direct products, Comm. Algebra, 40 (9) (2012), 3308–3316.

[DM14] Digne, F. and Michel, J., Parabolic Deligne-Lusztig varieties, Adv. Math., 257 (2014), 136–218.

[D14] Distler, A., Finite nilpotent semigroups of small coclass, Comm. Algebra, 42 (3) (2014), 1136–1150.

[DE15] Distler, A. and Eick, B., Group extensions with special properties, Groups Complex. Cryptol., 7 (1) (2015), 1–10.

[DK14] Distler, A. and Kelsey, T., The semigroups of order 9 and their automorphism groups, Semigroup Forum, 88 (1) (2014), 93–112.

[DM12] Distler, A. and Mitchell, J. D., The number of nilpotent semigroups of degree 3, Electron. J. Combin., 19 (2) (2012), Paper 51, 19.

[D05] Dixon, J. D., Permutation representations and rational irreducibility, Bull. Austral. Math. Soc., 71 (3) (2005), 493–503.

[D08] Dixon, J. D., Generating random elements in finite groups, Electron. J. Combin., 15 (1) (2008), Research Paper 94, 13.

[DB05] Dixon, J. D. and Barghi, A. R., Degree homogeneous subgroups, Canad. Math. Bull., 48 (1) (2005), 41–49.

[DR07] Dixon, J. D. and Rahnamai Barghi, A., Irreducible characters which are zero on only one conjugacy class, Proc. Amer. Math. Soc., 135 (1) (2007), 41–45.

[DZ04] Dixon, J. D. and Zalesski, A. E., Finite imprimitive linear groups of prime degree, J. Algebra, 276 (1) (2004), 340–370.

[DZ17] Dokuchaev, M. and Zalesski, A., On the automorphism group of rational group algebras of finite groups, in Groups, rings, group rings, and Hopf algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 688 (2017), 33–51.

[D00] Dolfi, S., Orbits of permutation groups on the power set, Arch. Math. (Basel), 75 (5) (2000), 321–327.

[D08] Dolfi, S., Large orbits in coprime actions of solvable groups, Trans. Amer. Math. Soc., 360 (1) (2008), 135–152.

[DG+13] Dolfi, S., Guralnick, R., Praeger, C. E., and Spiga, P., Coprime subdegrees for primitive permutation groups and completely reducible linear groups, Israel J. Math., 195 (2) (2013), 745–772.

[DHJ10] Dolfi, S., Herzog, M., and Jabara, E., Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math. Soc., 82 (2) (2010), 293–304.

[DMN09] Dolfi, S., Moretó, A., and Navarro, G., The groups with exactly one class of size a multiple of $p$, J. Group Theory, 12 (2) (2009), 219–234.

[DN12] Dolfi, S. and Navarro, G., Finite groups with only one nonlinear irreducible representation, Comm. Algebra, 40 (11) (2012), 4324–4329.

[DNT08] Dolfi, S., Navarro, G., and Tiep, P. H., Primes dividing the degrees of the real characters, Math. Z., 259 (4) (2008), 755–774.

[DNT13] Dolfi, S., Navarro, G., and Tiep, P. H., Finite groups whose same degree characters are Galois conjugate, Israel J. Math., 198 (1) (2013), 283–331.

[DP14] Dolfi, S. and Pacifici, E., Zeros of Brauer characters and linear actions of finite groups: small primes, J. Algebra, 399 (2014), 343–357.

[DZ12] Dong, H. and Zhou, S., Affine groups and flag-transitive triplanes, Sci. China Math., 55 (12) (2012), 2557–2578.

[DZ14] Dong, H. and Zhou, S., Flag-transitive primitive $(v,k,\lambda)$ symmetric designs with $\lambda$ at most 10 and alternating socle, J. Algebra Appl., 13 (6) (2014), 1450025, 10.

[DJK10] Dooms, A., Jespers, E., and Konovalov, A., From Farey symbols to generators for subgroups of finite index in integral group rings of finite groups, J. K-Theory, 6 (2) (2010), 263–283.

[DS11] Doostie, H. and Saeidi, A., On the degrees of the non-faithful irreducible characters in finite groups, Extracta Math., 26 (1) (2011), 145–151.

[DS12] Doostie, H. and Saeidi, A., Finite $p$-groups with few non-linear irreducible character kernels, Bull. Iranian Math. Soc., 38 (2) (2012), 413–422.

[DPR13] Douglass, J. M., Pfeiffer, G., and Röhrle, G., On reflection subgroups of finite Coxeter groups, Comm. Algebra, 41 (7) (2013), 2574–2592.

[DGK14] Drápal, A., Griggs, T. S., and Kozlik, A. R., Triple systems and binary operations, Discrete Math., 325 (2014), 1–11.

[DGK15] Drápal, A., Griggs, T. S., and Kozlik, A. R., Basics of DTS quasigroups: algebra, geometry and enumeration, J. Algebra Appl., 14 (6) (2015), 1550089, 24.

[DV08] Drápal, A. and Vojtěchovský, P., Explicit constructions of loops with commuting inner mappings, European J. Combin., 29 (7) (2008), 1662–1681.

[DV11] Drápal, A. and Vojtěchovský, P., Small loops of nilpotency class 3 with commutative inner mapping groups, J. Group Theory, 14 (4) (2011), 547–573.

[DV06] Drápal, A. and Vojtěchovský, P., Moufang loops that share associator and three quarters of their multiplication tables, Rocky Mountain J. Math., 36 (2) (2006), 425–455.

[DL14] Du, N. and Lewis, M. L., Groups which do not possess characters of nontrivial prime power degree, J. Group Theory, 17 (4) (2014), 649–659.

[D13] Dudas, O., Cohomology of Deligne-Lusztig varieties for short-length regular elements in exceptional groups, J. Algebra, 392 (2013), 276–298.

[DM14] Dudas, O. and Malle, G., Projective modules in the intersection cohomology of Deligne-Lusztig varieties, C. R. Math. Acad. Sci. Paris, 352 (6) (2014), 467–471.

[DM16] Dudas, O. and Malle, G., Decomposition matrices for exceptional groups at $d=4$, J. Pure Appl. Algebra, 220 (3) (2016), 1096–1121.

[DE09] Dutour Sikirić, M. and Ellis, G., Wythoff polytopes and low-dimensional homology of Mathieu groups, J. Algebra, 322 (11) (2009), 4143–4150.

[DG+16] Dutour Sikirić, M., Gangl, H., Gunnells, P. E., Hanke, J., Schürmann, A., and Yasaki, D., On the cohomology of linear groups over imaginary quadratic fields, J. Pure Appl. Algebra, 220 (7) (2016), 2564–2589.

[DL13] Dzhabara, È. and Lytkina, D. V., On groups of exponent 36, Sibirsk. Mat. Zh., 54 (1) (2013), 44–48.

[E08] Eaton, C. W., Perfect generalized characters inducing the Alperin-McKay conjecture, J. Algebra, 320 (6) (2008), 2301–2327.

[EKS12] Eaton, C. W., Külshammer, B., and Sambale, B., 2-blocks with minimal nonabelian defect groups II, J. Group Theory, 15 (3) (2012), 311–321.

[EK+14] Eaton, C. W., Kessar, R., Külshammer, B., and Sambale, B., 2-blocks with abelian defect groups, Adv. Math., 254 (2014), 706–735.

[EM14] Eaton, C. W. and Moretó, A., Extending Brauer's height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not. IMRN (20) (2014), 5581–5601.

[EJ00] Edjvet, M. and Juhász, A., Equations of length 4 and one-relator products, Math. Proc. Cambridge Philos. Soc., 129 (2) (2000), 217–229.

[EJ00] Edjvet, M. and Juhász, A., One-relator quotients of free products of cyclic groups, Comm. Algebra, 28 (2) (2000), 883–902.

[ET97] Edjvet, M. and Thomas, R. M., The groups $(l,m|n,k)$, J. Pure Appl. Algebra, 114 (2) (1997), 175–208.

[EW10] Edjvet, M. and Williams, G., The cyclically presented groups with relators $x_ix_i+kx_i+l$, Groups Geom. Dyn., 4 (4) (2010), 759–775.

[EB99] Egner, S. and Beth, T., How to play $M_13$?, Des. Codes Cryptogr., 16 (3) (1999), 243–247.

[E05] Eick, B., Computational group theory, Jahresber. Deutsch. Math.-Verein., 107 (3) (2005), 155–170.

[E05] Eick, B., Determination of the uniserial space groups with a given coclass, J. London Math. Soc. (2), 71 (3) (2005), 622–642.

[E02] Eick, B., Orbit-stabilizer problems and computing normalizers for polycyclic groups, J. Symbolic Comput., 34 (1) (2002), 1–19.

[E09] Eick, B., Computing $p$-groups with trivial Schur multiplicator, J. Algebra, 322 (3) (2009), 741–751.

[E97] Eick, B., The converse of a theorem of W. Gaschütz on Frattini subgroups, Math. Z., 224 (1) (1997), 103–111.

[E97] Eick, B., Special presentations for finite soluble groups and computing (pre-)Frattini subgroups, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 101–112.

[E08] Eick, B., Computing automorphism groups and testing isomorphisms for modular group algebras, J. Algebra, 320 (11) (2008), 3895–3910.

[E01] Eick, B., Computing with infinite polycyclic groups, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 139–154.

[E06] Eick, B., Automorphism groups of 2-groups, J. Algebra, 300 (1) (2006), 91–101.

[E08] Eick, B., Schur multiplicators of infinite pro-$p$-groups with finite coclass, Israel J. Math., 166 (2008), 147–156.

[E16] Eick, B., The automorphism group of a finitely generated virtually abelian group, Groups Complex. Cryptol., 8 (1) (2016), 35–45.

[E08] Eick, B., Schur multiplicators of finite $p$-groups with fixed coclass, Israel J. Math., 166 (2008), 157–166.

[E01] Eick, B., On the Fitting subgroup of a polycyclic-by-finite group and its applications, J. Algebra, 242 (1) (2001), 176–187.

[EE17] Eick, B. and Engel, A., The isomorphism problem for torsion free nilpotent groups of Hirsch length at most 5, Groups Complex. Cryptol., 9 (1) (2017), 55–75.

[EF09] Eick, B. and Feichtenschlager, D., Constructing CF groups by coclass, Experiment. Math., 18 (2) (2009), 205–211.

[EF11] Eick, B. and Feichtenschlager, D., Computation of low-dimensional (co)homology groups for infinite sequences of $p$-groups with fixed coclass, Internat. J. Algebra Comput., 21 (4) (2011), 635–649.

[EGN97] Eick, B., Gähler, F., and Nickel, W., Computing maximal subgroups and Wyckoff positions of space groups, Acta Cryst. Sect. A, 53 (4) (1997), 467–474.

[EH03] Eick, B. and Höfling, B., The solvable primitive permutation groups of degree at most 6560, LMS J. Comput. Math., 6 (2003), 29–39.

[EH14] Eick, B. and Horn, M., The construction of finite solvable groups revisited, J. Algebra, 408 (2014), 166–182.

[EH01] Eick, B. and Hulpke, A., Computing the maximal subgroups of a permutation group. I, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 155–168.

[EH12] Eick, B. and Hulpke, A., Computing Hall subgroups of finite groups, LMS J. Comput. Math., 15 (2012), 205–218.

[EK16] Eick, B. and King, S., The isomorphism problem for graded algebras and its application to $\rm mod$-$p$ cohomology rings of small $p$-groups, J. Algebra, 452 (2016), 487–501.

[ELO02] Eick, B., Leedham-Green, C. R., and O'Brien, E. A., Constructing automorphism groups of $p$-groups, Comm. Algebra, 30 (5) (2002), 2271–2295.

[EM06] Eick, B. and Müller, J., On $p$-groups forming Brauer pairs, J. Algebra, 304 (1) (2006), 286–303.

[EM17] Eick, B. and Moede, T., Coclass theory for finite nilpotent associative algebras: algorithms and a periodicity conjecture, Exp. Math., 26 (3) (2017), 267–274.

[ENO06] Eick, B., Newman, M. F., and O'Brien, E. A., The class-breadth conjecture revisited, J. Algebra, 300 (1) (2006), 384–393.

[EN08] Eick, B. and Nickel, W., Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group, J. Algebra, 320 (2) (2008), 927–944.

[EO99] Eick, B. and O'Brien, E. A., The groups of order $512$, in Algorithmic algebra and number theory (Heidelberg, 1997), Springer, Berlin (1999), 379–380.

[EO99] Eick, B. and O'Brien, E. A., Enumerating $p$-groups, J. Austral. Math. Soc. Ser. A, 67 (2) (1999), 191–205
(Group theory).

[EO03] Eick, B. and Ostheimer, G., On the orbit-stabilizer problem for integral matrix actions of polycyclic groups, Math. Comp., 72 (243) (2003), 1511–1529.

[ER10] Eick, B. and Rossmann, T., Periodicities for graphs of $p$-groups beyond coclass, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 11–23.

[EW02] Eick, B. and Wright, C. R. B., Computing subgroups by exhibition in finite solvable groups, J. Symbolic Comput., 33 (2) (2002), 129–143.

[EKV15] Eisele, F., Kiefer, A., and Van Gelder, I., Describing units of integral group rings up to commensurability, J. Pure Appl. Algebra, 219 (7) (2015), 2901–2916.

[EH+10] El-Zanati, S., Heden, O., Seelinger, G., Sissokho, P., Spence, L., and Vanden Eynden, C., Partitions of the 8-dimensional vector space over $\rm GF(2)$, J. Combin. Des., 18 (6) (2010), 462–474.

[EKV13] Elashvili, A. G., Kac, V. G., and Vinberg, E. B., Cyclic elements in semisimple Lie algebras, Transform. Groups, 18 (1) (2013), 97–130.

[EGS13] Elbaz-Vincent, P., Gangl, H., and Soulé, C., Perfect forms, K-theory and the cohomology of modular groups, Adv. Math., 245 (2013), 587–624.

[EMM03] Elder, M., McCammond, J., and Meier, J., Combinatorial conditions that imply word-hyperbolicity for 3-manifolds, Topology, 42 (6) (2003), 1241–1259.

[E04] Ellis, G., Computing group resolutions, J. Symbolic Comput., 38 (3) (2004), 1077–1118.

[E16] Ellis, G., Cohomological periodicities of crystallographic groups, J. Algebra, 445 (2016), 537–544.

[E08] Ellis, G., Homological algebra programming, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 63–74.

[EK11] Ellis, G. and King, S., Persistent homology of groups, J. Group Theory, 14 (4) (2011), 575–587.

[EM98] Ellis, G. and McDermott, A., Tensor products of prime-power groups, J. Pure Appl. Algebra, 132 (2) (1998), 119–128.

[EM10] Ellis, G. and Mikhailov, R., A colimit of classifying spaces, Adv. Math., 223 (6) (2010), 2097–2113.

[ES10] Ellis, G. and Sköldberg, E., The $K(\pi,1)$ conjecture for a class of Artin groups, Comment. Math. Helv., 85 (2) (2010), 409–415.

[ES11] Ellis, G. and Smith, P., Computing group cohomology rings from the Lyndon-Hochschild-Serre spectral sequence, J. Symbolic Comput., 46 (4) (2011), 360–370.

[EW05] Ellis, G. and Williams, G., On the cohomology of generalized triangle groups, Comment. Math. Helv., 80 (3) (2005), 571–591.

[EP99] Entz, G. and Pahlings, H., The Dade conjecture for the McLaughlin group, in Groups St. Andrews 1997 in Bath, I, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 260 (1999), 253–266.

[ETS15] Erfanian, A., Tolue, B., and Sarmin, N. H., Some considerations on the $n$-th commutativity degrees of finite groups, Ars Combin., 122 (2015), 257–267.

[E13] Essert, J., A geometric construction of panel-regular lattices for buildings of types $\tilde A_2$ and $\tilde C_2$, Algebr. Geom. Topol., 13 (3) (2013), 1531–1578.

[E09] Evans, A. B., The admissibility of sporadic simple groups, J. Algebra, 321 (1) (2009), 105–116.

[ENS99] Evans-Riley, S., Newman, M. F., and Schneider, C., On the soluble length of groups with prime-power order, Bull. Austral. Math. Soc., 59 (2) (1999), 343–346.

[F12] Fairbairn, B., New upper bounds on the spreads of the sporadic simple groups, Comm. Algebra, 40 (5) (2012), 1872–1877.

[F12] Fairbairn, B., Some exceptional Beauville structures, J. Group Theory, 15 (5) (2012), 631–639.

[FMP13] Fairbairn, B., Magaard, K., and Parker, C., Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, Proc. Lond. Math. Soc. (3), 107 (4) (2013), 744–798.

[FP15] Fairbairn, B. and Pierro, E., New examples of mixed Beauville groups, J. Group Theory, 18 (5) (2015), 761–792.

[FDZ12] Fan, J., Du, N., and Zeng, J., The classification of some modular Frobenius groups, Bull. Aust. Math. Soc., 85 (1) (2012), 11–18.

[FMW11] Fang, X., Ma, X., and Wang, J., On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118 (3) (2011), 1039–1051.

[FJW08] Fang, X. G., Jia, L. J., and Wang, J., On the automorphism groups of symmetric graphs admitting an almost simple group, European J. Combin., 29 (6) (2008), 1467–1472.

[FV13] Fantino, F. and Vendramin, L., On twisted conjugacy classes of type D in sporadic simple groups, in Hopf algebras and tensor categories, Amer. Math. Soc., Providence, RI, Contemp. Math., 585 (2013), 247–259.

[FNW13] Farooq, A., Norton, S., and Wilson, R. A., A presentation of the monster and a set of matrices which satisfy it, J. Algebra, 379 (2013), 432–440.

[FG15] Farrán, J. I. and García-Sánchez, P. A., The second Feng-Rao number for codes coming from inductive semigroups, IEEE Trans. Inform. Theory, 61 (9) (2015), 4938–4947.

[FS12] Farrokhi D. G. , M. and Saeedi, F., Subgroup normality degrees of finite groups II, J. Algebra Appl., 11 (4) (2012), 1250081, 8.

[F13] Fawcett, J. B., The base size of a primitive diagonal group, J. Algebra, 375 (2013), 302–321.

[FOS16] Fawcett, J. B., O'Brien, E. A., and Saxl, J., Regular orbits of symmetric and alternating groups, J. Algebra, 458 (2016), 21–52.

[F12] Fayers, M., An algorithm for semistandardising homomorphisms, J. Algebra, 364 (2012), 38–51.

[FL13] Fayers, M. and Lyle, S., The reducible Specht modules for the Hecke algebra $\scrH_\BbbC,-1(\germS_n)$, J. Algebraic Combin., 37 (2) (2013), 201–241.

[F03] Feldman, A., Properties of subgroups of solvable groups that imply they are normally embedded, Glasg. Math. J., 45 (1) (2003), 45–52.

[FD97] Feldman, A. D. and Dasgupta, A., An intersection property of Sylow $2$-subgroups in non-solvable groups, Math. Proc. Cambridge Philos. Soc., 122 (2) (1997), 261–268.

[FMO17] Felipe, M. J., Martínez-Pastor, A., and Ortiz-Sotomayor, V. M., Square-free class sizes in products of groups, J. Algebra, 491 (2017), 190–206.

[FJ+95] Felsch, V., Johnson, D. L., Neubüser, J., and Tsaranov, S. V., The structure of certain Coxeter groups, in Groups '93 Galway/St. Andrews, Vol. 1 (Galway, 1993), Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 211 (1995), 177–190.

[FH+01] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, non-abelian orbifolds and the Schur multiplier, J. High Energy Phys. (1) (2001), Paper 33, 25.

[FH+04] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, non-abelian orbifolds and the Schur multiplier, in Horizons in world physics. Vol. 245, Nova Sci. Publ., New York, Horiz. World Phys., 245 (2004), 27–44.

[FH+01] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, covering groups and quiver diagrams, J. High Energy Phys. (4) (2001), Paper 37, 27.

[F01] Fernandes, V. H., The monoid of all injective order preserving partial transformations on a finite chain, Semigroup Forum, 62 (2) (2001), 178–204.

[F00] Fernandes, V. H., The monoid of all injective orientation preserving partial transformations on a finite chain, Comm. Algebra, 28 (7) (2000), 3401–3426.

[FGJ05] Fernandes, V. H., Gomes, G. M. S., and Jesus, M. M., Presentations for some monoids of partial transformations on a finite chain, Comm. Algebra, 33 (2) (2005), 587–604.

[FQ12] Fernandes, V. H. and Quinteiro, T. M., The cardinal of various monoids of transformations that preserve a uniform partition, Bull. Malays. Math. Sci. Soc. (2), 35 (4) (2012), 885–896.

[FQ14] Fernandes, V. H. and Quinteiro, T. M., On the ranks of certain monoids of transformations that preserve a uniform partition, Comm. Algebra, 42 (2) (2014), 615–636.

[FQ16] Fernandes, V. H. and Quinteiro, T. M., Presentations for monoids of finite partial isometries, Semigroup Forum, 93 (1) (2016), 97–110.

[FL08] Fernández-Alcober, G. A. and Legarreta, L., Conjugacy classes of non-normal subgroups in finite nilpotent groups, J. Group Theory, 11 (3) (2008), 381–397.

[FM01] Fernández-Alcober, G. A. and Moretó, A., Groups with two extreme character degrees and their normal subgroups, Trans. Amer. Math. Soc., 353 (6) (2001), 2171–2192.

[FS98] Fernández-Alcober, G. A. and Shepherd, R. T., On the order of $p$-groups of abundance zero, J. Algebra, 201 (2) (1998), 392–400.

[FS15] Fernández-Alcober, G. A. and Shumyatsky, P., Positive laws on word values in residually-$p$ groups, J. Algebra, 425 (2015), 524–545.

[F00] Ferrario, D. L., Equivariant deformations of manifolds and real representations, Pacific J. Math., 196 (2) (2000), 353–368.

[FK15] Ferraz, R. A. and Kitani, P. M., Units of $\Bbb ZC_p^n$, Comm. Algebra, 43 (11) (2015), 4936–4950.

[FM17] Filom, K. and Miraftab, B., Integral of groups, Comm. Algebra, 45 (3) (2017), 1105–1113.

[FR08] Fiori, C. and Ruini, B., Infinite classes of dihedral snarks, Mediterr. J. Math., 5 (2) (2008), 199–210.

[FO00] Flannery, D. L. and O'Brien, E. A., Computing 2-cocycles for central extensions and relative difference sets, Comm. Algebra, 28 (4) (2000), 1939–1955.

[FO05] Flannery, D. L. and O'Brien, E. A., Linear groups of small degree over finite fields, Internat. J. Algebra Comput., 15 (3) (2005), 467–502.

[FK10] Foguel, T. and Kinyon, M., Uniquely 2-divisible Bol loops, J. Algebra Appl., 9 (4) (2010), 591–601.

[FR08] Foguel, T. S. and Ragland, M. F., Groups with a finite covering by isomorphic abelian subgroups, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 75–88.

[FL+03] Formanek, E., Lee, W., Sysoeva, I., and Vazirani, M., The irreducible complex representations of the braid group on $n$ strings of degree $\le n$, J. Algebra Appl., 2 (3) (2003), 317–333.

[FI12] Foroudi Ghasemabadi, M. and Iranmanesh, A., 2-quasirecognizability of the simple groups $B_n(p)$ and $C_n(p)$ by prime graph, Bull. Iranian Math. Soc., 38 (3) (2012), 647–668.

[F14] Fouladi, S., Pairwise non-commuting elements in finite metacyclic 2-groups and some finite $p$-groups, Bull. Iranian Math. Soc., 40 (6) (2014), 1573–1585.

[FJO09] Fouladi, S., Jamali, A. R., and Orfi, R., Some 3-generator, 3-relation finite 2-groups, Comm. Algebra, 37 (1) (2009), 40–46.

[FO11] Fouladi, S. and Orfi, R., Maximal subsets of pairwise noncommuting elements of some $p$-groups of maximal class, Bull. Aust. Math. Soc., 84 (3) (2011), 447–451.

[FO13] Fouladi, S. and Orfi, R., Maximum size of subsets of pairwise noncommuting elements in finite metacyclic $p$-groups, Bull. Aust. Math. Soc., 87 (1) (2013), 18–23.

[FO14] Fouladi, S. and Orfi, R., Noninner automorphisms of order $p$ in finite $p$-groups of coclass 2, when $p > 2$, Bull. Aust. Math. Soc., 90 (2) (2014), 232–236.

[FR08] Fowler, R. and Röhrle, G., Spherical nilpotent orbits in positive characteristic, Pacific J. Math., 237 (2) (2008), 241–286.

[FIM16] Franchi, C., Ivanov, A. A., and Mainardis, M., The $2A$-Majorana representations of the Harada-Norton group, Ars Math. Contemp., 11 (1) (2016), 175–187.

[F03] Francis, A., Centralizers of Iwahori-Hecke algebras. II. The general case, Algebra Colloq., 10 (1) (2003), 95–100.

[F14] Francis, A. R., An algebraic view of bacterial genome evolution, J. Math. Biol., 69 (6-7) (2014), 1693–1718.

[FP15] Fray, R. L. and Prins, A. L., On the inertia groups of the maximal subgroup $2^7\colon Sp_6(2)$ in $Aut(Fi_22)$, Quaest. Math., 38 (1) (2015), 83–102.

[FGV10] Freyre, S., Graña, M., and Vendramin, L., On Nichols algebras over $\rm PGL(2,q)$ and $\rm PSL(2,q)$, J. Algebra Appl., 9 (2) (2010), 195–208.

[FL16] Friese, E. and Ladisch, F., Affine symmetries of orbit polytopes, Adv. Math., 288 (2016), 386–425.

[F96] Fripertinger, H., The cycle index of the symmetry group of the fullerene $\rm C_60$, Match (33) (1996), 121–138.

[F05] Fripertinger, H., Enumeration of the semilinear isometry classes of linear codes, Bayreuth. Math. Schr. (74) (2005), 100–122.

[FKR13] Fritzsche, T., Külshammer, B., and Reiche, C., The depth of Young subgroups of symmetric groups, J. Algebra, 381 (2013), 96–109.

[FGM02] Frohardt, D., Guralnick, R., and Magaard, K., Genus 0 actions of groups of Lie rank 1, in Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999), Amer. Math. Soc., Providence, RI, Proc. Sympos. Pure Math., 70 (2002), 449–483.

[GP+13] Gaberdiel, M. R., Persson, D., Ronellenfitsch, H., and Volpato, R., Generalized Mathieu Moonshine, Commun. Number Theory Phys., 7 (1) (2013), 145–223.

[G12] Gagola III, S. M., Metabelian groups that admit triality, J. Group Theory, 15 (6) (2012), 775–783.

[GM97] Ganeif, S. and Moori, J., $(p,q,r)$-generations and $nX$-complementary generations of the sporadic groups $\rm HS$ and $\rm McL$, J. Algebra, 188 (2) (1997), 531–546.

[GM99] Ganief, S. and Moori, J., $2$-generations of the fourth Janko group $J_4$, J. Algebra, 212 (1) (1999), 305–322.

[GM98] Ganief, S. and Moori, J., Generating pairs for the Conway groups $\rm Co_2$ and $\rm Co_3$, J. Group Theory, 1 (3) (1998), 237–256.

[GM95] Ganief, S. and Moori, J., $(2,3,t)$-generations for the Janko group $J_3$, Comm. Algebra, 23 (12) (1995), 4427–4437.

[GM97] Ganief, S. and Moori, J., $(p,q,r)$-generations of the smallest Conway group $\rm Co_3$, J. Algebra, 188 (2) (1997), 516–530.

[GM01] Ganief, S. and Moori, J., On the spread of the sporadic simple groups, Comm. Algebra, 29 (8) (2001), 3239–3255.

[G16] Gannon, T., Much ado about Mathieu, Adv. Math., 301 (2016), 322–358.

[GG+13] García Pillado, C., González, S., Martínez, C., Markov, V., and Nechaev, A., Group codes over non-abelian groups, J. Algebra Appl., 12 (7) (2013), 1350037, 20.

[GOS13] García Sánchez, P. A., Ojeda, I., and Sánchez-R. -Navarro, A., Factorization invariants in half-factorial affine semigroups, Internat. J. Algebra Comput., 23 (1) (2013), 111–122.

[GMV15] García-García, J. I., Moreno-Frías, M. A., and Vigneron-Tenorio, A., Computation of the $\omega$-primality and asymptotic $\omega$-primality with applications to numerical semigroups, Israel J. Math., 206 (1) (2015), 395–411.

[GH+17] García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ., and Rosales, J. C., Parametrizing Arf numerical semigroups, J. Algebra Appl., 16 (11) (2017), 1750209, 31.

[GL13] García-Sánchez, P. A. and Leamer, M. J., Huneke-Wiegand Conjecture for complete intersection numerical semigroup rings, J. Algebra, 391 (2013), 114–124.

[GLM18] García-Sánchez, P. A., Llena, D., and Moscariello, A., Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math., 30 (1) (2018), 15–30.

[GLM17] García-Sánchez, P. A., Llena, D., and Moscariello, A., Delta sets for symmetric numerical semigroups with embedding dimension three, Aequationes Math., 91 (3) (2017), 579–600.

[GO10] García-Sánchez, P. A. and Ojeda, I., Uniquely presented finitely generated commutative monoids, Pacific J. Math., 248 (1) (2010), 91–105.

[GV15] García-Sánchez, P. A. and Viola, C., When the catenary degree agrees with the tame degree in numerical semigroups of embedding dimension three, Involve, 8 (4) (2015), 677–694.

[GL14] Garonzi, M. and Levy, D., Factorizing a finite group into conjugates of a subgroup, J. Algebra, 418 (2014), 129–141.

[GL+17] Garonzi, M., Levy, D., Maróti, A., and Simion, I. I., Factorizations of finite groups by conjugate subgroups which are solvable or nilpotent, J. Algebra Appl., 16 (3) (2017), 1750043, 19.

[GL15] Garonzi, M. and Lucchini, A., Covers and normal covers of finite groups, J. Algebra, 422 (2015), 148–165.

[GM15] Garonzi, M. and Maróti, A., On the number of conjugacy classes of a permutation group, J. Combin. Theory Ser. A, 133 (2015), 251–260.

[GM11] Garonzi, M. and Maróti, A., Covering certain wreath products with proper subgroups, J. Group Theory, 14 (1) (2011), 103–125.

[GK08] Garrison, D. and Kappe, L., On some subnormality conditions in metabelian groups, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 89–103.

[GKY06] Garrison, D., Kappe, L., and Yull, D., Autocommutators and the autocommutator subgroup, in Combinatorial group theory, discrete groups, and number theory, Amer. Math. Soc., Providence, RI, Contemp. Math., 421 (2006), 137–146.

[GG+15] Garsia-Pilʹyado, K., Gonsales, S., Markov, V. T., and Martines, K., Nonabelian group codes over an arbitrary finite field, Fundam. Prikl. Mat., 20 (1) (2015), 17–22.

[GG+12] Garsia-Pilʹyado, K., Gonsales, S., Markov, V. T., Martines, K., and Nechaev, A. A., When are all group codes of a noncommutative group abelian (a computational approach)?, Fundam. Prikl. Mat., 17 (2) (2011/12), 75–85.

[GL+06] Gavioli, N., Legarreta, L., Sica, C., and Tota, M., On the number of conjugacy classes of normalisers in a finite $p$-group, Bull. Austral. Math. Soc., 73 (2) (2006), 219–230.

[GMS07] Gavioli, N., Monti, V., and Scoppola, C. M., Soluble normally constrained pro-$p$-groups, J. Group Theory, 10 (3) (2007), 321–345.

[GLS18] Gąsior, A., Lutowski, R., and Szczepański, A., A short note about diffuse Bieberbach groups, J. Algebra, 494 (2018), 237–245.

[GHP16] Gállego, M. P., Hauck, P., and Pérez-Ramos, M. D., 2-Engel relations between subgroups, J. Algebra, 447 (2016), 31–55.

[G02] Gebhardt, V., Efficient collection in infinite polycyclic groups, J. Symbolic Comput., 34 (3) (2002), 213–228.

[G05] Gebhardt, V., A new approach to the conjugacy problem in Garside groups, J. Algebra, 292 (1) (2005), 282–302.

[GG10] Gebhardt, V. and González-Meneses, J., Solving the conjugacy problem in Garside groups by cyclic sliding, J. Symbolic Comput., 45 (6) (2010), 629–656.

[G93] Geck, M., The decomposition numbers of the Hecke algebra of type $E^\ast_6$, Math. Comp., 61 (204) (1993), 889–899.

[G92] Geck, M., Brauer trees of Hecke algebras, Comm. Algebra, 20 (10) (1992), 2937–2973.

[G94] Geck, M., On the character values of Iwahori-Hecke algebras of exceptional type, Proc. London Math. Soc. (3), 68 (1) (1994), 51–76.

[G98] Geck, M., Representations of Hecke algebras at roots of unity, Astérisque (252) (1998), Exp. No. 836, 3, 33–55
(Séminaire Bourbaki. Vol. 1997/98).

[GH15] Geck, M. and Halls, A., On the Kazhdan-Lusztig cells in type $E_8$, Math. Comp., 84 (296) (2015), 3029–3049.

[GH+96] Geck, M., Hiss, G., Lübeck, F., Malle, G., and Pfeiffer, G., CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput., 7 (3) (1996), 175–210
(Computational methods in Lie theory (Essen, 1994)).

[GHM94] Geck, M., Hiss, G., and Malle, G., Cuspidal unipotent Brauer characters, J. Algebra, 168 (1) (1994), 182–220.

[GHM96] Geck, M., Hiss, G., and Malle, G., Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z., 221 (3) (1996), 353–386.

[GK97] Geck, M. and Kim, S., Bases for the Bruhat-Chevalley order on all finite Coxeter groups, J. Algebra, 197 (1) (1997), 278–310.

[GKP00] Geck, M., Kim, S., and Pfeiffer, G., Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra, 229 (2) (2000), 570–600.

[GL91] Geck, M. and Lux, K., The decomposition numbers of the Hecke algebra of type $F_4$, Manuscripta Math., 70 (3) (1991), 285–306.

[GM13] Geck, M. and Malle, G., Frobenius-Schur indicators of unipotent characters and the twisted involution module, Represent. Theory, 17 (2013), 180–198.

[GM99] Geck, M. and Malle, G., On special pieces in the unipotent variety, Experiment. Math., 8 (3) (1999), 281–290.

[GM09] Geck, M. and Müller, J., James' conjecture for Hecke algebras of exceptional type. I, J. Algebra, 321 (11) (2009), 3274–3298.

[GM97] Geck, M. and Michel, J., ``Good'' elements of finite Coxeter groups and representations of Iwahori-Hecke algebras, Proc. London Math. Soc. (3), 74 (2) (1997), 275–305.

[GP93] Geck, M. and Pfeiffer, G., On the irreducible characters of Hecke algebras, Adv. Math., 102 (1) (1993), 79–94.

[GP92] Geck, M. and Pfeiffer, G., Unipotent characters of the Chevalley groups $D_4(q)$, $q$ odd, Manuscripta Math., 76 (3-4) (1992), 281–304.

[G16] Geroldinger, A., Sets of lengths, Amer. Math. Monthly, 123 (10) (2016), 960–988.

[GY13] Geroldinger, A. and Yuan, P., The monotone catenary degree of Krull monoids, Results Math., 63 (3-4) (2013), 999–1031.

[GD14] Gharibkhajeh, A. and Doostie, H., A graphical difference between the inverse and regular semigroups, Bull. Iranian Math. Soc., 40 (2) (2014), 413–421.

[G14] Ghoraishi, S. M., On noninner automorphisms of finite nonabelian $p$-groups, Bull. Aust. Math. Soc., 89 (2) (2014), 202–209.

[G16] Gildea, J., Torsion units for a Ree group, Tits group and a Steinberg triality group, Rend. Circ. Mat. Palermo (2), 65 (1) (2016), 139–157.

[G13] Gildea, J., Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl., 12 (6) (2013), 1350016, 10.

[G10] Gildea, J., The structure of the unit group of the group algebra of Pauli's group over any field of characteristic 2, Internat. J. Algebra Comput., 20 (5) (2010), 721–729.

[GO16] Gildea, J. and O'Brien, K., Torsion unit for some untwisted exceptional groups of Lie type, Acta Sci. Math. (Szeged), 82 (3-4) (2016), 451–466.

[GT16] Gildea, J. and Tylyshchak, A., Torsion units in the integral group ring of $\rm PSL(3, 4)$, J. Algebra Appl., 15 (1) (2016), 1650013, 9.

[GG+16] Gill, N., Gillespie, N. I., Nixon, A., and Semeraro, J., Generating groups using hypergraphs, Q. J. Math., 67 (1) (2016), 29–52.

[GS05] Ginsburg, J. and Sands, B., On the number of elements dominated by a subgroup, Ars Combin., 74 (2005), 103–127.

[G07] Giudici, M., New constructions of groups without semiregular subgroups, Comm. Algebra, 35 (9) (2007), 2719–2730.

[GH09] Giudici, M. and Hart, S., Small maximal sum-free sets, Electron. J. Combin., 16 (1) (2009), Research Paper 59, 17.

[GK16] Giudici, M. and Kuzma, B., Realizability problem for commuting graphs, J. Aust. Math. Soc., 101 (3) (2016), 335–355.

[GL+16] Giudici, M., Liebeck, M. W., Praeger, C. E., Saxl, J., and Tiep, P. H., Arithmetic results on orbits of linear groups, Trans. Amer. Math. Soc., 368 (4) (2016), 2415–2467.

[GL+17] Glasby, S. P., Lübeck, F., Niemeyer, A. C., and Praeger, C. E., Primitive prime divisors and the $n$th cyclotomic polynomial, J. Aust. Math. Soc., 102 (1) (2017), 122–135.

[GPS11] Glasby, S. P., Pálfy, P. P., and Schneider, C., $p$-groups with a unique proper non-trivial characteristic subgroup, J. Algebra, 348 (2011), 85–109.

[GP09] Glasby, S. P. and Praeger, C. E., Towards an efficient Meat-Axe algorithm using $f$-cyclic matrices: the density of uncyclic matrices in $M(n,q)$, J. Algebra, 322 (3) (2009), 766–790.

[GM98] Gluck, D. and Magaard, K., Base sizes and regular orbits for coprime affine permutation groups, J. London Math. Soc. (2), 58 (3) (1998), 603–618.

[GM98] Gluck, D. and Magaard, K., Cross-characteristic character and fixed point space ratios for groups of Lie type, J. Algebra, 204 (1) (1998), 188–201.

[GM+04] Gluck, D., Magaard, K., Riese, U., and Schmid, P., The solution of the $k(GV)$-problem, J. Algebra, 279 (2) (2004), 694–719.

[G16] Gobet, T., Noncrossing partitions, fully commutative elements and bases of the Temperley-Lieb algebra, J. Knot Theory Ramifications, 25 (6) (2016), 1650035, 27.

[GM10] Godsil, C. and Meagher, K., Multiplicity-free permutation representations of the symmetric group, Ann. Comb., 13 (4) (2010), 463–490.

[GG+14] Goldstein, D., Guralnick, R. M., Lewis, M. L., Moretó, A., Navarro, G., and Tiep, P. H., Groups with exactly one irreducible character of degree divisible by $p$, Algebra Number Theory, 8 (2) (2014), 397–428.

[GV01] Golemac, A. and Vučičić, T., New difference sets in nonabelian groups of order 100, J. Combin. Des., 9 (6) (2001), 424–434.

[GM97] Gollan, H. W. and Michler, G. O., Construction of a $45,694$-dimensional simple module of Lyons' sporadic group over $\rm GF(2)$, Linear Algebra Appl., 256 (1997), 185–197.

[GSP06] Gomes, G. M. S., Sezinando, H., and Pin, J., Presentations of the Schützenberger product of $n$ groups, Comm. Algebra, 34 (4) (2006), 1213–1235.

[GLD18] Gomi, Y., Loyola, M. L., and De Las Peñas, M. L. A. N., String C-groups of order 1024, Contrib. Discrete Math., 13 (1) (2018), 1–22.

[GD11] Gonçalves, J. Z. and Del Río, Á., Bass cyclic units as factors in a free group in integral group ring units, Internat. J. Algebra Comput., 21 (4) (2011), 531–545.

[GGR14] Gonçalves, J. Z., Guralnick, R. M., and del Río, Á., Bass units as free factors in integral group rings of simple groups, J. Algebra, 404 (2014), 100–123.

[G11] González-Meneses, J., Basic results on braid groups, Ann. Math. Blaise Pascal, 18 (1) (2011), 15–59.

[GR04] Goodwin, S. and Röhrle, G., Finite orbit modules for parabolic subgroups of exceptional groups, Indag. Math. (N.S.), 15 (2) (2004), 189–207.

[G05] Goodwin, S. M., Relative Springer isomorphisms, J. Algebra, 290 (1) (2005), 266–281.

[GLM17] Goodwin, S. M., Le, T., and Magaard, K., The generic character table of a Sylow $p$-subgroup of a finite Chevalley group of type $D_4$, Comm. Algebra, 45 (12) (2017), 5158–5179.

[GL+16] Goodwin, S. M., Le, T., Magaard, K., and Paolini, A., Constructing characters of Sylow $p$-subgroups of finite Chevalley groups, J. Algebra, 468 (2016), 395–439.

[GMR16] Goodwin, S. M., Mosch, P., and Röhrle, G., On the coadjoint orbits of maximal unipotent subgroups of reductive groups, Transform. Groups, 21 (2) (2016), 399–426.

[GMR14] Goodwin, S. M., Mosch, P., and Röhrle, G., Calculating conjugacy classes in Sylow $p$-subgroups of finite Chevalley groups of rank six and seven, LMS J. Comput. Math., 17 (1) (2014), 109–122.

[GR09] Goodwin, S. M. and Röhrle, G., Calculating conjugacy classes in Sylow $p$-subgroups of finite Chevalley groups, J. Algebra, 321 (11) (2009), 3321–3334.

[G16] Gorshkov, I. B., Towards Thompson's conjecture for alternating and symmetric groups, J. Group Theory, 19 (2) (2016), 331–336.

[G12] Gorshkov, I. B., Thompson's conjecture for simple groups with a connected prime graph, Algebra Logika, 51 (2) (2012), 168–192, 288, 291.

[GLM03] Graczyk, P., Letac, G., and Massam, H., The complex Wishart distribution and the symmetric group, Ann. Statist., 31 (1) (2003), 287–309.

[GH+05] Gramlich, R., Hoffman, C., Nickel, W., and Shpectorov, S., Even-dimensional orthogonal groups as amalgams of unitary groups, J. Algebra, 284 (1) (2005), 141–173.

[GHN07] Gramlich, R., Horn, M., and Nickel, W., Odd-dimensional orthogonal groups as amalgams of unitary groups. II. Machine computations, J. Algebra, 316 (2) (2007), 591–607.

[GHN06] Gramlich, R., Horn, M., and Nickel, W., The complete Phan-type theorem for $\rm Sp(2n,q)$, J. Group Theory, 9 (5) (2006), 603–626.

[GR12] Gray, R. and Ruškuc, N., Maximal subgroups of free idempotent-generated semigroups over the full transformation monoid, Proc. Lond. Math. Soc. (3), 104 (5) (2012), 997–1018.

[GR12] Gray, R. and Ruskuc, N., On maximal subgroups of free idempotent generated semigroups, Israel J. Math., 189 (2012), 147–176.

[G16] Grechkoseeva, M. A., On the spectra of almost simple groups with a symplectic or orthogonal socle, Sibirsk. Mat. Zh., 57 (4) (2016), 746–754.

[G11] Grechkoseeva, M. A., On element orders in covers of finite simple classical groups, J. Algebra, 339 (2011), 304–319.

[GHL08] Green, D. J., Héthelyi, L., and Lilienthal, M., On Oliver's $p$-group conjecture, Algebra Number Theory, 2 (8) (2008), 969–977.

[GHM11] Green, D. J., Héthelyi, L., and Mazza, N., On a strong form of Oliver's $p$-group conjecture, J. Algebra, 342 (2011), 1–15.

[GHM10] Green, D. J., Héthelyi, L., and Mazza, N., On Oliver's $p$-group conjecture. II, Math. Ann., 347 (1) (2010), 111–122.

[GK11] Green, D. J. and King, S. A., The computation of the cohomology rings of all groups of order 128, J. Algebra, 325 (2011), 352–363.

[G00] Greenhill, C., An algorithm for recognising the exterior square of a multiset, LMS J. Comput. Math., 3 (2000), 96–116.

[G14] Greer, M., A class of loops categorically isomorphic to Bruck loops of odd order, Comm. Algebra, 42 (8) (2014), 3682–3697.

[G17] Greer, M., Semiautomorphic inverse property loops, Comm. Algebra, 45 (5) (2017), 2222–2237.

[GR14] Greer, M. and Raney, L., Moufang semidirect products of loops with groups and inverse property extensions, Comment. Math. Univ. Carolin., 55 (3) (2014), 411–420.

[GL10] Grimus, W. and Ludl, P. O., Principal series of finite subgroups of $\rm SU(3)$, J. Phys. A, 43 (44) (2010), 445209, 35.

[GM+16] Grishkov, A., Merlini Giuliani, M. L., Rasskazova, M., and Sabinina, L., Half-isomorphisms of finite automorphic Moufang loops, Comm. Algebra, 44 (10) (2016), 4252–4261.

[GNS15] Grishkov, A., Nunes, R., and Sidki, S., On groups with cubic polynomial conditions, J. Algebra, 437 (2015), 344–364.

[GRV16] Grishkov, A., Rasskazova, M., and Vojtěchovský, P., Automorphic loops arising from module endomorphisms, Publ. Math. Debrecen, 88 (3-4) (2016), 287–303.

[GZ05] Grishkov, A. N. and Zavarnitsine, A. V., Lagrange's theorem for Moufang loops, Math. Proc. Cambridge Philos. Soc., 139 (1) (2005), 41–57.

[G09] Grizzard, R. P., On nonprojective block components of Lefschetz characters for sporadic geometries, Comm. Algebra, 37 (12) (2009), 4489–4502.

[G15] Grochow, J. A., Unifying known lower bounds via geometric complexity theory, Comput. Complexity, 24 (2) (2015), 393–475.

[GQ17] Grochow, J. A. and Qiao, Y., Algorithms for group isomorphism via group extensions and cohomology, SIAM J. Comput., 46 (4) (2017), 1153–1216.

[G97] Grove, L. C., Groups and characters, John Wiley \& Sons, Inc., New York, Pure and Applied Mathematics (New York) (1997), x+212 pages
(A Wiley-Interscience Publication).

[G99] Groves, D., A note on nonidentical Lie relators, J. Algebra, 211 (1) (1999), 15–25.

[GTZ12] Guan, H., Tian, D., and Zhou, S., Line-transitive point-imprimitive linear spaces with Fang-Li parameter $\rm gcd(k,r)$ at most ten, Front. Math. China, 7 (6) (2012), 1095–1112.

[GZ17] Guan, H. and Zhou, S., Line-transitive point-imprimitive linear spaces with number of points being a product of two primes, J. Algebra Appl., 16 (6) (2017), 1750110, 13.

[GZ17] Guan, H. and Zhou, S., Point-primitive linear spaces with number of points being a product of two primes, Comm. Algebra, 45 (10) (2017), 4222–4237.

[GM+16] Guest, S., Morris, J., Praeger, C. E., and Spiga, P., Finite primitive permutation groups containing a permutation having at most four cycles, J. Algebra, 454 (2016), 233–251.

[GS17] Guest, S. and Spiga, P., Finite primitive groups and regular orbits of group elements, Trans. Amer. Math. Soc., 369 (2) (2017), 997–1024.

[GM99] Gupta, N. D. and Mazurov, V. D., On groups with small orders of elements, Bull. Austral. Math. Soc., 60 (2) (1999), 197–205.

[GHT15] Guralnick, R., Herzig, F., and Tiep, P. H., Adequate groups of low degree, Algebra Number Theory, 9 (1) (2015), 77–147.

[GHT17] Guralnick, R., Herzig, F., and Tiep, P. H., Adequate subgroups and indecomposable modules, J. Eur. Math. Soc. (JEMS), 19 (4) (2017), 1231–1291.

[GM98] Guralnick, R. and Magaard, K., On the minimal degree of a primitive permutation group, J. Algebra, 207 (1) (1998), 127–145.

[GM12] Guralnick, R. and Malle, G., Simple groups admit Beauville structures, J. Lond. Math. Soc. (2), 85 (3) (2012), 694–721.

[GM15] Guralnick, R. and Malle, G., Variations on the Baer-Suzuki theorem, Math. Z., 279 (3-4) (2015), 981–1006.

[GP+99] Guralnick, R., Penttila, T., Praeger, C. E., and Saxl, J., Linear groups with orders having certain large prime divisors, Proc. London Math. Soc. (3), 78 (1) (1999), 167–214.

[GK00] Guralnick, R. M. and Kantor, W. M., Probabilistic generation of finite simple groups, J. Algebra, 234 (2) (2000), 743–792
(Special issue in honor of Helmut Wielandt).

[GM13] Guralnick, R. M. and Maróti, A., On the non-coprime $k(GV)$-problem, J. Algebra, 385 (2013), 80–101.

[GMP17] Guralnick, R. M., Maróti, A., and Pyber, L., Normalizers of primitive permutation groups, Adv. Math., 310 (2017), 1017–1063.

[GT05] Guralnick, R. M. and Tiep, P. H., Decompositions of small tensor powers and Larsen's conjecture, Represent. Theory, 9 (2005), 138–208.

[GT12] Guralnick, R. M. and Tiep, P. H., A problem of Kollár and Larsen on finite linear groups and crepant resolutions, J. Eur. Math. Soc. (JEMS), 14 (3) (2012), 605–657.

[GT15] Guralnick, R. M. and Tiep, P. H., Effective results on the Waring problem for finite simple groups, Amer. J. Math., 137 (5) (2015), 1401–1430.

[HK+14] Haarmann, J., Kalauli, A., Moran, A., O'Neill, C., and Pelayo, R., Factorization properties of Leamer monoids, Semigroup Forum, 89 (2) (2014), 409–421.

[HHN16] Halasi, Z., Hannusch, C., and Nguyen, H. N., The largest character degrees of the symmetric and alternating groups, Proc. Amer. Math. Soc., 144 (5) (2016), 1947–1960.

[HM16] Halasi, Z. and Maróti, A., The minimal base size for a $p$-solvable linear group, Proc. Amer. Math. Soc., 144 (8) (2016), 3231–3242.

[HM+12] Halasi, Z., Maróti, A., Sidki, S., and Bezerra, M., Conjugacy expansiveness in finite groups, J. Group Theory, 15 (4) (2012), 485–496.

[HP16] Halasi, Z. and Podoski, K., Every coprime linear group admits a base of size two, Trans. Amer. Math. Soc., 368 (8) (2016), 5857–5887.

[HS95] Hall, J. I. and Soicher, L. H., Presentations of some $3$-transposition groups, Comm. Algebra, 23 (7) (1995), 2517–2559.

[HH01] Hanany, A. and He, Y., A monograph on the classification of the discrete subgroups of $\rm SU(4)$, J. High Energy Phys. (2) (2001), Paper 27, 12.

[HH+15] Hart, S., Hedtke, I., Müller-Hannemann, M., and Murthy, S., A fast search algorithm for $\langle m,m,m\rangle$ triple product property triples and an application for $5 \times 5$ matrix multiplication, Groups Complex. Cryptol., 7 (1) (2015), 31–46.

[H11] Hartley, M. I., Eulerian abstract polytopes, Aequationes Math., 82 (1-2) (2011), 1–23.

[H05] Hartley, M. I., Locally projective polytopes of type $\4,3,\dots,3,p\$, J. Algebra, 290 (2) (2005), 322–336.

[H10] Hartley, M. I., Covers $\scr P$ for abstract regular polytopes $\scr Q$ such that $\scr Q=\scr P/\bf Z^k_p$, Discrete Comput. Geom., 44 (4) (2010), 844–859.

[H06] Hartley, M. I., An atlas of small regular abstract polytopes, Period. Math. Hungar., 53 (1-2) (2006), 149–156.

[HH10] Hartley, M. I. and Hulpke, A., Polytopes derived from sporadic simple groups, Contrib. Discrete Math., 5 (2) (2010), 106–118.

[HL04] Hartley, M. I. and Leemans, D., Quotients of a universal locally projective polytope of type $\5,3,5\$, Math. Z., 247 (4) (2004), 663–674.

[H09] Hashemi, M., On the automorphism of some classes of groups, Ukraïn. Mat. Zh., 61 (12) (2009), 1704–1712.

[HH98] Hassan, N. M. and Horváth, E., Some remarks on Dade's conjecture, Math. Pannon., 9 (2) (1998), 181–194.

[HH99] Hassan, N. M. and Horváth, E., Dade's conjecture for the simple Higman-Sims group, in Groups St. Andrews 1997 in Bath, I, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 260 (1999), 329–345.

[H17] Hatui, S., Finite $p$-groups having Schur multiplier of maximum order, J. Algebra, 492 (2017), 490–497.

[HH10] Havas, G. and Holt, D. F., On Coxeter's families of group presentations, J. Algebra, 324 (5) (2010), 1076–1082.

[HH+99] Havas, G., Holt, D. F., Kenne, P. E., and Rees, S., Some challenging group presentations, J. Austral. Math. Soc. Ser. A, 67 (2) (1999), 206–213
(Group theory).

[HL+06] Havas, G., Leedham-Green, C. R., O'Brien, E. A., and Slattery, M. C., Computing with elation groups, in Finite geometries, groups, and computation, Walter de Gruyter, Berlin (2006), 95–102.

[HL+06] Havas, G., Leedham-Green, C. R., O'Brien, E. A., and Slattery, M. C., Certain Roman and flock generalized quadrangles have nonisomorphic elation groups, Adv. Geom., 6 (3) (2006), 389–395.

[HN+99] Havas, G., Newman, M. F., Niemeyer, A. C., and Sims, C. C., Groups with exponent six, Comm. Algebra, 27 (8) (1999), 3619–3638.

[HN+00] Havas, G., Newman, M. F., Niemeyer, A. C., and Sims, C. C., Computing in groups with exponent six, in Computational and geometric aspects of modern algebra (Edinburgh, 1998), Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 275 (2000), 87–100.

[HNO96] Havas, G., Newman, M. F., and O'Brien, E. A., Groups of deficiency zero, in Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 25 (1996), 53–67.

[HNO04] Havas, G., Newman, M. F., and O'Brien, E. A., On the efficiency of some finite groups, Comm. Algebra, 32 (2) (2004), 649–656.

[HR03] Havas, G. and Ramsay, C., Short balanced presentations of perfect groups, in Groups St. Andrews 2001 in Oxford. Vol. I, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 304 (2003), 238–243.

[HR94] Havas, G. and Robertson, E. F., Application of computational tools for finitely presented groups, in Computational support for discrete mathematics (Piscataway, NJ, 1992), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 15 (1994), 29–39.

[HR96] Havas, G. and Robertson, E. F., Central factors of deficiency zero groups, Comm. Algebra, 24 (11) (1996), 3483–3487.

[HR03] Havas, G. and Robertson, E. F., Irreducible cyclic presentations of the trivial group, Experiment. Math., 12 (4) (2003), 487–490.

[HR05] Havas, G. and Robertson, E. F., The $F^a,b,c$ conjecture. I, Irish Math. Soc. Bull. (56) (2005), 75–80.

[HRS08] Havas, G., Robertson, E. F., and Sutherland, D. C., Behind and beyond a theorem on groups related to trivalent graphs, J. Aust. Math. Soc., 85 (3) (2008), 323–332.

[HRS06] Havas, G., Robertson, E. F., and Sutherland, D. C., The $F^a,b,c$ conjecture is true. II, J. Algebra, 300 (1) (2006), 57–72.

[HS99] Havas, G. and Sims, C. C., A presentation for the Lyons simple group, in Computational methods for representations of groups and algebras (Essen, 1997), Birkhäuser, Basel, Progr. Math., 173 (1999), 241–249.

[HSW01] Havas, G., Soicher, L. H., and Wilson, R. A., A presentation for the Thompson sporadic simple group, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 193–200.

[HV09] Havas, G. and Vaughan-Lee, M., On counterexamples to the Hughes conjecture, J. Algebra, 322 (3) (2009), 791–801.

[HV05] Havas, G. and Vaughan-Lee, M. R., 4-Engel groups are locally nilpotent, Internat. J. Algebra Comput., 15 (4) (2005), 649–682.

[HMS15] Hawthorn, I., Manoharan, S., and Stokes, T., Groups with fix-set quasi-order, Algebra Universalis, 74 (3-4) (2015), 229–239.

[HH08] Héthelyi, L. and Horváth, E., Galois actions on blocks and classes of finite groups, J. Algebra, 320 (2) (2008), 660–679.

[HH+11] Héthelyi, L., Horváth, E., Keller, T. M., and Maróti, A., Groups with few conjugacy classes, Proc. Edinb. Math. Soc. (2), 54 (2) (2011), 423–430.

[HHP15] Héthelyi, L., Horváth, E., and Petényi, F., The depth of subgroups of Suzuki groups, Comm. Algebra, 43 (10) (2015), 4553–4569.

[HHS12] Héthelyi, L., Horváth, E., and Szabó, E., Real characters in blocks, Osaka J. Math., 49 (3) (2012), 613–623.

[HKS14] Héthelyi, L., Külshammer, B., and Sambale, B., A note on Olsson's conjecture, J. Algebra, 398 (2014), 364–385.

[HKS11] Héthelyi, L., Külshammer, B., and Sambale, B., Conjugacy classes and characters of finite $p$-groups, Comm. Algebra, 39 (2) (2011), 657–685.

[HK+15] Héthelyi, L., Kessar, R., Külshammer, B., and Sambale, B., Blocks with transitive fusion systems, J. Algebra, 424 (2015), 190–207.

[HS99] Héthelyi, L. and Szőke, M., On the $2$ out of $3$ lemma, Comm. Algebra, 27 (6) (1999), 2547–2553.

[HS00] Héthelyi, L. and Szőke, M., Green correspondence and its generalisations, Comm. Algebra, 28 (9) (2000), 4463–4479.

[HSL98] Héthelyi, L., Szőke, M., and Lux, K., The restriction of indecomposable modules of group algebras and the quasi-Green correspondence, Comm. Algebra, 26 (1) (1998), 83–95.

[H01] Höfling, B., Finite irreducible imprimitive nonmonomial complex linear groups of degree 4, J. Algebra, 236 (2) (2001), 419–470.

[H01] Höfling, B., Computing projectors, injectors, residuals and radicals of finite soluble groups, J. Symbolic Comput., 32 (5) (2001), 499–511.

[H12] He, L., Notes on non-vanishing elements of finite solvable groups, Bull. Malays. Math. Sci. Soc. (2), 35 (1) (2012), 163–169.

[HL15] He, L. and Lewis, M. L., Common divisor character degree graphs of solvable groups with four vertices, Comm. Algebra, 43 (11) (2015), 4916–4922.

[HQ15] He, L. and Qian, G., Graphs of nonsolvable groups with four degree-vertices, Sci. China Math., 58 (6) (2015), 1305–1310.

[HZB15] He, L., Zhao, Y., and Bi, J., Two applications of Lewis' theorem on character degree graphs of solvable groups, Bull. Korean Math. Soc., 52 (2) (2015), 363–366.

[HLV12] Heckenberger, I., Lochmann, A., and Vendramin, L., Braided racks, Hurwitz actions and Nichols algebras with many cubic relations, Transform. Groups, 17 (1) (2012), 157–194.

[HM12] Hedtke, I. and Murthy, S., Search and test algorithms for triple product property triples, Groups Complex. Cryptol., 4 (1) (2012), 111–133.

[HMN17] Heffernan, R., MacHale, D., and Ní Shé, Á., Central factor groups and commutativity, Math. Proc. R. Ir. Acad., 117A (2) (2017), 63–75.

[HM07] Helleloid, G. T. and Martin, U., The automorphism group of a finite $p$-group is almost always a $p$-group, J. Algebra, 312 (1) (2007), 294–329.

[HHM99] Henke, A., Hiss, G., and Müller, J., The $7$-modular decomposition matrices of the sporadic O'Nan group, J. London Math. Soc. (2), 60 (1) (1999), 58–70.

[HP08] Henke, A. and Paget, R., Brauer algebras with parameter $n=2$ acting on tensor space, Algebr. Represent. Theory, 11 (6) (2008), 545–575.

[HB11] Herman, A. and Barghi, A. R., Schur indices of association schemes, J. Pure Appl. Algebra, 215 (5) (2011), 1015–1023.

[HS15] Herman, A. and Singh, G., Revisiting the Zassenhaus conjecture on torsion units for the integral group rings of small groups, Proc. Indian Acad. Sci. Math. Sci., 125 (2) (2015), 167–172.

[HHR08] Hermiller, S., Holt, D. F., and Rees, S., Groups whose geodesics are locally testable, Internat. J. Algebra Comput., 18 (5) (2008), 911–923.

[HRS15] Herr, K., Rehn, T., and Schürmann, A., On lattice-free orbit polytopes, Discrete Comput. Geom., 53 (1) (2015), 144–172.

[H08] Hertweck, M., Zassenhaus conjecture for $A_6$, Proc. Indian Acad. Sci. Math. Sci., 118 (2) (2008), 189–195.

[H07] Hertweck, M., A note on the modular group algebras of odd $p$-groups of $M$-length three, Publ. Math. Debrecen, 71 (1-2) (2007), 83–93.

[HK02] Hertweck, M. and Kimmerle, W., Coleman automorphisms of finite groups, Math. Z., 242 (2) (2002), 203–215.

[HN04] Hertweck, M. and Nebe, G., On group ring automorphisms, Algebr. Represent. Theory, 7 (2) (2004), 189–210.

[HS07] Hertweck, M. and Soriano, M., Parametrization of central Frattini extensions and isomorphisms of small group rings, Israel J. Math., 157 (2007), 63–102.

[HS06] Hertweck, M. and Soriano, M., On the modular isomorphism problem: groups of order $2^6$, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 177–213.

[H05] Higgs, R. J., The bad behavior of representation groups, J. Algebra Appl., 4 (2) (2005), 139–151.

[HM98] Higuchi, O. and Miyamoto, I., The $2$-generators for certain simple permutation groups of small degree, SUT J. Math., 34 (1) (1998), 63–74.

[H11] Himstedt, F., On the decomposition numbers of the Ree groups $^2F_4(q^2)$ in non-defining characteristic, J. Algebra, 325 (2011), 364–403.

[H04] Himstedt, F., Character tables of parabolic subgroups of Steinberg's triality groups, J. Algebra, 281 (2) (2004), 774–822.

[H07] Himstedt, F., Character tables of parabolic subgroups of Steinberg's triality groups $^3D_4(2^n)$, J. Algebra, 316 (1) (2007), 254–283.

[HH07] Himstedt, F. and Huang, S., Dade's invariant conjecture for Steinberg's triality groups $^3D_4(2^n)$ in defining characteristic, J. Algebra, 316 (2) (2007), 802–827.

[HH12] Himstedt, F. and Huang, S., Dade's invariant conjecture for the Ree groups $^2F_4(q^2)$ in defining characteristic, Comm. Algebra, 40 (2) (2012), 452–496.

[HH13] Himstedt, F. and Huang, S., On the decomposition numbers of Steinberg's triality groups $^3D_4(2^n)$ in odd characteristics, Comm. Algebra, 41 (4) (2013), 1484–1498.

[HH09] Himstedt, F. and Huang, S., Character table of a Borel subgroup of the Ree groups $^2F_4(q^2)$, LMS J. Comput. Math., 12 (2009), 1–53.

[HH10] Himstedt, F. and Huang, S., Character tables of the maximal parabolic subgroups of the Ree groups $^2F_4(q^2)$, LMS J. Comput. Math., 13 (2010), 90–110.

[HLM11] Himstedt, F., Le, T., and Magaard, K., Characters of the Sylow $p$-subgroups of the Chevalley groups $D_4(p^n)$, J. Algebra, 332 (2011), 414–427.

[HS14] Himstedt, F. and Symonds, P., Exterior and symmetric powers of modules for cyclic 2-groups, J. Algebra, 410 (2014), 393–420.

[H97] Hiss, G., Decomposition matrices of the Chevalley group $F_4(2)$ and its covering group, Comm. Algebra, 25 (8) (1997), 2539–2555.

[HHM15] Hiss, G., Husen, W. J., and Magaard, K., Imprimitive irreducible modules for finite quasisimple groups, Mem. Amer. Math. Soc., 234 (1104) (2015), vi+114.

[HK00] Hiss, G. and Kessar, R., Scopes reduction and Morita equivalence classes of blocks in finite classical groups, J. Algebra, 230 (2) (2000), 378–423.

[HKN12] Hiss, G., Koenig, S., and Naehrig, N., On the socle of an endomorphism algebra, J. Pure Appl. Algebra, 216 (6) (2012), 1288–1294.

[HL98] Hiss, G. and Lübeck, F., The Brauer trees of the exceptional Chevalley groups of types $F_4$ and $^2\!E_6$, Arch. Math. (Basel), 70 (1) (1998), 16–21.

[HLM95] Hiss, G., Lübeck, F., and Malle, G., The Brauer trees of the exceptional Chevalley groups of type $E_6$, Manuscripta Math., 87 (1) (1995), 131–144.

[HL94] Hiss, G. and Lux, K., The $5$-modular characters of the sporadic simple Fischer groups $\rm Fi_22$ and $\rm Fi_23$, Comm. Algebra, 22 (9) (1994), 3563–3590
(With an appendix by Thomas Breuer).

[HLM95] Hiss, G., Lux, K., and Müller, J., The $2$-modular decomposition matrices of the non-principal blocks of maximal defect of the triple cover of the sporadic simple McLaughlin group, J. Symbolic Comput., 19 (6) (1995), 585–600.

[HM01] Hiss, G. and Malle, G., Low-dimensional representations of special unitary groups, J. Algebra, 236 (2) (2001), 745–767.

[HM01] Hiss, G. and Malle, G., Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math., 4 (2001), 22–63.

[HM95] Hiss, G. and Müller, J., The $5$-modular characters of the sporadic simple Rudvalis group and its covering group, Comm. Algebra, 23 (12) (1995), 4633–4667.

[HM+12] Hiss, G., Müller, J., Noeske, F., and Thackray, J., The Brauer characters of the sporadic simple Harada-Norton group and its automorphism group in characteristics 2 and 3, LMS J. Comput. Math., 15 (2012), 257–280.

[HNN06] Hiss, G., Neunhöffer, M., and Noeske, F., The 2-modular characters of the Fischer group $\rm Fi_23$, J. Algebra, 300 (2) (2006), 555–570.

[HS95] Hiss, G. and Szczepański, A., Holonomy groups of Bieberbach groups with finite outer automorphism groups, Arch. Math. (Basel), 65 (1) (1995), 8–14.

[HW94] Hiss, G. and White, D. L., The $5$-modular characters of the covering group of the sporadic simple Fischer group $\rm Fi_22$ and its automorphism group, Comm. Algebra, 22 (9) (1994), 3591–3611.

[H00] Hoffman, C., Cross characteristic projective representations for some classical groups, J. Algebra, 229 (2) (2000), 666–677.

[HS15] Hofmann, J. and van Straten, D., Some monodromy groups of finite index in $Sp_4(\BbbZ)$, J. Aust. Math. Soc., 99 (1) (2015), 48–62.

[HR16] Hoge, T. and Röhrle, G., Nice reflection arrangements, Electron. J. Combin., 23 (2) (2016), Paper 2.9, 24.

[HR15] Hoge, T. and Röhrle, G., On inductively free reflection arrangements, J. Reine Angew. Math., 701 (2015), 205–220.

[HL07] Hohlweg, C. and Lange, C. E. M. C., Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., 37 (4) (2007), 517–543.

[H03] Holloway, M., Broué's conjecture for the Hall-Janko group and its double cover, Proc. London Math. Soc. (3), 86 (1) (2003), 109–130.

[H06] Holmes, P. E., Subgroup coverings of some sporadic groups, J. Combin. Theory Ser. A, 113 (6) (2006), 1204–1213.

[H04] Holmes, P. E., On minimal factorisations of sporadic groups, Experiment. Math., 13 (4) (2004), 435–440.

[HLM03] Holmes, P. E., Linton, S. A., and Murray, S. H., Product replacement in the Monster, Experiment. Math., 12 (1) (2003), 123–126.

[HM10] Holmes, P. E. and Maróti, A., Pairwise generating and covering sporadic simple groups, J. Algebra, 324 (1) (2010), 25–35.

[H01] Holt, D. F., Computing automorphism groups of finite groups, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 201–208.

[H10] Holt, D. F., Enumerating subgroups of the symmetric group, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 33–37.

[HL+96] Holt, D. F., Leedham-Green, C. R., O'Brien, E. A., and Rees, S., Computing matrix group decompositions with respect to a normal subgroup, J. Algebra, 184 (3) (1996), 818–838.

[HL+96] Holt, D. F., Leedham-Green, C. R., O'Brien, E. A., and Rees, S., Testing matrix groups for primitivity, J. Algebra, 184 (3) (1996), 795–817.

[HR99] Holt, D. F. and Rees, S., Computing with abelian sections of finitely presented groups, J. Algebra, 214 (2) (1999), 714–728.

[HR92] Holt, D. F. and Rees, S., An implementation of the Neumann-Praeger algorithm for the recognition of special linear groups, Experiment. Math., 1 (3) (1992), 237–242.

[HR94] Holt, D. F. and Rees, S., Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A, 57 (1) (1994), 1–16.

[HJ14] Hora, J. and Jedlička, P. r., Nuclear semidirect product of commutative automorphic loops, J. Algebra Appl., 13 (1) (2014), 1350077, 15.

[H08] Horn, M., On the Phan system of the Schur cover of $\rm SU(4,3^2)$, Des. Codes Cryptogr., 47 (1-3) (2008), 243–247.

[H95] Horváth, E., On some questions concerning subnormally monomial groups, in Groups '93 Galway/St. Andrews, Vol. 2, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 212 (1995), 314–321.

[H97] Horváth, E., $M$-blocks of solvable groups, Math. Pannon., 8 (1) (1997), 37–47.

[H15] Horváth, G., The complexity of the equivalence and equation solvability problems over meta-Abelian groups, J. Algebra, 433 (2015), 208–230.

[HMP12] Horváth, G., Mayr, P., and Pongrácz, A., Characterizing translations on groups by cosets of their subgroups, Comm. Algebra, 40 (9) (2012), 3141–3168.

[HY17] Hoshi, A. and Yamasaki, A., Rationality problem for algebraic tori, Mem. Amer. Math. Soc., 248 (1176) (2017), v+215.

[HW06] Howie, J. and Williams, G., Free subgroups in certain generalized triangle groups of type $(2,m,2)$, Geom. Dedicata, 119 (2006), 181–197.

[HW12] Howie, J. and Williams, G., Tadpole labelled oriented graph groups and cyclically presented groups, J. Algebra, 371 (2012), 521–535.

[HRT01] Howlett, R. B., Rylands, L. J., and Taylor, D. E., Matrix generators for exceptional groups of Lie type, J. Symbolic Comput., 31 (4) (2001), 429–445.

[H00] Hsu, T., Quilts: central extensions, braid actions, and finite groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics, 1731 (2000), xii+185 pages.

[HL15] Huang, H. and Li, Y., On $B(4,14)$ non-2-groups, J. Algebra Appl., 14 (8) (2015), 1550118, 14.

[H95] Huffman, W. C., The automorphism groups of the generalized quadratic residue codes, IEEE Trans. Inform. Theory, 41 (2) (1995), 378–386.

[H17] Hulpke, A., Finding intermediate subgroups, Port. Math., 74 (3) (2017), 201–212.

[H08] Hulpke, A., Normalizer calculation using automorphisms, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 105–114.

[H98] Hulpke, A., Computing normal subgroups, in Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock), ACM, New York (1998), 194–198.

[H13] Hulpke, A., Computing conjugacy classes of elements in matrix groups, J. Algebra, 387 (2013), 268–286.

[H13] Hulpke, A., Computing generators of groups preserving a bilinear form over residue class rings, J. Symbolic Comput., 50 (2013), 298–307.

[H05] Hulpke, A., Constructing transitive permutation groups, J. Symbolic Comput., 39 (1) (2005), 1–30.

[H01] Hulpke, A., Representing subgroups of finitely presented groups by quotient subgroups, Experiment. Math., 10 (3) (2001), 369–381.

[H00] Hulpke, A., Conjugacy classes in finite permutation groups via homomorphic images, Math. Comp., 69 (232) (2000), 1633–1651.

[H99] Hulpke, A., Computing subgroups invariant under a set of automorphisms, J. Symbolic Comput., 27 (4) (1999), 415–427.

[H95] Hulpke, A., Block systems of a Galois group, Experiment. Math., 4 (1) (1995), 1–9.

[HL99] Hulpke, A. and Linton, S., Construction of $\rm Co_3$. An example of the use of an integrated system for computational group theory, in Groups St. Andrews 1997 in Bath, II, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 261 (1999), 394–409.

[HSV16] Hulpke, A., Stanovský, D., and Vojtěchovský, P., Connected quandles and transitive groups, J. Pure Appl. Algebra, 220 (2) (2016), 735–758.

[HH03] Hunter, D. J. and von Hippel, P. T., How rare is symmetry in musical 12-tone rows?, Amer. Math. Monthly, 110 (2) (2003), 124–132.

[IS17] Iñiguez, A. and Sangroniz, J., Words and characters in finite $p$-groups, J. Algebra, 485 (2017), 230–246.

[IMM14] Iovanov, M., Mason, G., and Montgomery, S., $FSZ$-groups and Frobenius-Schur indicators of quantum doubles, Math. Res. Lett., 21 (4) (2014), 757–779.

[IL+95] Ivanov, A. A., Linton, S. A., Lux, K., Saxl, J., and Soicher, L. H., Distance-transitive representations of the sporadic groups, Comm. Algebra, 23 (9) (1995), 3379–3427.

[IP03] Ivanov, A. A. and Pasechnik, D. V., $c$-extensions of the $F_4(2)$-building, Discrete Math., 264 (1-3) (2003), 91–110
(The 2000 $\rmCom^2MaC$ Conference on Association Schemes, Codes and Designs (Pohang)).

[IP04] Ivanov, A. A. and Pasechnik, D. V., Minimal representations of locally projective amalgams, J. London Math. Soc. (2), 70 (1) (2004), 142–164.

[IP+10] Ivanov, A. A., Pasechnik, D. V., Seress, Á., and Shpectorov, S., Majorana representations of the symmetric group of degree 4, J. Algebra, 324 (9) (2010), 2432–2463.

[IPS96] Ivanov, A. A., Pasechnik, D. V., and Shpectorov, S. V., Non-abelian representations of some sporadic geometries, J. Algebra, 181 (2) (1996), 523–557.

[IS12] Ivanov, A. A. and Seress, Á., Majorana representations of $A_5$, Math. Z., 272 (1-2) (2012), 269–295.

[IS12] Ivanov, A. A. and Shpectorov, S., Majorana representations of $L_3(2)$, Adv. Geom., 12 (4) (2012), 717–738.

[IS04] Ivanov, A. A. and Shpectorov, S. V., Amalgams determined by locally projective actions, Nagoya Math. J., 176 (2004), 19–98.

[IL00] Ivanyos, G. and Lux, K., Treating the exceptional cases of the MeatAxe, Experiment. Math., 9 (3) (2000), 373–381.

[JLM14] Jabara, E., Lytkina, D., and Mamontov, A., Recognizing $M_10$ by spectrum in the class of all groups, Internat. J. Algebra Comput., 24 (2) (2014), 113–119.

[JLM14] Jabara, E., Lytkina, D. V., and Mazurov, V. D., Some groups of exponent 72, J. Group Theory, 17 (6) (2014), 947–955.

[J04] Jackson, M. A., The strong symmetric genus of the hyperoctahedral groups, J. Group Theory, 7 (4) (2004), 495–505.

[J10] Jackson, M. A., The strong symmetric genus and generalized symmetric groups $G(n,3)$, J. Group Theory, 13 (1) (2010), 131–138.

[J07] Jackson, M. A., The strong symmetric genus of the finite Coxeter groups, J. Group Theory, 10 (6) (2007), 841–847.

[JZ14] Jafari, R. and Zarzuela Armengou, S., On monomial curves obtained by gluing, Semigroup Forum, 88 (2) (2014), 397–416.

[J16] Jafari, S. H., Categorizing finite $p$-groups by the order of their non-abelian tensor squares, J. Algebra Appl., 15 (5) (2016), 1650095, 13.

[JSK13] Jafari, S. H., Saeedi, F., and Khamseh, E., Characterization of finite $p$-groups by their non-abelian tensor square, Comm. Algebra, 41 (5) (2013), 1954–1963.

[JA17] Jafarian Amiri, S. M. and Amiri, M., Characterization of finite groups by a bijection with a divisible property on the element orders, Comm. Algebra, 45 (8) (2017), 3396–3401.

[JA+15] Jafarian Amiri, S. M., Amiri, M., Madadi, H., and Rostami, H., Finite groups have even more centralizers, Bull. Iranian Math. Soc., 41 (6) (2015), 1423–1431.

[JAR17] Jafarian Amiri, S. M., Amiri, M., and Rostami, H., Finite groups determined by the number of element centralizers, Comm. Algebra, 45 (9) (2017), 3792–3797.

[JM16] Jafarian Amiri, S. M. and Madadi, H., On the maximum number of the pairwise noncommuting elements in a finite group, J. Algebra Appl., 15 (10) (2016), 1650197, 9.

[JMR16] Jafarian Amiri, S. M., Madadi, H., and Rostami, H., On the probability of generating nilpotent subgroups in a finite group, Bull. Aust. Math. Soc., 93 (3) (2016), 447–453.

[JR15] Jafarian Amiri, S. M. and Rostami, H., Groups with a few nonabelian centralizers, Publ. Math. Debrecen, 87 (3-4) (2015), 429–437.

[JRY13] Jain, V. K., Rai, P. K., and Yadav, M. K., On finite $p$-groups with abelian automorphism group, Internat. J. Algebra Comput., 23 (5) (2013), 1063–1077.

[JY12] Jain, V. K. and Yadav, M. K., On finite $p$-groups whose automorphisms are all central, Israel J. Math., 189 (2012), 225–236.

[JAA17] Jaiyéọlá, T. G., Adeniregun, A. A., and Asiru, M. A., Finite FRUTE loops, J. Algebra Appl., 16 (2) (2017), 1750040, 10.

[J04] Jamali, A., Deficiency zero non-metacyclic $p$-groups of order less than 1000, J. Appl. Math. Comput., 16 (1-2) (2004), 303–306.

[J01] Jamali, A., A further class of 3-generator, 3-relation finite groups, Comm. Algebra, 29 (2) (2001), 879–887.

[J12] Jamali, A., On the existence of 3-generator, 3-relation finite 2-groups with a given (co)class, Comm. Algebra, 40 (2) (2012), 444–451.

[JM02] Jamali, A. and Mousavi, H., On the co-Dedekindian finite $p$-groups with non-cyclic abelian second centre, Glasg. Math. J., 44 (1) (2002), 1–8.

[JL+13] Jambor, S., Leuner, M., Niemeyer, A. C., and Plesken, W., Fast recognition of alternating groups of unknown degree, J. Algebra, 392 (2013), 315–335.

[JM97] James, G. and Mathas, A., A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3), 74 (2) (1997), 241–274.

[JM96] James, G. and Mathas, A., Hecke algebras of type $\bf A$ with $q=-1$, J. Algebra, 184 (1) (1996), 102–158.

[JM04] James, G. and Mathas, A., Symmetric group blocks of small defect, J. Algebra, 279 (2) (2004), 566–612.

[J06] James, J. P., Partition actions of symmetric groups and regular bipartite graphs, Bull. London Math. Soc., 38 (2) (2006), 224–232.

[J05] Jansen, C., The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math., 8 (2005), 122–144.

[JL+95] Jansen, C., Lux, K., Parker, R., and Wilson, R., An atlas of Brauer characters, The Clarendon Press, Oxford University Press, New York, London Mathematical Society Monographs. New Series, 11 (1995), xviii+327 pages
(Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications).

[JM97] Jansen, C. and Müller, J., The $3$-modular decomposition numbers of the sporadic simple Suzuki group, Comm. Algebra, 25 (8) (1997), 2437–2458.

[JW98] Jansen, C. and Wilson, R. A., The $2$-modular and $3$-modular decomposition numbers for the sporadic simple O'Nan group and its triple cover, J. London Math. Soc. (2), 57 (1) (1998), 71–90.

[JW96] Jansen, C. and Wilson, R. A., The minimal faithful $3$-modular representation for the Lyons group, Comm. Algebra, 24 (3) (1996), 873–879.

[JW97] Jansen, C. and Wilson, R. A., Two new constructions of the O'Nan group, J. London Math. Soc. (2), 56 (3) (1997), 579–583.

[J10] Jørgensen, L. K., Schur rings and non-symmetric association schemes on 64 vertices, Discrete Math., 310 (22) (2010), 3259–3266.

[JR02] Jürgens, U. and Röhrle, G., MOP—algorithmic modality analysis for parabolic group actions, Experiment. Math., 11 (1) (2002), 57–67.

[J10] Jedlička, P. r., On commutative loops of order $pq$ with metacyclic inner mapping group and trivial center, Comment. Math. Univ. Carolin., 51 (2) (2010), 253–261.

[JKV12] Jedlička, P. r., Kinyon, M., and Vojtěchovský, P., Nilpotency in automorphic loops of prime power order, J. Algebra, 350 (2012), 64–76.

[JKV10] Jedlička, P. r., Kinyon, M. K., and Vojtěchovský, P., Constructions of commutative automorphic loops, Comm. Algebra, 38 (9) (2010), 3243–3267.

[JP+15] Jedlička, P. r., Pilitowska, A., Stanovský, D., and Zamojska-Dzienio, A., The structure of medial quandles, J. Algebra, 443 (2015), 300–334.

[JSV17] Jedlička, P. r., Stanovský, D., and Vojtěchovský, P., Distributive and trimedial quasigroups of order 243, Discrete Math., 340 (3) (2017), 404–415.

[JRV14] Jespers, E., del Río, Á., and Van Gelder, I., Writing units of integral group rings of finite abelian groups as a product of Bass units, Math. Comp., 83 (285) (2014), 461–473.

[JO+13] Jespers, E., Olteanu, G., del Río, Á., and Van Gelder, I., Group rings of finite strongly monomial groups: central units and primitive idempotents, J. Algebra, 387 (2013), 99–116.

[J14] Jezernik, U., Schur multipliers of unitriangular groups, J. Algebra, 399 (2014), 26–38.

[JM14] Jezernik, U. and Moravec, P., Bogomolov multipliers of groups of order 128, Exp. Math., 23 (2) (2014), 174–180.

[JK+11] Johnson, K. W., Kinyon, M. K., Nagy, G. P., and Vojtěchovský, P., Searching for small simple automorphic loops, LMS J. Comput. Math., 14 (2011), 200–213.

[JMP17] Jonušas, J., Mitchell, J. D., and Pfeiffer, M., Two variants of the Froidure-Pin algorithm for finite semigroups, Port. Math., 74 (3) (2017), 173–200.

[J08] Joyner, D., A primer on computational group homology and cohomology using GAP and SAGE, in Aspects of infinite groups, World Sci. Publ., Hackensack, NJ, Algebra Discrete Math., 1 (2008), 159–191.

[JK08] Joyner, D. and Kohel, D., Group theory in SAGE, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 115–139.

[JK06] Joyner, D. and Ksir, A., Automorphism groups of some AG codes, IEEE Trans. Inform. Theory, 52 (7) (2006), 3325–3329.

[JK07] Joyner, D. and Ksir, A., Decomposition representations of finite groups on Riemann-Roch spaces, Proc. Amer. Math. Soc., 135 (11) (2007), 3465–3476.

[J10] Ju, X., The Smith set of the group $S_5 \times C_2 \times \dots \times C_2$, Osaka J. Math., 47 (1) (2010), 215–236.

[KS15] Kakkar, V. and Shukla, R. P., On the congruences in right loops, Comm. Algebra, 43 (12) (2015), 5121–5130.

[KS13] Kakkar, V. and Shukla, R. P., On the number of isomorphism classes of transversals, Proc. Indian Acad. Sci. Math. Sci., 123 (3) (2013), 345–359.

[KTT12] Kalka, A., Teicher, M., and Tsaban, B., Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser, Adv. in Appl. Math., 49 (1) (2012), 57–76.

[KG14] Kalra, H. and Gumber, D., A note on conjugacy classes of finite groups, Proc. Indian Acad. Sci. Math. Sci., 124 (1) (2014), 31–36.

[K09] Kambites, M., Small overlap monoids. I. The word problem, J. Algebra, 321 (8) (2009), 2187–2205.

[KO06] Kambites, M. and Otto, F., Uniform decision problems for automatic semigroups, J. Algebra, 303 (2) (2006), 789–809.

[K98] Kantor, W. M., Simple groups in computational group theory, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. (Extra Vol. II) (1998), 77–86.

[KS01] Kantor, W. M. and Seress, Á., Black box classical groups, Mem. Amer. Math. Soc., 149 (708) (2001), viii+168.

[KS99] Kantor, W. M. and Seress, Á., Permutation group algorithms via black box recognition algorithms, in Groups St. Andrews 1997 in Bath, II, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 261 (1999), 436–446.

[KS09] Kantor, W. M. and Seress, Á., Large element orders and the characteristic of Lie-type simple groups, J. Algebra, 322 (3) (2009), 802–832.

[KL10] Kaplan, G. and Levy, D., Solvability of finite groups via conditions on products of 2-elements and odd $p$-elements, Bull. Aust. Math. Soc., 82 (2) (2010), 265–273.

[KL09] Kaplan, G. and Levy, D., Solitary subgroups, Comm. Algebra, 37 (6) (2009), 1873–1883.

[KM10] Kappe, L. and Mendoza, G., Groups of minimal order which are not $n$-power closed, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 93–107.

[KM05] Kappe, L. and Morse, R. F., On commutators in $p$-groups, J. Group Theory, 8 (4) (2005), 415–429.

[KM07] Kappe, L. and Morse, R. F., On commutators in groups, in Groups St. Andrews 2005. Vol. 2, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 340 (2007), 531–558.

[KNS16] Kappe, L., Nikolova-Popova, D., and Swartz, E., On the covering number of small symmetric groups and some sporadic simple groups, Groups Complex. Cryptol., 8 (2) (2016), 135–154.

[KR99] Kappe, L. and Ratchford, P. M., On centralizer-like subgroups associated with the $n$-Engel word, Algebra Colloq., 6 (1) (1999), 1–8.

[KR10] Kappe, L. and Redden, J. L., On the covering number of small alternating groups, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 109–125.

[KT17] Kappe, L. and Tortora, A., A generalization of 2-Baer groups, Comm. Algebra, 45 (9) (2017), 3994–4001.

[K18] Karakaş, H. İ., Parametrizing numerical semigroups with multiplicity up to 5, Internat. J. Algebra Comput., 28 (1) (2018), 69–95.

[K17] Karimi, N., Diameter of a direct power of a finite group, Comm. Algebra, 45 (11) (2017), 4869–4880.

[K15] Kato, S., A homological study of Green polynomials, Ann. Sci. Éc. Norm. Supér. (4), 48 (5) (2015), 1035–1074.

[K10] Kawai, H., Construction of maximal ideals of commutative group algebras, Internat. J. Algebra Comput., 20 (3) (2010), 381–389.

[KY07] Kazarin, L. S. and Yanishevskiĭ, V. V., On finite simply reducible groups, Algebra i Analiz, 19 (6) (2007), 86–116.

[KP01] Köhler, C. and Pahlings, H., Regular orbits and the $k(GV)$-problem, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 209–228.

[KN+14] Külshammer, B., Navarro, G., Sambale, B., and Tiep, P. H., Finite groups with two conjugacy classes of $p$-elements and related questions for $p$-blocks, Bull. Lond. Math. Soc., 46 (2) (2014), 305–314.

[KS13] Külshammer, B. and Sambale, B., The 2-blocks of defect 4, Represent. Theory, 17 (2013), 226–236.

[K04] Künzer, M., On representations of twisted group rings, J. Group Theory, 7 (2) (2004), 197–229.

[KM05] Künzer, M. and Mathas, A., Elementary divisors of Specht modules, European J. Combin., 26 (6) (2005), 943–964.

[K15] Keilberg, M., Automorphisms of the doubles of purely non-abelian finite groups, Algebr. Represent. Theory, 18 (5) (2015), 1267–1297.

[K18] Keilberg, M., Examples of non-$FSZ$ $p$-groups for primes greater than three, Proc. Amer. Math. Soc., 146 (1) (2018), 85–92.

[KLM01] Kemper, G., Lübeck, F., and Magaard, K., Matrix generators for the Ree groups $^2G_2(q)$, Comm. Algebra, 29 (1) (2001), 407–413.

[KV04] Kessar, R. and Valero-Elizondo, L., Stable partitions and Alperin's weight conjecture for the symmetric groups in characteristic two, Bol. Soc. Mat. Mexicana (3), 10 (1) (2004), 53–62.

[KMS13] Khamseh, E., Moghaddam, M. R. R., and Saeedi, F., Characterization of finite $p$-groups by their Schur multipliers, J. Algebra Appl., 12 (5) (2013), 1250035, 9.

[KKA11] Khatami, M., Khosravi, B., and Akhlaghi, Z., A new characterization for some linear groups, Monatsh. Math., 163 (1) (2011), 39–50.

[KKA11] Khatami, M., Khosravi, B., and Akhlaghi, Z., NCF-distinguishability by prime graph of $PGL(2,p)$ where $p$ is a prime, Rocky Mountain J. Math., 41 (5) (2011), 1523–1545.

[KN02] Kiechle, H. and Nagy, G. P., On the extension of involutorial Bol loops, Abh. Math. Sem. Univ. Hamburg, 72 (2002), 235–250.

[KOP16] Kiers, C., O'Neill, C., and Ponomarenko, V., Numerical semigroups on compound sequences, Comm. Algebra, 44 (9) (2016), 3842–3852.

[K10] Kilic, N., On rank 2 geometries of the Mathieu group $M_23$, Taiwanese J. Math., 14 (2) (2010), 373–387.

[KSV11] Kiming, I., Schütt, M., and Verrill, H. A., Lifts of projective congruence groups, J. Lond. Math. Soc. (2), 83 (1) (2011), 96–120.

[K06] Kimmerle, W., On the prime graph of the unit group of integral group rings of finite groups, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 215–228.

[KK17] Kimmerle, W. and Konovalov, A., On the Gruenberg-Kegel graph of integral group rings of finite groups, Internat. J. Algebra Comput., 27 (6) (2017), 619–631.

[KK03] Kimmerle, W. and Kouzoudi, E., Doubly transitive automorphism groups of combinatorial surfaces, Discrete Comput. Geom., 29 (3) (2003), 445–457.

[KGE11] King, S. A., Green, D. J., and Ellis, G., The mod-2 cohomology ring of the third Conway group is Cohen-Macaulay, Algebr. Geom. Topol., 11 (2) (2011), 719–734.

[KPV12] Kinyon, M., Pula, K., and Vojtěchovský, P., Incidence properties of cosets in loops, J. Combin. Des., 20 (3) (2012), 179–197.

[KW15] Kinyon, M. and Wanless, I. M., Loops with exponent three in all isotopes, Internat. J. Algebra Comput., 25 (7) (2015), 1159–1177.

[KK+16] Kinyon, M. K., Kunen, K., Phillips, J. D., and Vojtěchovský, P., The structure of automorphic loops, Trans. Amer. Math. Soc., 368 (12) (2016), 8901–8927.

[KNV17] Kinyon, M. K., Nagy, G. P., and Vojtěchovský, P., Bol loops and Bruck loops of order $pq$, J. Algebra, 473 (2017), 481–512.

[KPV08] Kinyon, M. K., Phillips, J. D., and Vojtěchovský, P., When is the commutant of a Bol loop a subloop?, Trans. Amer. Math. Soc., 360 (5) (2008), 2393–2408.

[KPV07] Kinyon, M. K., Phillips, J. D., and Vojtěchovský, P., C-loops: extensions and constructions, J. Algebra Appl., 6 (1) (2007), 1–20.

[KSV17] Kinyon, M. K., Smith, J. D. H., and Vojtěchovský, P., Sylow theory for quasigroups II: Sectional action, J. Combin. Des., 25 (4) (2017), 159–184.

[KV09] Kinyon, M. K. and Vojtěchovský, P., Primary decompositions in varieties of commutative diassociative loops, Comm. Algebra, 37 (4) (2009), 1428–1444.

[K14] Kirshtein, J., Multiplication groups and inner mapping groups of Cayley-Dickson loops, J. Algebra Appl., 13 (1) (2014), 1350078, 26.

[KY18] Kitture, R. D. and Yadav, M. K., Note on Caranti's method of construction of Miller groups, Monatsh. Math., 185 (1) (2018), 87–101.

[KST16] Kleshchev, A., Sin, P., and Tiep, P. H., Representations of the alternating group which are irreducible over subgroups, II, Amer. J. Math., 138 (5) (2016), 1383–1423.

[KS02] Kleshchev, A. S. and Sheth, J., Representations of the alternating group which are irreducible over subgroups, Proc. London Math. Soc. (3), 84 (1) (2002), 194–212.

[KPS16] Klimann, I., Picantin, M., and Savchuk, D., Orbit automata as a new tool to attack the order problem in automaton groups, J. Algebra, 445 (2016), 433–457.

[KS15] Knapp, W. and Schaeffer, H., On the codes related to the Higman-Sims graph, Electron. J. Combin., 22 (1) (2015), Paper 1.19, 58.

[KS97] Knapp, W. and Schmid, P., An extension theorem for integral representations, J. Austral. Math. Soc. Ser. A, 63 (1) (1997), 1–15.

[K17] Kohl, S., The Collatz conjecture in a group theoretic context, J. Group Theory, 20 (5) (2017), 1025–1030.

[K10] Kohl, S., A simple group generated by involutions interchanging residue classes of the integers, Math. Z., 264 (4) (2010), 927–938.

[K04] Kohl, S., Classifying finite simple groups with respect to the number of orbits under the action of the automorphism group, Comm. Algebra, 32 (12) (2004), 4785–4794.

[K08] Kohl, S., Algorithms for a class of infinite permutation groups, J. Symbolic Comput., 43 (8) (2008), 545–581.

[K02] Kohl, S., Counting the orbits on finite simple groups under the action of the automorphism group—Suzuki groups vs. linear groups, Comm. Algebra, 30 (7) (2002), 3515–3532.

[K13] Kohl, T., Regular permutation groups of order $mp$ and Hopf Galois structures, Algebra Number Theory, 7 (9) (2013), 2203–2240.

[K15] Kohl, T., Multiple holomorphs of dihedral and quaternionic groups, Comm. Algebra, 43 (10) (2015), 4290–4304.

[K16] Kondratʹev, A. S., Finite groups with given properties of their prime graphs, Algebra Logika, 55 (1) (2016), 113–120.

[K07] Konovalov, A., Wreath products in modular group algebras of some finite 2-groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 23 (2) (2007), 125–127.

[KK07] Konovalov, A. and Krivokhata, A., On the isomorphism problem for unit groups of modular group algebras, Acta Sci. Math. (Szeged), 73 (1-2) (2007), 53–59.

[KT04] Konovalov, A. B. and Tsapok, A. G., Symmetric subgroups of a normalized multiplicative group of the modular group algebra of a finite $p$-group, Nauk. Vīsn. Uzhgorod. Univ. Ser. Mat. \=Inform. (9) (2004), 20–24.

[KPR11] Konvalinka, M., Pfeiffer, G., and Röver, C. E., A note on element centralizers in finite Coxeter groups, J. Group Theory, 14 (5) (2011), 727–745.

[K08] Konygin, A. V., On primitive permutation groups with nontrivial global stabilizers, Proc. Steklov Inst. Math., 261 (suppl. 1) (2008), S113–S116.

[K11] Konygin, A. V., On primitive permutation groups with a stabilizer of two points that is normal in the stabilizer of one of them: case when the socle is a power of a sporadic simple group, Proc. Steklov Inst. Math., 272 (suppl. 1) (2011), S65–S73.

[K00] Korableva, V. V., Parabolic permutation representations of the group $^2E_6(q^2)$, Mat. Zametki, 67 (6) (2000), 899–912.

[K07] Koshita, H., An example of relations on the Ext-quiver for the Suzuki group Sz(8) in characteristic 2, J. Symbolic Comput., 42 (4) (2007), 429–442.

[KKS14] Koshitani, S., Külshammer, B., and Sambale, B., On Loewy lengths of blocks, Math. Proc. Cambridge Philos. Soc., 156 (3) (2014), 555–570.

[KKW02] Koshitani, S., Kunugi, N., and Waki, K., Broué's conjecture for non-principal 3-blocks of finite groups, J. Pure Appl. Algebra, 173 (2) (2002), 177–211.

[KKW04] Koshitani, S., Kunugi, N., and Waki, K., Broué's abelian defect group conjecture for the Held group and the sporadic Suzuki group, J. Algebra, 279 (2) (2004), 638–666.

[KL16] Koshitani, S. and Lassueur, C., Endo-trivial modules for finite groups with dihedral Sylow 2-subgroup, J. Group Theory, 19 (4) (2016), 635–660.

[KM10] Koshitani, S. and Müller, J., Broué's abelian defect group conjecture holds for the Harada-Norton sporadic simple group HN, J. Algebra, 324 (3) (2010), 394–429.

[KMN11] Koshitani, S., Müller, J., and Noeske, F., Broué's abelian defect group conjecture holds for the sporadic simple Conway group $ßfCo_3$, J. Algebra, 348 (2011), 354–380.

[KMN13] Koshitani, S., Müller, J., and Noeske, F., Broué's abelian defect group conjecture holds for the double cover of the Higman-Sims sporadic simple group, J. Algebra, 376 (2013), 152–173.

[KMN15] Koshitani, S., Müller, J., and Noeske, F., Broué's abelian defect group conjecture and 3-decomposition numbers of the sporadic simple Conway group $ßfCo_1$, J. Pure Appl. Algebra, 219 (1) (2015), 142–160.

[KMN14] Koshitani, S., Müller, J., and Noeske, F., Broué's abelian defect group conjecture for the sporadic simple Janko group $J_4$ revisited, J. Algebra, 398 (2014), 434–447.

[K07] Kostousov, K. V., Cayley graphs of the group $\Bbb Z^4$ that are limits of minimal vertex-primitive graphs of type $HA$, Proc. Steklov Inst. Math., 257 (suppl. 1) (2007), S118–S134.

[KMQ08] Koto, A., Morimoto, M., and Qi, Y., The Smith sets of finite groups with normal Sylow 2-subgroups and small nilquotients, J. Math. Kyoto Univ., 48 (1) (2008), 219–227.

[K01] Kratzer, M., Konkrete Charaktertafeln und kompatible Charaktere, Universität Essen, Fachbereich Mathematik, Essen, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], 30 (2001), vi+106 pages
(Dissertation, Universität Essen, Essen, 2001).

[K03] Kratzer, M., Constructing pairs of compatible characters, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), Algebra Colloq., 10 (2003), 285–302.

[KL+03] Kratzer, M., Lempken, W., Michler, G. O., and Waki, K., Another existence and uniqueness proof for McLaughlin's simple group, J. Group Theory, 6 (4) (2003), 443–459.

[KMW03] Kratzer, M., Michler, G. O., and Weller, M., Harada group uniquely determined by centralizer of a 2-central involution, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), Algebra Colloq., 10 (2003), 303–372.

[KP17] Kreuzer, M. and Patil, D. P., Computational aspects of Burnside rings, part I: the ring structure, Beitr. Algebra Geom., 58 (3) (2017), 427–452.

[KW10] Ku, C. Y. and Wales, D. B., Eigenvalues of the derangement graph, J. Combin. Theory Ser. A, 117 (3) (2010), 289–312.

[KP15] Kukharev, A. V. and Puninskiĭ, G. E., Semiserial group rings of finite groups. Sporadic simple groups and Suzuki groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 435 (Voprosy Teorii Predstavleniĭ Algebr i Grupp. 28) (2015), 73–94.

[KO08] Kwak, J. H. and Oh, J., Arc-transitive elementary abelian covers of the octahedron graph, Linear Algebra Appl., 429 (8-9) (2008), 2180–2198.

[L16] Ladisch, F., Realizations of abstract regular polytopes from a representation theoretic view, Aequationes Math., 90 (6) (2016), 1169–1193.

[L08] Ladisch, F., Groups with anticentral elements, Comm. Algebra, 36 (8) (2008), 2883–2894.

[LT12] Ladra, M. and Thomas, V. Z., Two generalizations of the nonabelian tensor product, J. Algebra, 369 (2012), 96–113.

[L12] Lakeland, G. S., Dirichlet-Ford domains and arithmetic reflection groups, Pacific J. Math., 255 (2) (2012), 417–437.

[L16] Lambe, L. A., An algebraic study of the Klein bottle, J. Homotopy Relat. Struct., 11 (4) (2016), 885–891.

[LS17] Landrock, P. and Sambale, B., On centers of blocks with one simple module, J. Algebra, 472 (2017), 339–368.

[LP02] Lansky, J. and Pollack, D., Hecke algebras and automorphic forms, Compositio Math., 130 (1) (2002), 21–48.

[LMT13] Larsen, M., Malle, G., and Tiep, P. H., The largest irreducible representations of simple groups, Proc. Lond. Math. Soc. (3), 106 (1) (2013), 65–96.

[LM15] Lassueur, C. and Malle, G., Simple endotrivial modules for linear, unitary and exceptional groups, Math. Z., 280 (3-4) (2015), 1047–1074.

[LMS16] Lassueur, C., Malle, G., and Schulte, E., Simple endotrivial modules for quasi-simple groups, J. Reine Angew. Math., 712 (2016), 141–174.

[LM15] Lassueur, C. and Mazza, N., Endotrivial modules for the sporadic simple groups and their covers, J. Pure Appl. Algebra, 219 (9) (2015), 4203–4228.

[LM15] Lassueur, C. and Mazza, N., Endotrivial modules for the Schur covers of the symmetric and alternating groups, Algebr. Represent. Theory, 18 (5) (2015), 1321–1335.

[LS17] Lauterbach, R. and Schwenker, S. N., Equivariant bifurcations in four-dimensional fixed point spaces, Dyn. Syst., 32 (1) (2017), 117–147.

[LN+06] Law, M., Niemeyer, A. C., Praeger, C. E., and Seress, Á., A reduction algorithm for large-base primitive permutation groups, LMS J. Comput. Math., 9 (2006), 159–173.

[LRS95] Lévai, L., Rosenberger, G., and Souvignier, B., All finite generalized triangle groups, Trans. Amer. Math. Soc., 347 (9) (1995), 3625–3627.

[L17] Lübeck, F., Characters and Brauer trees of the covering group of $^2\!E_6(2)$, in Finite simple groups: thirty years of the atlas and beyond, Amer. Math. Soc., Providence, RI, Contemp. Math., 694 (2017), 33–55.

[L01] Lübeck, F., Smallest degrees of representations of exceptional groups of Lie type, Comm. Algebra, 29 (5) (2001), 2147–2169.

[LMO07] Lübeck, F., Magaard, K., and O'Brien, E. A., Constructive recognition of $\rm SL_3(q)$, J. Algebra, 316 (2) (2007), 619–633.

[LM99] Lübeck, F. and Malle, G., $(2,3)$-generation of exceptional groups, J. London Math. Soc. (2), 59 (1) (1999), 109–122.

[LN01] Lübeck, F. and Neunhöffer, M., Enumerating large orbits and direct condensation, Experiment. Math., 10 (2) (2001), 197–205.

[LMT13] Le, T., Moori, J., and Tong-Viet, H. P., On a generalization of $M$-group, J. Algebra, 374 (2013), 27–41.

[LS97] Leary, I. J. and Schuster, B., On the $\rm GL(V)$-module structure of $K(n)^*(BV)$, Math. Proc. Cambridge Philos. Soc., 122 (1) (1997), 73–89.

[L13] Lee, E. W. H., Finite basis problem for semigroups of order five or less: generalization and revisitation, Studia Logica, 101 (1) (2013), 95–115.

[LL15] Lee, E. W. H. and Li, J. R., The variety generated by all monoids of order four is finitely based, Glas. Mat. Ser. III, 50(70) (2) (2015), 373–396.

[LL11] Lee, E. W. H. and Li, J. R., Minimal non-finitely based monoids, Dissertationes Math. (Rozprawy Mat.), 475 (2011), 65.

[LZ15] Lee, E. W. H. and Zhang, W. T., Finite basis problem for semigroups of order six, LMS J. Comput. Math., 18 (1) (2015), 1–129.

[L01] Leedham-Green, C. R., The computational matrix group project, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 229–247.

[LO97] Leedham-Green, C. R. and O'Brien, E. A., Recognising tensor products of matrix groups, Internat. J. Algebra Comput., 7 (5) (1997), 541–559.

[LS98] Leedham-Green, C. R. and Soicher, L. H., Symbolic collection using Deep Thought, LMS J. Comput. Math., 1 (1998), 9–24.

[L01] Lempken, W., On the existence and uniqueness of the sporadic simple groups $J_2$ and $J_3$ of Z. Janko, J. Group Theory, 4 (2) (2001), 223–232.

[L03] Lempken, W., $2$-local amalgams for the simple groups $\rm GL(5,2),\rm M_24$ and $\rm He$, Illinois J. Math., 47 (1-2) (2003), 361–393
(Special issue in honor of Reinhold Baer (1902–1979)).

[LNY14] Lescot, P., Nguyen, H. N., and Yang, Y., On the commuting probability and supersolvability of finite groups, Monatsh. Math., 174 (4) (2014), 567–576.

[L14] Leshchenko, Y. Y., On the diameters of commuting graphs of permutational wreath products, Ukrainian Math. J., 66 (5) (2014), 732–742
(Translation of Ukraïn. Mat. Zh. \bf66 (2014), no. 5, 656–665).

[LS14] Levandovskyy, V. and Shepler, A. V., Quantum Drinfeld Hecke algebras, Canad. J. Math., 66 (4) (2014), 874–901.

[L13] Levy, D., The average Sylow multiplicity character and the solvable residual, Comm. Algebra, 41 (8) (2013), 3090–3097.

[LRS14] Lewis, J. B., Reiner, V., and Stanton, D., Reflection factorizations of Singer cycles, J. Algebraic Combin., 40 (3) (2014), 663–691.

[L07] Lewis, M. L., Generalizing a theorem of Huppert and Manz, J. Algebra Appl., 6 (4) (2007), 687–695.

[L09] Lewis, M. L., The vanishing-off subgroup, J. Algebra, 321 (4) (2009), 1313–1325.

[LLT17] Lewis, M. L., Liu, Y., and Tong-Viet, H. P., The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to $\rm PSL_2(q)$, Monatsh. Math., 184 (1) (2017), 115–131.

[LN+15] Lewis, M. L., Navarro, G., Tiep, P. H., and Tong-Viet, H. P., $p$-parts of character degrees, J. Lond. Math. Soc. (2), 92 (2) (2015), 483–497.

[LP15] Lewis, M. L. and Prajapati, S. K., On the existence of Johnson polynomials for nilpotent groups, Algebr. Represent. Theory, 18 (1) (2015), 205–213.

[LW07] Lewis, M. L. and White, D. L., Nonsolvable groups satisfying the one-prime hypothesis, Algebr. Represent. Theory, 10 (4) (2007), 379–412.

[LW11] Lewis, M. L. and White, D. L., Nonsolvable groups all of whose character degrees are odd-square-free, Comm. Algebra, 39 (4) (2011), 1273–1292.

[LW07] Lewis, M. L. and White, D. L., Diameters of degree graphs of nonsolvable groups. II, J. Algebra, 312 (2) (2007), 634–649.

[LRS14] Li, C. H., Rao, G., and Song, S. J., On finite self-complementary metacirculants, J. Algebraic Combin., 40 (4) (2014), 1135–1144.

[LS05] Li, C. H. and Seress, Á., On vertex-transitive non-Cayley graphs of square-free order, Des. Codes Cryptogr., 34 (2-3) (2005), 265–281.

[LS03] Li, C. H. and Seress, Á., The primitive permutation groups of squarefree degree, Bull. London Math. Soc., 35 (5) (2003), 635–644.

[L09] Li, T., A simple example of two $p$-groups with the same automorphism group, Arch. Math. (Basel), 92 (4) (2009), 287–290.

[LL16] Li, T. and Liu, Y., Mersenne primes and solvable Sylow numbers, J. Algebra Appl., 15 (9) (2016), 1650163, 16.

[LL17] Li, T. and Liu, Y., Quasi-simple groups all of whose non-principal blocks are of defect zero, J. Group Theory, 20 (3) (2017), 527–543.

[LL18] Li, W. and Li, X., On two problems of almost synchronizing groups, Theoret. Comput. Sci., 707 (2018), 94–95.

[LZ16] Liang, H. and Zhou, S., Flag-transitive point-primitive non-symmetric $2$-$(v,k,2)$ designs with alternating socle, Bull. Belg. Math. Soc. Simon Stevin, 23 (4) (2016), 559–571.

[LO+12] Liebeck, M. W., O'Brien, E. A., Shalev, A., and Tiep, P. H., Products of squares in finite simple groups, Proc. Amer. Math. Soc., 140 (1) (2012), 21–33.

[LO+10] Liebeck, M. W., O'Brien, E. A., Shalev, A., and Tiep, P. H., The Ore conjecture, J. Eur. Math. Soc. (JEMS), 12 (4) (2010), 939–1008.

[LO+11] Liebeck, M. W., O'Brien, E. A., Shalev, A., and Tiep, P. H., Commutators in finite quasisimple groups, Bull. Lond. Math. Soc., 43 (6) (2011), 1079–1092.

[LPS02] Liebeck, M. W., Praeger, C. E., and Saxl, J., Primitive permutation groups with a common suborbit, and edge-transitive graphs, Proc. London Math. Soc. (3), 84 (2) (2002), 405–438.

[LPS00] Liebeck, M. W., Praeger, C. E., and Saxl, J., Transitive subgroups of primitive permutation groups, J. Algebra, 234 (2) (2000), 291–361
(Special issue in honor of Helmut Wielandt).

[LP14] Liebler, R. A. and Praeger, C. E., Neighbour-transitive codes in Johnson graphs, Des. Codes Cryptogr., 73 (1) (2014), 1–25.

[LFK10] Lim, F., Fossorier, M., and Kavčić, A., Code automorphisms and permutation decoding of certain Reed-Solomon binary images, IEEE Trans. Inform. Theory, 56 (10) (2010), 5253–5273.

[LW99] Lindenbergh, R. C. and van der Waall, R. W., Ergebnisse über Dedekind-Zeta-Funktionen, monomiale Charaktere und Konjugationsklassen endlicher Gruppen, unter Benutzung von GAP, Bayreuth. Math. Schr. (56) (1999), 79–148.

[LLS95] Linton, S. A., Lux, K., and Soicher, L. H., The primitive distance-transitive representations of the Fischer groups, Experiment. Math., 4 (3) (1995), 235–253.

[LP+98] Linton, S. A., Pfeiffer, G., Robertson, E. F., and Ruškuc, N., Groups and actions in transformation semigroups, Math. Z., 228 (3) (1998), 435–450.

[LP+02] Linton, S. A., Pfeiffer, G., Robertson, E. F., and Ruškuc, N., Computing transformation semigroups, J. Symbolic Comput., 33 (2) (2002), 145–162.

[LP+98] Linton, S., Parker, R., Walsh, P., and Wilson, R., Computer construction of the Monster, J. Group Theory, 1 (4) (1998), 307–337.

[L16] Liu, S., Mühlherr's partitions for Brauer algebras of type $\rm H_3$ and $\rm H_4$, Comm. Algebra, 44 (12) (2016), 5287–5298.

[L16] Liu, Y., Finite groups with only one $p$-singular Brauer character degree, J. Pure Appl. Algebra, 220 (9) (2016), 3182–3206.

[L16] Liu, Y., Finite groups whose irreducible characters of principal blocks have prime power degrees, Monatsh. Math., 181 (1) (2016), 117–122.

[LL15] Liu, Y. and Lu, Z. Q., Nonsolvable $D_2$-groups, Acta Math. Sin. (Engl. Ser.), 31 (11) (2015), 1683–1702.

[LSZ15] Liu, Y., Song, X., and Zhang, J., Nonsolvable groups satisfying the prime-power hypothesis, J. Algebra, 442 (2015), 455–483.

[LW16] Liu, Y. and Willems, W., Lie-type-like groups, J. Algebra, 447 (2016), 432–444.

[LZ17] Liu, Y. and Zhang, J., Small intersections of principal blocks, J. Algebra, 472 (2017), 214–225.

[L98] Lo, E. H., A polycyclic quotient algorithm, J. Symbolic Comput., 25 (1) (1998), 61–97.

[L97] Lo, E. H., A polycyclic quotient algorithm, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 159–167.

[LT18] Long, D. D. and Thistlethwaite, M. B., Zariski dense surface subgroups in $\rm SL(4,\Bbb Z)$, Exp. Math., 27 (1) (2018), 82–92.

[L09] Lopes, P., Permutations which make transitive groups primitive, Cent. Eur. J. Math., 7 (4) (2009), 650–659.

[L06] Lorensen, K., $P$-localizing group extensions with a nilpotent action on the kernel, Comm. Algebra, 34 (12) (2006), 4345–4364.

[L01] Lorenz, M., Multiplicative invariants and semigroup algebras, Algebr. Represent. Theory, 4 (3) (2001), 293–304.

[L16] Lucchini, A., The expected number of random elements to generate a finite group, Monatsh. Math., 181 (1) (2016), 123–142.

[LMR17] Lucchini, A., Maróti, A., and Roney-Dougal, C. M., On the generating graph of a simple group, J. Aust. Math. Soc., 103 (1) (2017), 91–103.

[LMM04] Lucchini, A., Menegazzo, F., and Morigi, M., Generating permutation groups, Comm. Algebra, 32 (5) (2004), 1729–1746.

[L11] Ludl, P. O., Comments on the classification of the finite subgroups of $\rm SU(3)$, J. Phys. A, 44 (25) (2011), 255204, 12.

[L11] Ludl, P. O., Corrigendum: On the finite subgroups of $\rm U(3)$ of order smaller than 512 [MR2720062], J. Phys. A, 44 (13) (2011), 139501, 1.

[L10] Ludl, P. O., On the finite subgroups of $\rm U(3)$ of order smaller than 512, J. Phys. A, 43 (39) (2010), 395204, 28.

[LM11] Luks, E. M. and Miyazaki, T., Polynomial-time normalizers, Discrete Math. Theor. Comput. Sci., 13 (4) (2011), 61–96.

[LRW97] Luks, E. M., Rákóczi, F., and Wright, C. R. B., Some algorithms for nilpotent permutation groups, J. Symbolic Comput., 23 (4) (1997), 335–354.

[LS97] Luks, E. M. and Seress, Á., Computing the Fitting subgroup and solvable radical of small-base permutation groups in nearly linear time, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 169–181.

[L09] Lutowski, R., On symmetry of flat manifolds, Experiment. Math., 18 (2) (2009), 201–204.

[LP15] Lutowski, R. and Putrycz, B., Spin structures on flat manifolds, J. Algebra, 436 (2015), 277–291.

[LNN12] Lux, K., Neunhöffer, M., and Noeske, F., Condensation of homomorphism spaces, LMS J. Comput. Math., 15 (2012), 140–157.

[LNR08] Lux, K., Noeske, F., and Ryba, A. J. E., The 5-modular characters of the sporadic simple Harada-Norton group HN and its automorphism group HN.2, J. Algebra, 319 (1) (2008), 320–335.

[LP99] Lux, K. and Pahlings, H., Computational aspects of representation theory of finite groups. II, in Algorithmic algebra and number theory (Heidelberg, 1997), Springer, Berlin (1999), 381–397.

[LP91] Lux, K. and Pahlings, H., Computational aspects of representation theory of finite groups, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Birkhäuser, Basel, Progr. Math., 95 (1991), 37–64.

[LW01] Lux, K. and Wiegelmann, M., Determination of socle series using the condensation method, J. Symbolic Comput., 31 (1-2) (2001), 163–178
(Computational algebra and number theory (Milwaukee, WI, 1996)).

[LZY11] Lv, H., Zhou, W., and Yu, D., Some finite $p$-groups with bounded index of every cyclic subgroup in its normal closure, J. Algebra, 338 (2011), 169–179.

[L06] Lyle, S., Some results obtained by application of the LLT algorithm, Comm. Algebra, 34 (5) (2006), 1723–1752.

[L15] Lytkin, Y. V., Groups that are critical with respect to the spectra of alternating and sporadic groups, Sibirsk. Mat. Zh., 56 (1) (2015), 122–128.

[LM12] Lytkina, D. V. and Mazurov, V. D., On groups with given properties of finite subgroups, Algebra Logika, 51 (3) (2012), 321–330, 414, 417.

[LM13] Lytkina, D. V. and Mazurov, V. D., On groups with given properties of finite subgroups generated by pairs of 2-elements, Sibirsk. Mat. Zh., 54 (1) (2013), 127–130.

[LM14] Lytkina, D. V. and Mazurov, V. D., On $\2,3\$-groups in which there are no elements of order 6, Sibirsk. Mat. Zh., 55 (6) (2014), 1345–1352.

[LM15] Lytkina, D. V. and Mazurov, V. D., On groups of period 12, Sibirsk. Mat. Zh., 56 (3) (2015), 594–599.

[LM+14] Lytkina, D. V., Mazurov, V. D., Mamontov, A. S., and Yabara, È., Groups whose element orders do not exceed 6, Algebra Logika, 53 (5) (2014), 570–586, 662, 664.

[MW12] Ma, J. and Wang, K., Fissioned triangular schemes via sharply 3-transitive groups, Linear Algebra Appl., 436 (7) (2012), 2618–2629.

[MW16] Ma, X. and Wang, K., On finite groups all of whose cubic Cayley graphs are integral, J. Algebra Appl., 15 (6) (2016), 1650105, 10.

[M10] Maas, L. A., On a construction of the basic spin representations of symmetric groups, Comm. Algebra, 38 (12) (2010), 4545–4552.

[MOS08] Magaard, K., O'Brien, E. A., and Seress, Á., Recognition of small dimensional representations of general linear groups, J. Aust. Math. Soc., 85 (2) (2008), 229–250.

[MSV98] Magaard, K., Strambach, K., and Völklein, H., Finite quotients of the pure symplectic braid group, Israel J. Math., 106 (1998), 13–28.

[MM10] Magidin, A. and Morse, R. F., Certain homological functors of 2-generator $p$-groups of class 2, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 127–166.

[MO09] Maginnis, J. and Onofrei, S., On fixed point sets and Lefschetz modules for sporadic simple groups, J. Pure Appl. Algebra, 213 (6) (2009), 901–912.

[MO10] Maginnis, J. and Onofrei, S., On fixed point sets of distinguished collections for groups of parabolic characteristic, J. Combin. Theory Ser. A, 117 (7) (2010), 872–883.

[MO07] Maginnis, J. and Onofrei, S., On a homotopy relation between the 2-local geometry and the Bouc complex for the sporadic group $\rm Co_3$, J. Algebra, 315 (1) (2007), 1–17.

[M17] Maglione, J., Most small $p$-groups have an automorphism of order 2, Arch. Math. (Basel), 108 (3) (2017), 225–232.

[M13] Magurn, B. A., Negative $K$-theory of generalized quaternion groups and binary polyhedral groups, Comm. Algebra, 41 (11) (2013), 4146–4160.

[M08] Mahalanobis, A., A simple generalization of the ElGamal cryptosystem to non-abelian groups, Comm. Algebra, 36 (10) (2008), 3878–3889.

[M08] Mahalanobis, A., The Diffie-Hellman key exchange protocol and non-abelian nilpotent groups, Israel J. Math., 165 (2008), 161–187.

[MK15] Mahmoudifar, A. and Khosravi, B., On quasirecognition by prime graph of the simple groups $A^+_n(p)$ and $A^-_n(p)$, J. Algebra Appl., 14 (1) (2015), 1550006, 12.

[MSS11] Makisumi, S., Stadnyk, G., and Steinhurst, B., Modified Hanoi towers groups and limit spaces, Internat. J. Algebra Comput., 21 (6) (2011), 867–887.

[MM07] Maksimenko, A. A. and Mamontov, A. S., Local finiteness of some groups generated by a class of conjugate elements of order 3, Sibirsk. Mat. Zh., 48 (3) (2007), 631–644.

[M18] Malcolm, A. J., The involution width of finite simple groups, J. Algebra, 493 (2018), 297–340.

[MS03] Malfait, W. and Szczepański, A., The structure of the (outer) automorphism group of a Bieberbach group, Compositio Math., 136 (1) (2003), 89–101.

[M99] Malle, G., Almost irreducible tensor squares, Comm. Algebra, 27 (3) (1999), 1033–1051.

[M06] Malle, G., Fast-einfache Gruppen mit langen Bahnen in absolut irreduzibler Operation, J. Algebra, 300 (2) (2006), 655–672.

[M08] Malle, G., The inductive McKay condition for simple groups not of Lie type, Comm. Algebra, 36 (2) (2008), 455–463.

[M08] Malle, G., Extensions of unipotent characters and the inductive McKay condition, J. Algebra, 320 (7) (2008), 2963–2980.

[MNS17] Malle, G., Navarro, G., and Sambale, B., On defects of characters and decomposition numbers, Algebra Number Theory, 11 (6) (2017), 1357–1384.

[MNS18] Malle, G., Navarro, G., and Späth, B., On blocks with one modular character, Forum Math., 30 (1) (2018), 57–73.

[MMP04] Malnič, A., Marušič, D., and Potočnik, P., Elementary abelian covers of graphs, J. Algebraic Combin., 20 (1) (2004), 71–97.

[M13] Mamontov, A. S., Groups of exponent 12 without elements of order 12, Sibirsk. Mat. Zh., 54 (1) (2013), 150–156.

[M14] Mamontov, A. S., On the Baer-Suzuki theorem for groups of 2-period 4, Algebra Logika, 53 (5) (2014), 649–652.

[MY16] Mamontov, A. S. and Yabara, È., On periodic groups with a narrow spectrum, Sibirsk. Mat. Zh., 57 (3) (2016), 683–687.

[MPS07] Mann, A., Praeger, C. E., and Seress, Á., Extremely primitive groups, Groups Geom. Dyn., 1 (4) (2007), 623–660.

[M05] Maróti, A., Bounding the number of conjugacy classes of a permutation group, J. Group Theory, 8 (3) (2005), 273–289.

[M05] Maróti, A., Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A, 110 (1) (2005), 97–111.

[MN15] Maróti, A. and Nguyen, H. N., Character degree sums of finite groups, Forum Math., 27 (4) (2015), 2453–2465.

[MT13] Maróti, A. and Tamburini Bellani, M. C., A solution to a problem of Wiegold, Comm. Algebra, 41 (1) (2013), 34–49.

[MT11] Maróti, A. and Tamburini, M. C., Bounds for the probability of generating the symmetric and alternating groups, Arch. Math. (Basel), 96 (2) (2011), 115–121.

[MIT13] Marefat, Y., Iranmanesh, A., and Tehranian, A., On the sum of element orders of finite simple groups, J. Algebra Appl., 12 (7) (2013), 1350026, 4.

[M05] Marin, I., Éléments de Jucys-Murphy généralisés, Comm. Algebra, 33 (9) (2005), 2879–2898.

[MT13] Marinelli, S. and Tiep, P. H., Zeros of real irreducible characters of finite groups, Algebra Number Theory, 7 (3) (2013), 567–593.

[MW09] Martínez-Pérez, C. and Willems, W., The trivial intersection problem for characters of principal indecomposable modules, Adv. Math., 222 (4) (2009), 1197–1219.

[MW13] Martínez-Pérez, C. and Willems, W., On the dimensions of PIM's, J. Group Theory, 16 (3) (2013), 397–417.

[MW17] Martin, K. and Walji, N., Distinguishing finite group characters and refined local-global phenomena, Acta Arith., 179 (3) (2017), 277–300.

[MT11] Mashkouri, M. and Taeri, B., On a graph associated to groups, Bull. Malays. Math. Sci. Soc. (2), 34 (3) (2011), 553–560.

[MS05] Matei, D. and Suciu, A. I., Counting homomorphisms onto finite solvable groups, J. Algebra, 286 (1) (2005), 161–186.

[MS00] Matei, D. and Suciu, A. I., Cohomology rings and nilpotent quotients of real and complex arrangements, in Arrangements—Tokyo 1998, Kinokuniya, Tokyo, Adv. Stud. Pure Math., 27 (2000), 185–215.

[MS02] Matei, D. and Suciu, A. I., Hall invariants, homology of subgroups, and characteristic varieties, Int. Math. Res. Not. (9) (2002), 465–503.

[M99] Mathas, A., Murphy operators and the centre of the Iwahori-Hecke algebras of type $A$, J. Algebraic Combin., 9 (3) (1999), 295–313.

[M96] Mathas, A., On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups, J. London Math. Soc. (2), 54 (3) (1996), 475–488.

[M11] Mattarei, S., Engel conditions and symmetric tensors, Linear Multilinear Algebra, 59 (4) (2011), 441–449.

[M04] Matthews, P. C., Automating symmetry-breaking calculations, LMS J. Comput. Math., 7 (2004), 101–119.

[MZ01] May, C. L. and Zimmerman, J., The group of symmetric Euler characteristic $-3$, Houston J. Math., 27 (4) (2001), 737–752.

[MZ97] May, C. L. and Zimmerman, J., The groups of symmetric genus three, Houston J. Math., 23 (4) (1997), 573–590.

[M06] Mayr, P., The polynomial functions on Frobenius complements, Acta Sci. Math. (Szeged), 72 (1-2) (2006), 37–50.

[M03] Mazurov, V. D., On the generation of sporadic simple groups by three involutions, two of which commute, Sibirsk. Mat. Zh., 44 (1) (2003), 193–198.

[M13] Mazurov, V. D., Unrecognizability of a finite simple group $^3D_4(2)$ by the spectrum, Algebra Logika, 52 (5) (2013), 601–605, 650, 652–653.

[MM13] Mazurov, V. D. and Mamontov, A. S., Involutions in groups of exponent 12, Algebra Logika, 52 (1) (2013), 92–98, 124, 126–127.

[MM09] Mazurov, V. D. and Mamontov, A. S., On periodic groups with elements of small orders, Sibirsk. Mat. Zh., 50 (2) (2009), 397–404.

[MS98] Mazurov, V. D. and Shi, W., A note to the characterization of sporadic simple groups, Algebra Colloq., 5 (3) (1998), 285–288.

[M15] Mühle, H., EL-shellability and noncrossing partitions associated with well-generated complex reflection groups, European J. Combin., 43 (2015), 249–278.

[M03] Müller, J., A note on applications of the `Vector Enumerator' algorithm, Linear Algebra Appl., 365 (2003), 291–300
(Special issue on linear algebra methods in representation theory).

[M03] Müller, J., Brauer trees for the Schur cover of the symmetric group, J. Algebra, 266 (2) (2003), 427–445.

[M00] Müller, J., The 2-modular decomposition matrices of the symmetric groups $S_15,S_16$, and $S_17$, Comm. Algebra, 28 (10) (2000), 4997–5005.

[M16] Müller, J., On low-degree representations of the symmetric group, J. Algebra, 465 (2016), 356–398.

[M97] Müller, J., Decomposition numbers for generic Iwahori-Hecke algebras of noncrystallographic type, J. Algebra, 189 (1) (1997), 125–149.

[M08] Müller, J., On the multiplicity-free actions of the sporadic simple groups, J. Algebra, 320 (2) (2008), 910–926.

[M08] Müller, J., On the action of the sporadic simple Baby Monster group on its conjugacy class 2B, LMS J. Comput. Math., 11 (2008), 15–27.

[M98] Müller, J., The 5-modular decomposition matrix of the sporadic simple Conway group $\rm Co_3$, in Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock), ACM, New York (1998), 179–185.

[MN05] Müller, J. and Neunhöffer, M., Some computations regarding Foulkes' conjecture, Experiment. Math., 14 (3) (2005), 277–283.

[MN+02] Müller, J., Neunhöffer, M., Röhr, F., and Wilson, R., Completing the Brauer trees for the sporadic simple Lyons group, LMS J. Comput. Math., 5 (2002), 18–33.

[MNW07] Müller, J., Neunhöffer, M., and Wilson, R. A., Enumerating big orbits and an application: $B$ acting on the cosets of $\rm Fi_23$, J. Algebra, 314 (1) (2007), 75–96.

[MR99] Müller, J. and Rosenboom, J., Condensation of induced representations and an application: the $2$-modular decomposition numbers of $\rm Co_2$, in Computational methods for representations of groups and algebras (Essen, 1997), Birkhäuser, Basel, Progr. Math., 173 (1999), 309–321.

[MS08] Müller, J. and Schaps, M., The Broué conjecture for the faithful 3-blocks of $4.M_22$, J. Algebra, 319 (9) (2008), 3588–3602.

[MZ07] Müller, J. and Zimmermann, R., Green vertices and sources of simple modules of the symmetric group labelled by hook partitions, Arch. Math. (Basel), 89 (2) (2007), 97–108.

[MC04] Müller, M. and Clausen, M., DFT-based word normalization in finite supersolvable groups, Appl. Algebra Engrg. Comm. Comput., 15 (3-4) (2004), 213–231.

[M98] Müller, P., Kronecker conjugacy of polynomials, Trans. Amer. Math. Soc., 350 (5) (1998), 1823–1850.

[M13] Müller, P., Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2) (2013), 369–438.

[MN08] Müller, P. and Nagy, G. P., A note on the group of projectivities of finite projective planes, Innov. Incidence Geom., 6/7 (2007/08), 291–294.

[MS10] Müller, T. W. and Schlage-Puchta, J., Statistics of isomorphism types in free products, Adv. Math., 224 (2) (2010), 707–730.

[MS07] Müller, T. W. and Schlage-Puchta, J., Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks, Adv. Math., 213 (2) (2007), 919–982.

[MW11] McCullough, D. and Wanderley, M., Writing elements of $\rm PSL(2,q)$ as commutators, Comm. Algebra, 39 (4) (2011), 1234–1241.

[MW13] McCullough, D. and Wanderley, M., Nielsen equivalence of generating pairs of $\rm SL(2,q)$, Glasg. Math. J., 55 (3) (2013), 481–509.

[MP99] McDonough, T. P. and Pallikaros, C. A., On the irreducible representations of the specializations of the generic Hecke algebra of type $F^*_4$, J. Algebra, 218 (2) (1999), 654–671.

[MP00] McDonough, T. P. and Pallikaros, C. A., On the irreducible representations of the specializations in characteristics 2 and 3 of the generic Hecke algebra of type $F_4^1$, J. Algebra, 226 (2) (2000), 857–864.

[MP05] McDonough, T. P. and Pallikaros, C. A., On relations between the classical and the Kazhdan-Lusztig representations of symmetric groups and associated Hecke algebras, J. Pure Appl. Algebra, 203 (1-3) (2005), 133–144.

[MP08] McDonough, T. P. and Pallikaros, C. A., On subsequences and certain elements which determine various cells in $S_n$, J. Algebra, 319 (3) (2008), 1249–1263.

[M12] McLoughlin, I., A group ring construction of the [48,24,12] type II linear block code, Des. Codes Cryptogr., 63 (1) (2012), 29–41.

[MH08] McLoughlin, I. and Hurley, T., A group ring construction of the extended binary Golay code, IEEE Trans. Inform. Theory, 54 (9) (2008), 4381–4383.

[MS11] Meagher, K. and Spiga, P., An Erdős-Ko-Rado theorem for the derangement graph of $\rm PGL(2,q)$ acting on the projective line, J. Combin. Theory Ser. A, 118 (2) (2011), 532–544.

[MQR13] Menezes, N. E., Quick, M., and Roney-Dougal, C. M., The probability of generating a finite simple group, Israel J. Math., 198 (1) (2013), 371–392.

[MM16] Mesyan, Z. and Mitchell, J. D., The structure of a graph inverse semigroup, Semigroup Forum, 93 (1) (2016), 111–130.

[M06] Meyer, H., On a subalgebra of the centre of a group ring, J. Algebra, 295 (1) (2006), 293–302.

[M08] Meyer, H., On a subalgebra of the centre of a group ring. II, Arch. Math. (Basel), 90 (2) (2008), 112–122.

[M02] Meyer, H., Konjugationsklassensummen in endlichen Gruppenringen, Bayreuth. Math. Schr. (66) (2002), viii+160
(Dissertation, Universität Bayreuth, Bayreuth, 2002).

[M08] Meyer, H., Primitive central idempotents of finite group rings of symmetric groups, Math. Comp., 77 (263) (2008), 1801–1821.

[M09] Meyer, H., Primitive central idempotents of finite group rings of symmetric groups, in Proceedings of the International Conference on Modules and Representation Theory, Presa Univ. Clujeană, Cluj-Napoca (2009), 133–147.

[M15] Michel, J., The development version of the \tt CHEVIE package of \tt GAP3, J. Algebra, 435 (2015), 308–336.

[M16] Michel, J., Deligne-Lusztig theoretic derivation for Weyl groups of the number of reflection factorizations of a Coxeter element, Proc. Amer. Math. Soc., 144 (3) (2016), 937–941.

[M00] Michel, J., Calculs en théorie des groupes et introduction au langage GAP (groups, algorithms and programming), in Groupes finis, Ed. Éc. Polytech., Palaiseau (2000), 71–95.

[M10] Michel, P., Homology of groups and third busy beaver function, Internat. J. Algebra Comput., 20 (6) (2010), 769–791.

[M00] Michler, G. O., On the construction of the finite simple groups with a given centralizer of a 2-central involution, J. Algebra, 234 (2) (2000), 668–693
(Special issue in honor of Helmut Wielandt).

[M01] Michler, G. O., The character values of multiplicity-free irreducible constituents of a transitive permutation representation, Kyushu J. Math., 55 (1) (2001), 75–106.

[M03] Michler, G. O., On the uniqueness of the finite simple groups with a given centralizer of a 2-central involution, Illinois J. Math., 47 (1-2) (2003), 419–444
(Special issue in honor of Reinhold Baer (1902–1979)).

[MP07] Michler, G. O. and Previtali, A., O'Nan group uniquely determined by the centralizer of a 2-central involution, J. Algebra Appl., 6 (1) (2007), 135–171.

[MS98] Michler, G. O. and Solberg, Ø., Testing modules of groups of even order for simplicity, J. Algebra, 202 (1) (1998), 229–242.

[MW02] Michler, G. O. and Weller, M., The character values of the irreducible constituents of a transitive permutation representation, Arch. Math. (Basel), 78 (6) (2002), 417–429.

[MWW03] Michler, G. O., Weller, M., and Waki, K., Natural existence proof for Lyons simple group, J. Algebra Appl., 2 (3) (2003), 277–315.

[M00] Migliorini, F., Some topics and a classification in the theory of sm-representation of finite groups, Pure Math. Appl., 11 (3) (2000), 521–532.

[M98] Minkwitz, T., An algorithm for solving the factorization problem in permutation groups, J. Symbolic Comput., 26 (1) (1998), 89–95.

[M10] Miyamoto, I., Computation of isomorphisms of coherent configurations, Ars Math. Contemp., 3 (1) (2010), 59–67.

[M16] Mizusawa, Y., On certain 2-extensions of $\BbbQ$ unramified at 2 and $\infty$, Osaka J. Math., 53 (4) (2016), 1063–1088.

[MN12] Moghaddam, M. R. R. and Niroomand, P., Some properties of certain subgroups of tensor squares of $p$-groups, Comm. Algebra, 40 (3) (2012), 1188–1193.

[MR16] Moghaddam, M. R. R. and Rostamyari, M. A., 2-Engelizer subgroup of a 2-Engel transitive groups, Bull. Korean Math. Soc., 53 (3) (2016), 657–665.

[MS15] Moghaddam, M. R. R. and Sadeghifard, M. J., Non-abelian tensor analogues of 2-auto Engel groups, Bull. Korean Math. Soc., 52 (4) (2015), 1097–1105.

[MSM14] Moghaddam, M. R. R., Safa, H., and Mousavi, A. K., Autocommutators and auto-Bell groups, Bull. Korean Math. Soc., 51 (4) (2014), 923–931.

[M06] Moghaddamfar, A. R., On spectrum of linear groups over the binary field and recognizability of $L_12(2)$, Internat. J. Algebra Comput., 16 (2) (2006), 341–349.

[ME+16] Mohammadian, A., Erfanian, A., Farrokhi D. G. , M., and Wilkens, B., Triangle-free commuting conjugacy class graphs, J. Group Theory, 19 (6) (2016), 1049–1061.

[MK13] Monakhov, V. S. and Kniahina, V. N., Finite groups with $\BbbP$-subnormal subgroups, Ric. Mat., 62 (2) (2013), 307–322.

[MT11] Monakhov, V. S. and Trofimuk, A. A., On a finite group having a normal series whose factors have bicyclic Sylow subgroups, Comm. Algebra, 39 (9) (2011), 3178–3186.

[MPW14] Monson, B., Pellicer, D., and Williams, G., Mixing and monodromy of abstract polytopes, Trans. Amer. Math. Soc., 366 (5) (2014), 2651–2681.

[MPW12] Monson, B., Pellicer, D., and Williams, G., The tomotope, Ars Math. Contemp., 5 (2) (2012), 355–370.

[MP+07] Monson, B., Pisanski, T., Schulte, E., and Weiss, A. I., Semisymmetric graphs from polytopes, J. Combin. Theory Ser. A, 114 (3) (2007), 421–435.

[MS14] Monson, B. and Schulte, E., Finite polytopes have finite regular covers, J. Algebraic Combin., 40 (1) (2014), 75–82.

[MS04] Monson, B. and Schulte, E., Reflection groups and polytopes over finite fields. I, Adv. in Appl. Math., 33 (2) (2004), 290–317.

[MS07] Monson, B. and Schulte, E., Reflection groups and polytopes over finite fields. II, Adv. in Appl. Math., 38 (3) (2007), 327–356.

[MS08] Monson, B. and Schulte, E., Reflection groups and polytopes over finite fields. III, Adv. in Appl. Math., 41 (1) (2008), 76–94.

[MW07] Monson, B. and Weiss, A. I., Medial layer graphs of equivelar 4-polytopes, European J. Combin., 28 (1) (2007), 43–60.

[M07] Montinaro, A., Large 2-transitive arcs, J. Combin. Theory Ser. A, 114 (6) (2007), 993–1023.

[M07] Montinaro, A., Large doubly transitive orbits on a line, J. Aust. Math. Soc., 83 (2) (2007), 227–269.

[MP03] Moore, E. H. and Pollatsek, H., Looking for difference sets in groups with dihedral images, Des. Codes Cryptogr., 28 (1) (2003), 45–50.

[M94] Moori, J., $(2,3,p)$-generations for the Fischer group $F_22$, Comm. Algebra, 22 (11) (1994), 4597–4610.

[M14] Moori, J., Designs and codes from $PSL_2(q)$, in Group theory, combinatorics, and computing, Amer. Math. Soc., Providence, RI, Contemp. Math., 611 (2014), 137–149.

[MM00] Moori, J. and Mpono, Z., Fischer-Clifford matrices and the character table of a maximal subgroup of $\overline F_22$, Int. J. Math. Game Theory Algebra, 10 (1) (2000), 1–12.

[MR02] Moori, J. and Rodrigues, B. G., On Frattini extensions, Sci. Math. Jpn., 55 (2) (2002), 215–221.

[MS14] Moori, J. and Seretlo, T., On 2 nonsplit extension groups associated with $HS$ and $HS:2$, Turkish J. Math., 38 (1) (2014), 60–78.

[MZ05] Moori, J. and Zimba, K., Permutation actions of the symmetric group $S_n$ on the groups $Z^n_m$ and $\overlineZ^n_m$, Quaest. Math., 28 (2) (2005), 179–193.

[MZ06] Moori, J. and Zimba, K., Fischer-Clifford matrices of $B(2,n)$, Quaest. Math., 29 (1) (2006), 9–37.

[MZ17] Moori, J. and Zimba, K., Fischer-Clifford matrices of the generalized symmetric group (a computational approach), Quaest. Math., 40 (1) (2017), 75–89.

[M12] Moravec, P., Unramified Brauer groups of finite and infinite groups, Amer. J. Math., 134 (6) (2012), 1679–1704.

[M05] Moravec, P., Some groups with $n$-central normal closures, Publ. Math. Debrecen, 67 (3-4) (2005), 355–372.

[M07] Moravec, P., Schur multipliers and power endomorphisms of groups, J. Algebra, 308 (1) (2007), 12–25.

[M08] Moravec, P., On the exponent semigroups of finite $p$-groups, J. Group Theory, 11 (4) (2008), 511–524.

[M08] Moravec, P., Schur multipliers of $n$-Engel groups, Internat. J. Algebra Comput., 18 (6) (2008), 1101–1115.

[M08] Moravec, P., The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra, 212 (7) (2008), 1840–1848.

[M11] Moravec, P., On the Schur multipliers of finite $p$-groups of given coclass, Israel J. Math., 185 (2011), 189–205.

[M06] Moravec, P., On power endomorphisms of $n$-central groups, J. Group Theory, 9 (4) (2006), 519–536.

[MM10] Moravec, P. and Morse, R. F., Basic commutators as relations: a computational perspective, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 83–91.

[M14] Moreno-Mejía, I., A canonical curve of genus 17, Results Math., 66 (1-2) (2014), 65–86.

[MN16] Moretó, A. and Nguyen, H. N., Variations of Landau's theorem for $p$-regular and $p$-singular conjugacy classes, Israel J. Math., 212 (2) (2016), 961–987.

[M08] Morimoto, M., Smith equivalent $\rm Aut(A_6)$-representations are isomorphic, Proc. Amer. Math. Soc., 136 (10) (2008), 3683–3688.

[M10] Morimoto, M., Nontrivial $\scr P(G)$-matched $\germ S$-related pairs for finite gap Oliver groups, J. Math. Soc. Japan, 62 (2) (2010), 623–647.

[M05] Morse, R. F., Advances in computing the nonabelian tensor square of polycyclic groups, Irish Math. Soc. Bull. (56) (2005), 115–123.

[M06] Morse, R. F., On the Rosenberger monster, in Combinatorial group theory, discrete groups, and number theory, Amer. Math. Soc., Providence, RI, Contemp. Math., 421 (2006), 251–260.

[M08] Morse, R. F., On the application of computational group theory to the theory of groups, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 1–19.

[M16] Moscariello, A., On the type of an almost Gorenstein monomial curve, J. Algebra, 456 (2016), 266–277.

[MO95] Murray, S. H. and O'Brien, E. A., Selecting base points for the Schreier-Sims algorithm for matrix groups, J. Symbolic Comput., 19 (6) (1995), 577–584.

[MA10] Mushtaq, Q. and Asif, S., $A_5$ as a homomorphic image of a subgroup of Picard group, Comm. Algebra, 38 (10) (2010), 3897–3912.

[M99] Mysovskikh, V. I., Investigation of subgroup embeddings by the computer algebra package GAP, in Computer algebra in scientific computing—CASC'99 (Munich), Springer, Berlin (1999), 309–315.

[M00] Mysovskikh, V. I., Burnside matrices and subgroup embeddings in finite groups, in Formal power series and algebraic combinatorics (Moscow, 2000), Springer, Berlin (2000), 528–533.

[M99] Mysovskikh, V. I., Subnormalizers and embedding properties of subgroups of finite groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 265 (Vopr. Teor. Predst. Algebr i Grupp. 6) (1999), 258–280, 328–329 (2000).

[M97] Mysovskikh, V. I., Testing subgroups of a finite group on embedding properties like pronormality, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 236 (Vopr. Teor. Predst. Algebr i Grupp. 5) (1997), 119–123, 218.

[M99] Mysovskikh, V. I., Burnside marks and a solution of two problems of Z. I. Borevich on polynormal subgroups, Dokl. Akad. Nauk, 367 (4) (1999), 445–446.

[MS01] Mysovskikh, V. I. and Skopin, A. I., Embedding of nonprimary subgroups in the symmetric group $S_9$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 281 (Vopr. Teor. Predst. Algebr. i Grupp. 8) (2001), 237–252, 284.

[MS97] Mysovskikh, V. I. and Skopin, A. I., Embedding properties of nonprimary subgroups of the symmetric group of degree eight, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 236 (Vopr. Teor. Predst. Algebr i Grupp. 5) (1997), 124–128, 218–219.

[MS99] Mysovskikh, V. I. and Skopin, A. I., Embeddings of subgroups in the symmetric group of degree nine, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 265 (Vopr. Teor. Predst. Algebr i Grupp. 6) (1999), 281–284, 329 (2000).

[N10] Naehrig, N., Endomorphism rings of permutation modules, J. Algebra, 324 (5) (2010), 1044–1075.

[N03] Nagy, G. P., On the tangent algebra of algebraic commutative Moufang loops, Mathematica, 45(68) (2) (2003), 147–160.

[N10] Nagy, G. P., On the multiplication groups of semifields, European J. Combin., 31 (1) (2010), 18–24.

[N09] Nagy, G. P., A class of finite simple Bol loops of exponent 2, Trans. Amer. Math. Soc., 361 (10) (2009), 5331–5343.

[N08] Nagy, G. P., Direct construction of code loops, Discrete Math., 308 (23) (2008), 5349–5357.

[N14] Nagy, G. P., On centerless commutative automorphic loops, Comment. Math. Univ. Carolin., 55 (4) (2014), 485–491.

[N14] Nagy, G. P., Linear groups as right multiplication groups of quasifields, Des. Codes Cryptogr., 72 (1) (2014), 153–164.

[NV07] Nagy, G. P. and Vojtěchovský, P., The Moufang loops of order 64 and 81, J. Symbolic Comput., 42 (9) (2007), 871–883.

[NE+17] Nasiri, M., Erfanian, A., Ganjali, M., and Jafarzadeh, A., Isomorphic $g$-noncommuting graphs of finite groups, Publ. Math. Debrecen, 91 (1-2) (2017), 33–42.

[NP12] Naughton, L. and Pfeiffer, G., Computing the table of marks of a cyclic extension, Math. Comp., 81 (280) (2012), 2419–2438.

[NP13] Naughton, L. and Pfeiffer, G., Integer sequences realized by the subgroup pattern of the symmetric group, J. Integer Seq., 16 (5) (2013), Article 13.5.8, 23.

[N04] Navarro, G., The McKay conjecture and Galois automorphisms, Ann. of Math. (2), 160 (3) (2004), 1129–1140.

[N14] Navarro, G., The set of conjugacy class sizes of a finite group does not determine its solvability, J. Algebra, 411 (2014), 47–49.

[NR14] Navarro, G. and Rizo, N., Nilpotent and perfect groups with the same set of character degrees, J. Algebra Appl., 13 (8) (2014), 1450061, 3.

[NS17] Navarro, G. and Sambale, B., A counterexample to Feit's Problem VIII on decomposition numbers, J. Algebra, 477 (2017), 494–495.

[NST09] Navarro, G., Sanus, L., and Tiep, P. H., Real characters and degrees, Israel J. Math., 171 (2009), 157–173.

[NST15] Navarro, G., Solomon, R., and Tiep, P. H., Abelian Sylow subgroups in a finite group, II, J. Algebra, 421 (2015), 3–11.

[NT13] Navarro, G. and Tiep, P. H., Characters of relative $p'$-degree over normal subgroups, Ann. of Math. (2), 178 (3) (2013), 1135–1171.

[NT12] Navarro, G. and Tiep, P. H., Brauer's height zero conjecture for the 2-blocks of maximal defect, J. Reine Angew. Math., 669 (2012), 225–247.

[NT06] Navarro, G. and Tiep, P. H., Rational Brauer characters, Math. Ann., 335 (3) (2006), 675–686.

[NT10] Navarro, G. and Tiep, P. H., Degrees of rational characters of finite groups, Adv. Math., 224 (3) (2010), 1121–1142.

[N98] Nebe, G., Finite quaternionic matrix groups, Represent. Theory, 2 (1998), 106–223.

[N96] Nebe, G., Finite subgroups of $\rm GL_n(\bold Q)$ for $25\leq n\leq 31$, Comm. Algebra, 24 (7) (1996), 2341–2397.

[N00] Nebe, G., Invariants of orthogonal $G$-modules from the character table, Experiment. Math., 9 (4) (2000), 623–629.

[N99] Nebe, G., The structure of maximal finite primitive matrix groups, in Algorithmic algebra and number theory (Heidelberg, 1997), Springer, Berlin (1999), 417–422.

[NP95] Nebe, G. and Plesken, W., Finite rational matrix groups, Mem. Amer. Math. Soc., 116 (556) (1995), viii+144.

[NN11] Nett, D. and Noeske, F., The imprimitive faithful complex characters of the Schur covers of the symmetric and alternating groups, J. Group Theory, 14 (3) (2011), 413–435.

[N95] Neubüser, J., An invitation to computational group theory, in Groups '93 Galway/St. Andrews, Vol. 2, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 212 (1995), 457–475.

[NSS06] Neuberger, J. M., Sieben, N., and Swift, J. W., Symmetry and automated branch following for a semilinear elliptic PDE on a fractal region, SIAM J. Appl. Dyn. Syst., 5 (3) (2006), 476–507.

[NR10] Neumann-Brosig, M. and Rosenberger, G., A note on the homology of hyperbolic groups, Groups Complex. Cryptol., 2 (2) (2010), 203–212.

[NP14] Neunhöffer, M. and Praeger, C. E., Sporadic neighbour-transitive codes in Johnson graphs, Des. Codes Cryptogr., 72 (1) (2014), 141–152.

[N01] Newman, M. F., On a family of cyclically-presented fundamental groups, J. Aust. Math. Soc., 71 (2) (2001), 235–241
(Special issue on group theory).

[NNN98] Newman, M. F., Nickel, W., and Niemeyer, A. C., Descriptions of groups of prime-power order, J. Symbolic Comput., 25 (5) (1998), 665–682.

[NN15] Newman, M. F. and Niemeyer, A. C., On complexity of multiplication in finite soluble groups, J. Algebra, 421 (2015), 425–430.

[NO99] Newman, M. F. and O'Brien, E. A., Classifying $2$-groups by coclass, Trans. Amer. Math. Soc., 351 (1) (1999), 131–169.

[NO96] Newman, M. F. and O'Brien, E. A., Application of computers to questions like those of Burnside. II, Internat. J. Algebra Comput., 6 (5) (1996), 593–605.

[NOV04] Newman, M. F., O'Brien, E. A., and Vaughan-Lee, M. R., Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (1) (2004), 383–401.

[N13] Nguyen, H. N., Quasisimple classical groups and their complex group algebras, Israel J. Math., 195 (2) (2013), 973–998.

[NT14] Nguyen, H. N. and Tong-Viet, H. P., Characterizing finite quasisimple groups by their complex group algebras, Algebr. Represent. Theory, 17 (1) (2014), 305–320.

[N99] Nickel, W., Computation of nilpotent Engel groups, J. Austral. Math. Soc. Ser. A, 67 (2) (1999), 214–222
(Group theory).

[N06] Nickel, W., Matrix representations for torsion-free nilpotent groups by Deep Thought, J. Algebra, 300 (1) (2006), 376–383.

[NW05] Nickerson, S. J. and Wilson, R. A., Semi-presentations for the sporadic simple groups, Experiment. Math., 14 (3) (2005), 359–371.

[N98] Nicotera, C., A note on rewritability of commutators in nilpotent groups, Comm. Algebra, 26 (9) (1998), 2967–2970.

[NP13] Niebrzydowski, M. and Przytycki, J. H., Entropic magmas, their homology and related invariants of links and graphs, Algebr. Geom. Topol., 13 (6) (2013), 3223–3243.

[NR10] Niemenmaa, M. and Rytty, M., On finite loops with nilpotent inner mapping groups, Arch. Math. (Basel), 95 (4) (2010), 319–324.

[N94] Niemeyer, A. C., A finite soluble quotient algorithm, J. Symbolic Comput., 18 (6) (1994), 541–561.

[N95] Niemeyer, A. C., Computing finite soluble quotients, in Computational algebra and number theory (Sydney, 1992), Kluwer Acad. Publ., Dordrecht, Math. Appl., 325 (1995), 75–82.

[N05] Niemeyer, A. C., Constructive recognition of normalizers of small extra-special matrix groups, Internat. J. Algebra Comput., 15 (2) (2005), 367–394.

[NPP12] Niemeyer, A. C., Popiel, T., and Praeger, C. E., Algorithms to identify abundant $p$-singular elements in finite classical groups, Bull. Aust. Math. Soc., 86 (1) (2012), 50–63.

[NP06] Niemeyer, A. C. and Praeger, C. E., On the frequency of permutations containing a long cycle, J. Algebra, 300 (1) (2006), 289–304.

[NP98] Niemeyer, A. C. and Praeger, C. E., A recognition algorithm for classical groups over finite fields, Proc. London Math. Soc. (3), 77 (1) (1998), 117–169.

[NP97] Niemeyer, A. C. and Praeger, C. E., Implementing a recognition algorithm for classical groups, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 273–296.

[NP07] Niemeyer, A. C. and Praeger, C. E., On the proportion of permutations of order a multiple of the degree, J. Lond. Math. Soc. (2), 76 (3) (2007), 622–632.

[NP14] Niemeyer, A. C. and Praeger, C. E., Elements in finite classical groups whose powers have large 1-eigenspaces, Discrete Math. Theor. Comput. Sci., 16 (1) (2014), 303–312.

[NR11] Niroomand, P. and Rezaei, R., On the exterior degree of finite groups, Comm. Algebra, 39 (1) (2011), 335–343.

[NR13] Niroomand, P. and Rezaei, R., The exterior degree of a pair of finite groups, Mediterr. J. Math., 10 (3) (2013), 1195–1206.

[NR17] Niroomand, P. and Russo, F. G., On the tensor degree of finite groups, Ars Combin., 131 (2017), 273–283.

[NR12] Niroomand, P. and Russo, F. G., An improvement of a bound of Green, J. Algebra Appl., 11 (6) (2012), 1250116, 11.

[N07] Noeske, F., The 2- and 3-modular characters of the sporadic simple Fischer group $\rm Fi_22$ and its cover, J. Algebra, 309 (2) (2007), 723–743.

[NS15] Norooz-Abadian, M. and Sharifi, H., Frobenius $\BbbQ_1$-groups, Arch. Math. (Basel), 105 (6) (2015), 509–517.

[N01] Norton, S., Computing in the Monster, J. Symbolic Comput., 31 (1-2) (2001), 193–201
(Computational algebra and number theory (Milwaukee, WI, 1996)).

[N13] Norton, S. P., The string of nets, Proc. Edinb. Math. Soc. (2), 56 (1) (2013), 223–262.

[NW02] Norton, S. P. and Wilson, R. A., Anatomy of the Monster. II, Proc. London Math. Soc. (3), 84 (3) (2002), 581–598.

[NW13] Norton, S. P. and Wilson, R. A., A correction to the 41-structure of the Monster, a construction of a new maximal subgroup $\rm L_2(41)$ and a new Moonshine phenomenon, J. Lond. Math. Soc. (2), 87 (3) (2013), 943–962.

[O95] O'Brien, E. A., Computing automorphism groups of $p$-groups, in Computational algebra and number theory (Sydney, 1992), Kluwer Acad. Publ., Dordrecht, Math. Appl., 325 (1995), 83–90.

[O91] O'Brien, E. A., The groups of order $256$, J. Algebra, 143 (1) (1991), 219–235.

[O93] O'Brien, E. A., Isomorphism testing for $p$-groups, J. Symbolic Comput., 16 (3) (1993), 305–320.

[OV05] O'Brien, E. A. and Vaughan-Lee, M. R., The groups with order $p^7$ for odd prime $p$, J. Algebra, 292 (1) (2005), 243–258.

[OV17] O'Brien, E. A. and Vojtěchovský, P., Code loops in dimension at most 8, J. Algebra, 473 (2017), 607–626.

[OUI16] Odabaş, A., Uslu, E. Ö., and Ilgaz, E., Isoclinism of crossed modules, J. Symbolic Comput., 74 (2016), 408–424.

[OS09] Oliveira, R. N. and Sidki, S. N., On commutativity and finiteness in groups, Bull. Braz. Math. Soc. (N.S.), 40 (2) (2009), 149–180.

[ORS04] Olivieri, A., del Río, Á., and Simón, J. J., On monomial characters and central idempotents of rational group algebras, Comm. Algebra, 32 (4) (2004), 1531–1550.

[OS05] Ollis, M. A. and Spiga, P., Every abelian group of odd order has a narcissistic terrace, Ars Combin., 76 (2005), 161–168.

[O07] Olteanu, G., Computing the Wedderburn decomposition of group algebras by the Brauer-Witt theorem, Math. Comp., 76 (258) (2007), 1073–1087.

[OR07] Olteanu, G. and del Río, Á., Group algebras of Kleinian type and groups of units, J. Algebra, 318 (2) (2007), 856–870.

[OR09] Olteanu, G. and del Río, Á., An algorithm to compute the Wedderburn decomposition of semisimple group algebras implemented in the GAP package \tt wedderga, J. Symbolic Comput., 44 (5) (2009), 507–516.

[OV15] Olteanu, G. and Van Gelder, I., Construction of minimal non-abelian left group codes, Des. Codes Cryptogr., 75 (3) (2015), 359–373.

[O12] Omidali, M., The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences, Forum Math., 24 (3) (2012), 627–640.

[OS97] Omrani, A. and Shokrollahi, A., Computing irreducible representations of supersolvable groups over small finite fields, Math. Comp., 66 (218) (1997), 779–786.

[O17] O'Neill, C., On factorization invariants and Hilbert functions, J. Pure Appl. Algebra, 221 (12) (2017), 3069–3088.

[OP17] O'Neill, C. and Pelayo, R., Factorization invariants in numerical monoids, in Algebraic and geometric methods in discrete mathematics, Amer. Math. Soc., Providence, RI, Contemp. Math., 685 (2017), 231–249.

[OP15] O'Neill, C. and Pelayo, R., How do you measure primality?, Amer. Math. Monthly, 122 (2) (2015), 121–137.

[OP+16] O'Neill, C., Ponomarenko, V., Tate, R., and Webb, G., On the set of catenary degrees of finitely generated cancellative commutative monoids, Internat. J. Algebra Comput., 26 (3) (2016), 565–576.

[OST17] Oneto, A., Strazzanti, F., and Tamone, G., One-dimensional Gorenstein local rings with decreasing Hilbert function, J. Algebra, 489 (2017), 91–114.

[OPS98] Opgenorth, J., Plesken, W., and Schulz, T., Crystallographic algorithms and tables, Acta Cryst. Sect. A, 54 (5) (1998), 517–531.

[O05] O'Reilly Regueiro, E., Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle, European J. Combin., 26 (5) (2005), 577–584.

[OR12] Otera, D. E. and Russo, F. G., Subgroup S-commutativity degrees of finite groups, Bull. Belg. Math. Soc. Simon Stevin, 19 (2) (2012), 373–382.

[P95] Pahlings, H., Character polynomials and the Möbius function, Arch. Math. (Basel), 65 (2) (1995), 111–118.

[P07] Pahlings, H., The character table of $2^1+22_+.\rm Co_2$, J. Algebra, 315 (1) (2007), 301–325.

[P01] Pak, I., What do we know about the product replacement algorithm?, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 301–347.

[PS06] Papadima, S. and Suciu, A. I., Algebraic invariants for right-angled Artin groups, Math. Ann., 334 (3) (2006), 533–555.

[PR97] Parker, C. and Rowley, P., Quadratic functions and $\rm GF(q)$-groups, Proc. Amer. Math. Soc., 125 (8) (1997), 2227–2237.

[PR01] Parker, C. and Rowley, P., Sporadic simple groups which are completions of the Goldschmidt $G_3$-amalgam, J. Algebra, 235 (1) (2001), 131–153.

[P95] Pasechnik, D. V., Extended generalized octagons and the group $\rm He$, Geom. Dedicata, 56 (1) (1995), 85–101.

[P95] Pasechnik, D. V., Extending polar spaces of rank at least $3$, J. Combin. Theory Ser. A, 72 (2) (1995), 232–242.

[P96] Pasechnik, D. V., The extensions of the generalized quadrangle of order $(3,9)$, European J. Combin., 17 (8) (1996), 751–755.

[P17] Pasechnik, D. V., Locally toroidal polytopes of rank 6 and sporadic groups, Adv. Math., 312 (2017), 459–472.

[PZ14] Pasotti, S. and Zizioli, E., Slid product of loops: a generalization, Results Math., 65 (1-2) (2014), 193–212.

[PR06] Payne, O. and Rees, S., Computing subgroup presentations, using the coherence arguments of McCammond and Wise, J. Algebra, 300 (1) (2006), 109–133.

[P98] Pálfy, P. P., The number of conjugacy classes in some quotients of the Nottingham group, Proc. Edinburgh Math. Soc. (2), 41 (2) (1998), 369–384.

[PS95] Pálfy, P. P. and Szabó, C., Congruence varieties of groups and abelian groups, in Lattice theory and its applications (Darmstadt, 1991), Heldermann, Lemgo, Res. Exp. Math., 23 (1995), 163–183.

[P03] Pêcher, A., Partitionable graphs arising from near-factorizations of finite groups, Discrete Math., 269 (1-3) (2003), 191–218.

[P02] Püschel, M., Decomposing monomial representations of solvable groups, J. Symbolic Comput., 34 (6) (2002), 561–596.

[PRB99] Püschel, M., Rötteler, M., and Beth, T., Fast quantum Fourier transforms for a class of non-abelian groups, in Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), Springer, Berlin, Lecture Notes in Comput. Sci., 1719 (1999), 148–159.

[P13] Pellegrini, M. A., 2-coverings for exceptional and sporadic simple groups, Arch. Math. (Basel), 101 (3) (2013), 201–206.

[P17] Pellegrini, M. A., Irreducible $p$-constant characters of finite reflection groups, J. Group Theory, 20 (5) (2017), 911–923.

[P15] Petényi, F., Comparing estimates on the number of zeros of irreducible characters in symmetric groups, Sém. Lothar. Combin., 72 (2014/15), Art. B72c, 14.

[P97] Pfeiffer, G., Character values of Iwahori-Hecke algebras of type $B$, in Finite reductive groups (Luminy, 1994), Birkhäuser Boston, Boston, MA, Progr. Math., 141 (1997), 333–360.

[P94] Pfeiffer, G., Character tables of Weyl groups in GAP, Bayreuth. Math. Schr. (47) (1994), 165–222.

[P97] Pfeiffer, G., The subgroups of $M_24$, or how to compute the table of marks of a finite group, Experiment. Math., 6 (3) (1997), 247–270.

[P94] Pfeiffer, G., Young characters on Coxeter basis elements of Iwahori-Hecke algebras and a Murnaghan-Nakayama formula, J. Algebra, 168 (2) (1994), 525–535.

[P09] Pfeiffer, G., A quiver presentation for Solomon's descent algebra, Adv. Math., 220 (5) (2009), 1428–1465.

[PV05] Phillips, J. D. and Vojtěchovský, P., Linear groupoids and the associated wreath products, J. Symbolic Comput., 40 (3) (2005), 1106–1125.

[P02] Picantin, M., Explicit presentations for the dual braid monoids, C. R. Math. Acad. Sci. Paris, 334 (10) (2002), 843–848.

[P16] Pierro, E., The Möbius function of the small Ree groups, Australas. J. Combin., 66 (2016), 142–176.

[P11] Pinto, D., The duality index of oriented regular hypermaps, European J. Combin., 32 (8) (2011), 1236–1243.

[P12] Pleger, M., Orbits of low codimension on irreducible representations of simple algebraic groups, Comm. Algebra, 40 (8) (2012), 3021–3035.

[PS96] Plesken, W. and Souvignier, B., Constructing rational representations of finite groups, Experiment. Math., 5 (1) (1996), 39–47.

[PV14] Ponomarenko, I. and Vasil'ev, A., On non-abelian Schur groups, J. Algebra Appl., 13 (8) (2014), 1450055, 22.

[P12] Ponomarenko, I. N., Bases of Schurian antisymmetric coherent configurations and isomorphism test for Schurian tournaments, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 402 (Kombinatorika i Teoriya Grafov. IV) (2012), 108–147, 219–220.

[P01] Praeger, C. E., Computers in algebra: new answers, new questions, J. Korean Math. Soc., 38 (4) (2001), 763–780
(Mathematics in the new millennium (Seoul, 2000)).

[P07] Praeger, C. E., The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair, Des. Codes Cryptogr., 44 (1-3) (2007), 115–132.

[PSY15] Praeger, C. E., Seress, Á., and Yalçınkaya, Ş., Generation of finite classical groups by pairs of elements with large fixed point spaces, J. Algebra, 421 (2015), 56–101.

[PS97] Praeger, C. E. and Soicher, L. H., Low rank representations and graphs for sporadic groups, Cambridge University Press, Cambridge, Australian Mathematical Society Lecture Series, 8 (1997), xii+141 pages.

[PZ08] Praeger, C. E. and Zhou, S., Classification of line-transitive point-imprimitive linear spaces with line size at most 12, Des. Codes Cryptogr., 47 (1-3) (2008), 99–111.

[P99] Previtali, A., Maps behaving like exponentials and maximal unipotent subgroups of groups of Lie type, Comm. Algebra, 27 (5) (1999), 2511–2519.

[P06] Previtali, A., Irreducible constituents of monomial representations, J. Symbolic Comput., 41 (12) (2006), 1345–1359.

[P16] Prins, A. L., The character table of an involution centralizer in the Dempwolff group $2^5 \cdot GL_5(2)$, Quaest. Math., 39 (4) (2016), 561–576.

[P15] Prins, A. L., On the Fischer-Clifford matrices of the non-split extension $2^6 \cdot G_2(2)$, Bull. Iranian Math. Soc., 41 (4) (2015), 857–871.

[P16] Prins, A. L., The Fischer-Clifford matrices and character table of the maximal subgroup $2^9\colon(L_3(4)\colon S_3)$ of $U_6(2)\colon S_3$, Bull. Iranian Math. Soc., 42 (5) (2016), 1179–1195.

[P07] Putrycz, B., Commutator subgroups of Hantzsche-Wendt groups, J. Group Theory, 10 (3) (2007), 401–409.

[PS10] Putrycz, B. and Szczepański, A., Existence of spin structures on flat four-manifolds, Adv. Geom., 10 (2) (2010), 323–332.

[QWW13] Quek, S. G., Wong, K. B., and Wong, P. C., On certain pairs of non-Engel elements in finite groups, J. Algebra Appl., 12 (5) (2013), 1250213, 9.

[QWW14] Quek, S. G., Wong, K. B., and Wong, P. C., On $n$-Engel pair satisfying certain conditions, J. Algebra Appl., 13 (4) (2014), 1350135, 8.

[R17] Radu, N., A lattice in a residually non-Desarguesian $\tilde A_2$-building, Bull. Lond. Math. Soc., 49 (2) (2017), 274–290.

[RV09] Raggi-Cárdenas, A. and Valero-Elizondo, L., Two nonisomorphic groups of order 96 with isomorphic tables of marks and noncorresponding centres and abelian subgroups, Comm. Algebra, 37 (1) (2009), 209–212.

[RV05] Raggi-Cárdenas, A. G. and Valero-Elizondo, L., Groups with isomorphic Burnside rings, Arch. Math. (Basel), 84 (3) (2005), 193–197.

[R07] Ragland, M. F., Generalizations of groups in which normality is transitive, Comm. Algebra, 35 (10) (2007), 3242–3252.

[R15] Rai, P. K., On commuting automorphisms of finite $p$-groups, Proc. Japan Acad. Ser. A Math. Sci., 91 (5) (2015), 57–60.

[RY15] Rai, P. K. and Yadav, M. K., On Sh-rigidity of groups of order $p^6$, J. Algebra, 428 (2015), 26–42.

[R08] Rainbolt, J. G., Dickson polynomials and the norm map between the Hecke algebras of Gelfand-Graev representations, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 263–270.

[RS03] Ram, A. and Shepler, A. V., Classification of graded Hecke algebras for complex reflection groups, Comment. Math. Helv., 78 (2) (2003), 308–334.

[RS+13] Rashid, S., Sarmin, N. H., Erfanian, A., Ali, N. M. M., and Zainal, R., On the nonabelian tensor square and capability of groups of order $8q$, Indag. Math. (N.S.), 24 (3) (2013), 581–588.

[R07] Rattaggi, D., Three amalgams with remarkable normal subgroup structures, J. Pure Appl. Algebra, 210 (2) (2007), 537–541.

[R07] Rattaggi, D., A finitely presented torsion-free simple group, J. Group Theory, 10 (3) (2007), 363–371.

[R05] Rattaggi, D., Anti-tori in square complex groups, Geom. Dedicata, 114 (2005), 189–207.

[R10] Röder, M., Geometric algorithms for resolutions for Bieberbach groups, in Computational group theory and the theory of groups, II, Amer. Math. Soc., Providence, RI, Contemp. Math., 511 (2010), 167–178.

[R02] Reading, N., Order dimension, strong Bruhat order and lattice properties for posets, Order, 19 (1) (2002), 73–100.

[R98] Rees, S., Automatic groups associated with word orders other than shortlex, Internat. J. Algebra Comput., 8 (5) (1998), 575–598.

[RS00] Rees, S. and Soicher, L. H., An algorithmic approach to fundamental groups and covers of combinatorial cell complexes, J. Symbolic Comput., 29 (1) (2000), 59–77.

[RSW14] Reiner, V., Saliola, F., and Welker, V., Spectra of symmetrized shuffling operators, Mem. Amer. Math. Soc., 228 (1072) (2014), vi+109.

[RZ01] Reinert, B. and Zeckzer, D., Coset enumeration using prefix Gröbner bases: an experimental approach, LMS J. Comput. Math., 4 (2001), 74–134.

[RV06] Revin, D. O. and Vdovin, E. P., Hall subgroups of finite groups, in Ischia group theory 2004, Amer. Math. Soc., Providence, RI, Contemp. Math., 402 (2006), 229–263.

[RV10] Revin, D. O. and Vdovin, E. P., On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324 (12) (2010), 3614–3652.

[R01] Riese, U., The quasisimple case of the $k(GV)$-conjecture, J. Algebra, 235 (1) (2001), 45–65.

[R04] Riese, U., Counting conjugacy classes of certain semidirect products, J. Group Theory, 7 (2) (2004), 143–165.

[R10] Roberts, J., An algorithm for low dimensional group homology, Homology Homotopy Appl., 12 (1) (2010), 27–37.

[R11] Robinson, G. R., On simple endotrivial modules, Bull. Lond. Math. Soc., 43 (4) (2011), 712–716.

[RR17] Robles-Pérez, A. M. and Rosales, J. C., Numerical semigroups in a problem about cost-effective transport, Forum Math., 29 (2) (2017), 329–345.

[R94] Rocco, N. R., A presentation for a crossed embedding of finite solvable groups, Comm. Algebra, 22 (6) (1994), 1975–1998.

[R94] Rocco, N. R., A crossed embedding of groups and the computation of certain invariants of finite solvable groups, Mat. Contemp., 7 (1994), 19–24
(XII School of Algebra, Part II (Portuguese) (Diamantina, 1992)).

[RR17] Rocco, N. R. and Rodrigues, E. C. P., The $q$-tensor square of finitely generated nilpotent groups, $q$ odd, J. Algebra Appl., 16 (11) (2017), 1750211, 16.

[RR12] Romero, A. and Rubio, J., Computing the homology of groups: the geometric way, J. Symbolic Comput., 47 (7) (2012), 752–770.

[R16] Romero, N., Computing Whitehead groups using genetic bases, J. Algebra, 450 (2016), 646–666.

[R05] Roney-Dougal, C. M., The primitive permutation groups of degree less than 2500, J. Algebra, 292 (1) (2005), 154–183.

[R04] Roney-Dougal, C. M., Conjugacy of subgroups of the general linear group, Experiment. Math., 13 (2) (2004), 151–163.

[RU03] Roney-Dougal, C. M. and Unger, W. R., The affine primitive permutation groups of degree less than 1000, J. Symbolic Comput., 35 (4) (2003), 421–439.

[RBT14] Rosales, J. C., Branco, M. B., and Torrão, D., On the enumeration of the set of saturated numerical semigroups of a given genus, Semigroup Forum, 88 (3) (2014), 621–630.

[RG14] Rosales, J. C. and García-Sánchez, P. A., Constructing almost symmetric numerical semigroups from irreducible numerical semigroups, Comm. Algebra, 42 (3) (2014), 1362–1367.

[R96] Rosenboom, J., On the computation of Kazhdan-Lusztig polynomials and representations of Hecke algebras, Arch. Math. (Basel), 66 (1) (1996), 35–50.

[R15] Rossmann, T., Computing topological zeta functions of groups, algebras, and modules, II, J. Algebra, 444 (2015), 567–605.

[RT10] Rowell, E. C. and Tuba, I., Finite linear quotients of $\scr B_3$ of low dimension, J. Knot Theory Ramifications, 19 (5) (2010), 587–600.

[RT11] Rowley, P. and Taylor, P., Involutions in Janko's simple group $J_4$, LMS J. Comput. Math., 14 (2011), 238–253.

[RT10] Rowley, P. and Taylor, P., Normalizers of 2-subgroups in black-box groups, LMS J. Comput. Math., 13 (2010), 307–319.

[RW16] Rowley, P. and Wright, B., Structure of the $Fi_24'$ maximal 2-local geometry point-line collinearity graph, LMS J. Comput. Math., 19 (1) (2016), 105–154.

[R04] Rowley, P. J., Plane-line collinearity graph of the $M_24$ minimal parabolic geometry, Ars Combin., 73 (2004), 257–262.

[R16] Russo, F. G., Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups, Quaest. Math., 39 (8) (2016), 1019–1036.

[R14] Russo, F. G., On a problem of P. Hall for Engel words II, Bull. Aust. Math. Soc., 90 (2) (2014), 237–246.

[R17] Ryabov, G., On Schur $p$-groups of odd order, J. Algebra Appl., 16 (3) (2017), 1750045, 29.

[RT98] Rylands, L. J. and Taylor, D. E., Matrix generators for the orthogonal groups, J. Symbolic Comput., 25 (3) (1998), 351–360.

[SA15] Sadeghieh, A. and Ahmadidelir, K., $n$-th roots in finite polyhedral and centro-polyhedral groups, Proc. Indian Acad. Sci. Math. Sci., 125 (4) (2015), 487–499.

[S17] Sadofschi Costa, I., Presentation complexes with the fixed point property, Geom. Topol., 21 (2) (2017), 1275–1283.

[SF12] Saeedi, F. and Farrokhi D. G. , M., Factorization numbers of some finite groups, Glasg. Math. J., 54 (2) (2012), 345–354.

[SFJ11] Saeedi, F., Farrokhi D. G. , M., and Jafari, S. H., Subgroup normality degrees of finite groups. I, Arch. Math. (Basel), 96 (3) (2011), 215–224.

[SKA17] Sakhdari, S. M., Khashyarmanesh, K., and Afkhami, M., Annihilator graphs with four vertices, Semigroup Forum, 94 (1) (2017), 139–166.

[SK+13] Salehi Amiri, S. S., Khalili Asboei, A. R., Iranmanesh, A., and Tehranian, A., Quasirecognition by the prime graph of $L_3(q)$ where $3<q<100$, Bull. Iranian Math. Soc., 39 (2) (2013), 289–305.

[S07] Salim, M. A. M., Torsion units in the integral group ring of the alternating group of degree 6, Comm. Algebra, 35 (12) (2007), 4198–4204.

[S11] Sambale, B., Cartan matrices and Brauer's $k(B)$-conjecture II, J. Algebra, 337 (2011), 345–362.

[S13] Sambale, B., Blocks with central product defect group $D_2^n\ast C_2^m$, Proc. Amer. Math. Soc., 141 (12) (2013), 4057–4069.

[S13] Sambale, B., Blocks with defect group $Q_2^n \times C_2^m$ and $SD_2^n \times C_2^m$, Algebr. Represent. Theory, 16 (6) (2013), 1717–1732.

[S13] Sambale, B., Further evidence for conjectures in block theory, Algebra Number Theory, 7 (9) (2013), 2241–2273.

[S14] Sambale, B., Exponent and $p$-rank of finite $p$-groups and applications, Arch. Math. (Basel), 103 (1) (2014), 11–20.

[S17] Sambale, B., A counterexample to a conjecture of Wada, J. Algebra, 489 (2017), 582–585.

[S17] Sambale, B., Cartan matrices and Brauer's $k(B)$-conjecture IV, J. Math. Soc. Japan, 69 (2) (2017), 735–754.

[S16] Sambale, B., Fusion systems on bicyclic 2-groups, Proc. Edinb. Math. Soc. (2), 59 (4) (2016), 989–1018.

[S14] Sambale, B., On the Brauer-Feit bound for abelian defect groups, Math. Z., 276 (3-4) (2014), 785–797.

[S17] Sambale, B., Isotypies for the quasisimple groups with exceptional Schur multiplier, J. Algebra Appl., 16 (4) (2017), 1750078, 16.

[S17] Sambale, B., On blocks with abelian defect groups of small rank, Results Math., 71 (1-2) (2017), 411–422.

[S17] Sambale, B., Regular orbits of coprime linear groups in large characteristic, Bull. Aust. Math. Soc., 96 (3) (2017), 438–444.

[S17] Sambale, B., Refinements of the orthogonality relations for blocks, Algebr. Represent. Theory, 20 (5) (2017), 1109–1131.

[S92] Sandling, R., Presentations for unit groups of modular group algebras of groups of order $16$, Math. Comp., 59 (200) (1992), 689–701.

[ST13] Sangroniz, J. and Tent, J., 2-groups with a fixed number of real conjugacy classes, J. Algebra, 392 (2013), 42–51.

[ST11] Sangroniz, J. and Tent, J., 2-groups with few rational conjugacy classes, J. Algebra, 338 (2011), 114–121.

[S03] Sasaki, H., Mod 7 cohomology algebra of Held simple group, Algebr. Represent. Theory, 6 (4) (2003), 369–392.

[SS16] Savchuk, D. M. and Sidki, S. N., Affine automorphisms of rooted trees, Geom. Dedicata, 183 (2016), 195–213.

[S16] Schauenburg, P., Computing higher Frobenius-Schur indicators in fusion categories constructed from inclusions of finite groups, Pacific J. Math., 280 (1) (2016), 177–201.

[S10] Schlage-Puchta, J., The subgroup growth spectrum of virtually free groups, Israel J. Math., 177 (2010), 229–251.

[SW06] Schlage-Puchta, J. and Wolfart, J., How many quasiplatonic surfaces?, Arch. Math. (Basel), 86 (2) (2006), 129–132.

[S03] Schneider, C., Groups of prime-power order with a small second derived quotient, J. Algebra, 266 (2) (2003), 539–551.

[S06] Schneider, C., Small derived quotients in finite $p$-groups, Publ. Math. Debrecen, 69 (3) (2006), 373–378.

[SV08] Schneider, C. and Van Maldeghem, H., Primitive flag-transitive generalized hexagons and octagons, J. Combin. Theory Ser. A, 115 (8) (2008), 1436–1455.

[S16] Schulte, E., The inductive blockwise Alperin weight condition for $G_2(q)$ and $^3D_4(q)$, J. Algebra, 466 (2016), 314–369.

[SS98] See, K. and Song, S. Y., Association schemes of small order, J. Statist. Plann. Inference, 73 (1-2) (1998), 225–271
(R. C. Bose Memorial Conference (Fort Collins, CO, 1995)).

[S03] Seress, Á., Permutation group algorithms, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, 152 (2003), x+264 pages.

[S98] Seress, Á., Nearly linear time algorithms for permutation groups: an interplay between theory and practice, Acta Appl. Math., 52 (1-3) (1998), 183–207
(Algebra and combinatorics: interactions and applications (Königstein, 1994)).

[S98] Seress, Á., On vertex-transitive, non-Cayley graphs of order $pqr$, Discrete Math., 182 (1-3) (1998), 279–292
(Graph theory (Lake Bled, 1995)).

[S97] Seress, Á., Primitive groups with no regular orbits on the set of subsets, Bull. London Math. Soc., 29 (6) (1997), 697–704.

[S96] Seress, Á., The minimal base size of primitive solvable permutation groups, J. London Math. Soc. (2), 53 (2) (1996), 243–255.

[SS12] Seress, Á. and Swartz, E., A family of near-polygonal graphs of valency 10, Ann. Comb., 16 (4) (2012), 891–903.

[SWZ11] Seress, Á., Wong, T., and Zhu, X., Distinguishing labeling of the actions of almost simple groups, Combinatorica, 31 (4) (2011), 489–506.

[SY08] Seress, Á. and Yang, K., On orbit equivalent, two-step imprimitive permutation groups, in Computational group theory and the theory of groups, Amer. Math. Soc., Providence, RI, Contemp. Math., 470 (2008), 271–286.

[SW18] Shareshian, J. and Woodroofe, R., Divisibility of binomial coefficients and generation of alternating groups, Pacific J. Math., 292 (1) (2018), 223–238.

[SKG18] Sharma, M., Kalra, H., and Gumber, D., Some finite $p$-groups with central automorphism group of non-minimal order, J. Algebra Appl., 17 (2) (2018), 1850026, 5.

[S12] Shen, R., On groups with given same-order types, Comm. Algebra, 40 (6) (2012), 2140–2150.

[SSS13] Shen, R., Shi, W., and Shi, J., POS-groups with some cyclic Sylow subgroups, Bull. Iranian Math. Soc., 39 (5) (2013), 941–957.

[SZS17] Shen, R., Zou, X., and Shi, W., A characterization of $A_5$ by same-order type, Monatsh. Math., 182 (1) (2017), 127–142.

[SW09] Shi, J. and Wang, L., Automorphism groups of the imprimitive complex reflection groups, J. Aust. Math. Soc., 86 (1) (2009), 123–138.

[S92] Short, M. W., The primitive soluble permutation groups of degree less than $256$, Springer-Verlag, Berlin, Lecture Notes in Mathematics, 1519 (1992), x+145 pages.

[S15] Simion, I. I., Double centralizers of unipotent elements in simple algebraic groups of type $E_7$ and $E_8$, J. Pure Appl. Algebra, 219 (4) (2015), 930–977.

[S13] Simion, I. I., Double centralizers of unipotent elements in simple algebraic groups of type $G_2$, $F_4$ and $E_6$, J. Algebra, 382 (2013), 335–367.

[S94] Sims, C. C., Computation with finitely presented groups, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, 48 (1994), xiii+604 pages.

[S00] Skersys, G., Computing permutation groups of error-correcting codes, Liet. Mat. Rink., 40 (Special Issue) (2000), 320–328.

[S07] Slattery, M. C., Generation of groups of square-free order, J. Symbolic Comput., 42 (6) (2007), 668–677.

[SZ12] Slattery, M. C. and Zenisek, A. L., Moufang loops of order 243, Comment. Math. Univ. Carolin., 53 (3) (2012), 423–428.

[S15] Smith, J. D. H., Sylow theory for quasigroups, J. Combin. Des., 23 (3) (2015), 115–133.

[SU96] Smith, S. D. and Umland, K. L., Stability of cohomology via double-coset products and suborbit diagrams, J. Algebra, 182 (3) (1996), 627–652.

[S17] Soicher, L. H., On classifying objects with specified groups of automorphisms, friendly subgroups, and Sylow tower groups, Port. Math., 74 (3) (2017), 233–242.

[S93] Soicher, L. H., Three new distance-regular graphs, European J. Combin., 14 (5) (1993), 501–505
(Algebraic combinatorics (Vladimir, 1991)).

[S93] Soicher, L. H., GRAPE: a system for computing with graphs and groups, in Groups and computation (New Brunswick, NJ, 1991), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11 (1993), 287–291.

[S14] Sonnino, A., Transitive $PSL(2,7)$-invariant 42-arcs in 3-dimensional projective spaces, Des. Codes Cryptogr., 72 (2) (2014), 455–463.

[SC+08] Sorge, V., Colton, S., McCasland, R., and Meier, A., Classification results in quasigroup and loop theory via a combination of automated reasoning tools, Comment. Math. Univ. Carolin., 49 (2) (2008), 319–339.

[S94] Souvignier, B., Irreducible finite integral matrix groups of degree $8$ and $10$, Math. Comp., 63 (207) (1994), 335–350
(With microfiche supplement).

[S06] Spiga, P., Permutation characters and fixed-point-free elements in permutation groups, J. Algebra, 299 (1) (2006), 1–7.

[S09] Spiga, P., CI-property of elementary abelian 3-groups, Discrete Math., 309 (10) (2009), 3393–3398.

[S09] Spiga, P., Enumerating groups acting regularly on a $d$-dimensional cube, Comm. Algebra, 37 (7) (2009), 2540–2545.

[S12] Spiga, P., Automorphism groups of tetravalent Cayley graphs on regular 5-groups, Ars Combin., 105 (2012), 33–43.

[S07] Spiga, P., Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not CI-groups, J. Algebraic Combin., 26 (3) (2007), 343–355.

[S15] Srinivasan, B., On CRDAHA and finite general linear and unitary groups, Pacific J. Math., 279 (1-2) (2015), 465–480.

[SV14] Stanovský, D. and Vojtěchovský, P., Abelian extensions and solvable loops, Results Math., 66 (3-4) (2014), 367–384.

[SV14] Stanovský, D. and Vojtěchovský, P., Commutator theory for loops, J. Algebra, 399 (2014), 290–322.

[S10] Staroletov, A. M., Groups isospectral to the alternating group of degree 10, Sibirsk. Mat. Zh., 51 (3) (2010), 638–648.

[S16] Stokes, K., Patterns of ideals of numerical semigroups, Semigroup Forum, 93 (1) (2016), 180–200.

[S10] Stones, D. S., The parity of the number of quasigroups, Discrete Math., 310 (21) (2010), 3033–3039.

[SWW00] Suleiman, I. A. I., Walsh, P. G., and Wilson, R. A., Conjugacy classes in sporadic simple groups, Comm. Algebra, 28 (7) (2000), 3209–3222.

[SW99] Suleiman, I. A. I. and Wilson, R. A., Construction of exceptional covers of generic groups, Math. Proc. Cambridge Philos. Soc., 125 (1) (1999), 31–38.

[SW94] Suleiman, I. A. I. and Wilson, R. A., The $2$-modular characters of Conway's group $\rm Co_2$, Math. Proc. Cambridge Philos. Soc., 116 (2) (1994), 275–283.

[SW97] Suleiman, I. A. I. and Wilson, R. A., Covering and automorphism groups of $\rm U_6(2)$, Quart. J. Math. Oxford Ser. (2), 48 (192) (1997), 511–517.

[SW97] Suleiman, I. A. I. and Wilson, R. A., The $2$-modular characters of Conway's third group $\rm Co_3$, J. Symbolic Comput., 24 (3-4) (1997), 493–506
(Computational algebra and number theory (London, 1993)).

[S07] Suter, R., Quantum affine Cartan matrices, Poincaré series of binary polyhedral groups, and reflection representations, Manuscripta Math., 122 (1) (2007), 1–21.

[T06] Taeri, B., On a permutability problem for groups, J. Appl. Math. Comput., 20 (1-2) (2006), 75–96.

[T09] Taeri, B., On finite groups with some conditions on subsets, Bull. Malays. Math. Sci. Soc. (2), 32 (1) (2009), 63–73.

[T00] Taherkhani, F., The Kazhdan property of the mapping class group of closed surfaces and the first cohomology group of its cofinite subgroups, Experiment. Math., 9 (2) (2000), 261–274.

[TV02] Tamburini, M. C. and Vdovin, E. P., Carter subgroups in finite groups, J. Algebra, 255 (1) (2002), 148–163.

[T14] Taylor, J., Finding characters satisfying a maximal condition for their unipotent support, J. Pure Appl. Algebra, 218 (3) (2014), 474–496.

[T99] Terras, A., Fourier analysis on finite groups and applications, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, 43 (1999), x+442 pages.

[T14] Thiel, U., A counter-example to Martino's conjecture about generic Calogero-Moser families, Algebr. Represent. Theory, 17 (5) (2014), 1323–1348.

[T15] Thiel, U., Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., 18 (1) (2015), 266–307.

[T95] Thomas, R. M., Group presentations where the relators are proper powers, in Groups '93 Galway/St. Andrews, Vol. 2, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 212 (1995), 549–560.

[TZ13] Tian, D. and Zhou, S., Flag-transitive point-primitive symmetric $(v,k,\lambda)$ designs with $\lambda$ at most 100, J. Combin. Des., 21 (4) (2013), 127–141.

[TZ15] Tian, D. and Zhou, S., Flag-transitive 2-$(v,k,\lambda)$ symmetric designs with sporadic socle, J. Combin. Des., 23 (4) (2015), 140–150.

[TZ16] Tian, D. L. and Zhou, S. L., Classification of SPBIB designs with $v=396$ and $G=M_12$, Acta Math. Sinica (Chin. Ser.), 59 (3) (2016), 377–384.

[T14] Tiep, P. H., Representation of finite groups: conjectures, reductions, and applications, Acta Math. Vietnam., 39 (1) (2014), 87–109.

[T17] Timmer, J., Indicators of bismash products from exact symmetric group factorizations, Comm. Algebra, 45 (10) (2017), 4444–4465.

[T03] Timofeenko, A. V., On generating triples of involutions of large sporadic groups, Diskret. Mat., 15 (2) (2003), 103–112.

[TE13] Tolue, B. and Erfanian, A., Relative non-commuting graph of a finite group, J. Algebra Appl., 12 (2) (2013), 1250157, 11.

[T12] Tong-Viet, H. P., Alternating and sporadic simple groups are determined by their character degrees, Algebr. Represent. Theory, 15 (2) (2012), 379–389.

[T12] Tong-Viet, H. P., Simple exceptional groups of Lie type are determined by their character degrees, Monatsh. Math., 166 (3-4) (2012), 559–577.

[T11] Tong-Viet, H. P., Symmetric groups are determined by their character degrees, J. Algebra, 334 (2011), 275–284.

[T13] Tong-Viet, H. P., Rank 3 permutation characters and maximal subgroups, Forum Math., 25 (1) (2013), 49–106.

[T13] Tong-Viet, H. P., Groups with some arithmetic conditions on real class sizes, Acta Math. Hungar., 140 (1-2) (2013), 105–116.

[T14] Tong-Viet, H. P., Finite groups whose irreducible Brauer characters have prime power degrees, Israel J. Math., 202 (1) (2014), 295–319.

[T14] Tong-Viet, H. P., Finite nonsolvable groups with many distinct character degrees, Pacific J. Math., 268 (2) (2014), 477–492.

[TW12] Tong-Viet, H. P. and Wakefield, T. P., On Huppert's conjecture for the Monster and Baby Monster, Monatsh. Math., 167 (3-4) (2012), 589–600.

[TW13] Tong-Viet, H. P. and Wakefield, T. P., On Huppert's conjecture for $^3D_4(q), q\geq3$, Algebr. Represent. Theory, 16 (2) (2013), 471–490.

[TZ15] Topalova, S. and Zhelezova, S., On point-transitive and transitive deficiency one parallelisms of $PG(3,4)$, Des. Codes Cryptogr., 75 (1) (2015), 9–19.

[T04] Totaro, B., Splitting fields for $E_8$-torsors, Duke Math. J., 121 (3) (2004), 425–455.

[T17] Trefethen, S., Non-abelian composition factors of $m$-rational groups, J. Algebra, 485 (2017), 288–309.

[T17] Tsiovkina, L. Y., Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$, Discrete Math., 340 (2) (2017), 63–71.

[T17] Tsunogai, H., Toward Noether's problem for the fields of cross-ratios, Tokyo J. Math., 39 (3) (2017), 901–922.

[TE14] Tuan, B. A. and Ellis, G., The homology of $SL_2(\Bbb Z[1/m])$ for small $m$, J. Algebra, 408 (2014), 102–108.

[T08] Turull, A., Strengthening the McKay conjecture to include local fields and local Schur indices, J. Algebra, 319 (12) (2008), 4853–4868.

[U06] Unger, W. R., Computing the character table of a finite group, J. Symbolic Comput., 41 (8) (2006), 847–862.

[U04] Uno, K., Conjectures on character degrees for the simple Thompson group, Osaka J. Math., 41 (1) (2004), 11–36.

[U11] Urban, R., On the factorization of the Haar measure on finite Coxeter groups, Probab. Math. Statist., 31 (1) (2011), 141–148.

[V11] Vakula, I. A., On the structure of finite groups isospectral to an alternating group, Proc. Steklov Inst. Math., 272 (suppl. 1) (2011), S271–S286.

[V01] Valero-Elizondo, L., Some simple projective Brauer quotients of simple modules for the symmetric groups in characteristic two, J. Algebra, 236 (2) (2001), 796–818.

[B07] van Bon, J., Finite primitive distance-transitive graphs, European J. Combin., 28 (2) (2007), 517–532.

[BIS99] van Bon, J., Ivanov, A. A., and Saxl, J., Affine distance-transitive graphs with sporadic stabilizer, European J. Combin., 20 (2) (1999), 163–177.

[VO11] Van Gelder, I. and Olteanu, G., Finite group algebras of nilpotent groups: a complete set of orthogonal primitive idempotents, Finite Fields Appl., 17 (2) (2011), 157–165.

[VPD10] Vasco, M. I. G., del Pozo, A. L. P., and Duarte, P. T., A note on the security of $\rm MST_3$, Des. Codes Cryptogr., 55 (2-3) (2010), 189–200.

[V05] Vasilʹev, A. V., On the recognition of all finite nonabelian simple groups with orders having prime divisors at most 13, Sibirsk. Mat. Zh., 46 (2) (2005), 315–324.

[VV05] Vasilʹev, A. V. and Vdovin, E. P., An adjacency criterion in the prime graph of a finite simple group, Algebra Logika, 44 (6) (2005), 682–725, 764.

[VV11] Vasilʹev, A. V. and Vdovin, E. P., Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logika, 50 (4) (2011), 425–470, 554, 557.

[V07] Vaughan-Lee, M., On 4-Engel groups, LMS J. Comput. Math., 10 (2007), 341–353.

[VMT97] Vavilov, N. A., Mysovskikh, V. I., and Teterin, Y. G., Computational group theory in St. Petersburg, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 236 (Vopr. Teor. Predst. Algebr i Grupp. 5) (1997), 42–49, 215–216.

[VLS09] Vavilov, N., Luzgarev, A., and Stepanov, A., Calculations in exceptional groups over rings, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 373 (Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XVII) (2009), 48–72, 346.

[V07] Vdovin, E. P., Regular orbits of solvable linear $p'$-groups, Sib. Èlektron. Mat. Izv., 4 (2007), 345–360.

[VZ09] Vdovin, E. P. and Zenkov, V. I., On the intersections of solvable Hall subgroups in finite groups, Proc. Steklov Inst. Math., 267 (suppl. 1) (2009), S234–S243.

[VA+02] Vera-López, A., Arregi, J. M., García-Sánchez, M. A., Vera-López, F. J., and Esteban-Romero, R., The exact bounds for the degree of commutativity of a $p$-group of maximal class. I, J. Algebra, 256 (2) (2002), 375–401.

[V09] Verret, G., Shifts in Cayley graphs, Discrete Math., 309 (12) (2009), 3748–3756.

[V04] Vessenes, R., Generalized Foulkes' conjecture and tableaux construction, J. Algebra, 277 (2) (2004), 579–614.

[V99] Visscher, M. P., On the nilpotency class and solvability length of nonabelian tensor products of groups, Arch. Math. (Basel), 73 (3) (1999), 161–171.

[V01] Vojtěchovský, P., Generators of nonassociative simple Moufang loops over finite prime fields, J. Algebra, 241 (1) (2001), 186–192.

[V06] Vojtěchovský, P., Toward the classification of Moufang loops of order 64, European J. Combin., 27 (3) (2006), 444–460.

[V04] Vojtěchovský, P., A class of Bol loops with a subgroup of index two, Comment. Math. Univ. Carolin., 45 (2) (2004), 371–381.

[VW12] Vojtěchovský, P. and Wanless, I. M., Closest multiplication tables of groups, J. Algebra, 353 (2012), 261–285.

[VMT01] Vsemirnov, M., Mysovskikh, V., and Tamburini, M. C., Triangle groups as subgroups of unitary groups, J. Algebra, 245 (2) (2001), 562–583.

[W09] Waki, K., Decomposition numbers of non-principal blocks of $J_4$ for characteristic 3, J. Algebra, 321 (8) (2009), 2171–2186.

[W03] Waldmüller, R., A flat manifold with no symmetries, Experiment. Math., 12 (1) (2003), 71–77.

[WW+15] Wang, C., Wang, S., Zhang, Y., and Zimmermann, B., Embedding surfaces into $S^3$ with maximum symmetry, Groups Geom. Dyn., 9 (4) (2015), 1001–1045.

[WTM15] Wang, H., Tan, Y., and Moss, T., On $B(n,k)$ 2-groups, Comm. Algebra, 43 (11) (2015), 4655–4659.

[W13] Wang, J., Primitive permutation groups with a solvable 2-transitive subconstituent, J. Algebra, 386 (2013), 190–208.

[WFD14] Wang, J., Fan, J., and Du, N., Super-$\pi$-Brauer characters and super-$\pi$-regular classes, Comm. Algebra, 42 (9) (2014), 4102–4109.

[WZ17] Wang, Y. and Zhou, S., Symmetric designs admitting flag-transitive and point-primitive almost simple automorphism groups of Lie type, J. Algebra Appl., 16 (10) (2017), 1750192, 13.

[W09] Weber, C., Low-degree cohomology of integral Specht modules, Experiment. Math., 18 (1) (2009), 85–95.

[W96] Weidner, M., Independence and maximal subgroups, Illinois J. Math., 40 (1) (1996), 47–76.

[W97] Weller, M., Construction of classes of subgroups of small index in $p$-groups, Arch. Math. (Basel), 68 (2) (1997), 89–99.

[WMP06] Weller, M., Michler, G. O., and Previtali, A., Thompson's sporadic group uniquely determined by the centralizer of a 2-central involution, J. Algebra, 298 (2) (2006), 371–459.

[W09] White, D. L., Degree graphs of simple groups, Rocky Mountain J. Math., 39 (5) (2009), 1713–1739.

[W00] White, D. L., Decomposition numbers of unipotent blocks of $\rm Sp_6(2^a)$ in odd characteristics, J. Algebra, 227 (1) (2000), 172–194.

[W07] Wilde, T., The real part of the character table of a finite group, Comm. Algebra, 35 (12) (2007), 4042–4056.

[W08] Wildon, M., Labelling the character tables of symmetric and alternating groups, Q. J. Math., 59 (1) (2008), 123–135.

[W12] Williams, G., Largeness and SQ-universality of cyclically presented groups, Internat. J. Algebra Comput., 22 (4) (2012), 1250035, 19.

[W98] Wilson, R. A., A representation for the Lyons group in $\rm GL_2480(4)$, and a new uniqueness proof, Arch. Math. (Basel), 70 (1) (1998), 11–15.

[W96] Wilson, R. A., Standard generators for sporadic simple groups, J. Algebra, 184 (2) (1996), 505–515.

[W99] Wilson, R. A., The maximal subgroups of the Baby Monster. I, J. Algebra, 211 (1) (1999), 1–14.

[W99] Wilson, R. A., Construction of finite matrix groups, in Computational methods for representations of groups and algebras (Essen, 1997), Birkhäuser, Basel, Progr. Math., 173 (1999), 61–83.

[W17] Witzel, S., On panel-regular $\tildeA_2$ lattices, Geom. Dedicata, 191 (2017), 85–135.

[W07] Woodroofe, R., Shelling the coset poset, J. Combin. Theory Ser. A, 114 (4) (2007), 733–746.

[W97] Wreth, S., A certain non-singular system of length three equations over a group, Proc. Edinburgh Math. Soc. (2), 40 (3) (1997), 515–539.

[X13] Xu, M., Thompson's conjecture for alternating group of degree 22, Front. Math. China, 8 (5) (2013), 1227–1236.

[Y13] Yadav, M. K., On finite $p$-groups whose central automorphisms are all class preserving, Comm. Algebra, 41 (12) (2013), 4576–4592.

[Y07] Yalçınkaya, Ş., Black box groups, Turkish J. Math., 31 (suppl.) (2007), 171–210.

[Z09] Zarrin, M., On element-centralizers in finite groups, Arch. Math. (Basel), 93 (6) (2009), 497–503.

[Z12] Zarrin, M., A generalization of Schmidt's theorem on groups with all subgroups nilpotent, Arch. Math. (Basel), 99 (3) (2012), 201–206.

[Z12] Zarrin, M., Ensuring a group is weakly nilpotent, Comm. Algebra, 40 (12) (2012), 4739–4752.

[Z12] Zarrin, M., On groups with a finite number of normalisers, Bull. Aust. Math. Soc., 86 (3) (2012), 416–423.

[Z13] Zarrin, M., Groups with few solvable subgroups, J. Algebra Appl., 12 (6) (2013), 1350011, 4.

[Z14] Zarrin, M., On groups with finitely many derived subgroups, J. Algebra Appl., 13 (7) (2014), 1450045, 5.

[Z06] Zavarnitsin, A. V., On the recognition of finite groups by the prime graph, Algebra Logika, 45 (4) (2006), 390–408, 502.

[Z09] Zavarnitsine, A. V., Finite simple groups with narrow prime spectrum, Sib. Èlektron. Mat. Izv., 6 (2009), 1–12.

[Z10] Zavarnitsyn, A. V., A solvable group isospectral to the group $\rm S_4(3)$, Sibirsk. Mat. Zh., 51 (1) (2010), 26–31.

[ZJ01] Zeiner, P. and Janssen, T., Notes on the normalizer of a finite subgroup of $\rm GL(n,d,\Bbb Z)$ in $\rm GL(n,d,\Bbb Z)$, Acta Cryst. Sect. A, 57 (3) (2001), 256–263.

[ZZ16] Zhan, X. and Zhou, S., Flag-transitive non-symmetric 2-designs with $(r,\lambda)=1$ and sporadic socle, Des. Codes Cryptogr., 81 (3) (2016), 481–487.

[ZZ17] Zhan, X. and Zhou, S., A classification of flag-transitive $2$-designs with $\lambda\geq(r,\lambda)^2$ and sporadic socle, Discrete Math., 340 (4) (2017), 630–636.

[ZF15] Zhao, P. and Fernandes, V. H., The ranks of ideals in various transformation monoids, Comm. Algebra, 43 (2) (2015), 674–692.

[ZD10] Zhou, S. and Dong, H., Exceptional groups of Lie type and flag-transitive triplanes, Sci. China Math., 53 (2) (2010), 447–456.

[ZDF09] Zhou, S., Dong, H., and Fang, W., Finite classical groups and flag-transitive triplanes, Discrete Math., 309 (16) (2009), 5183–5195.

[ZW15] Zhou, S. and Wang, Y., Flag-transitive non-symmetric 2-designs with $(r,\lambda)=1$ and alternating socle, Electron. J. Combin., 22 (2) (2015), Paper 2.6, 15.

[ZZ18] Zhou, S. and Zhan, X., Flag-transitive automorphism groups of 2-designs with $\lambda\ge(r,\lambda)^2$ and an application to symmetric designs, Ars Math. Contemp., 14 (1) (2018), 187–195.

[ZGZ15] Zhu, Y., Guan, H., and Zhou, S., Flag-transitive $2$-$(v,k,\lambda)$ symmetric designs with $(k,\lambda)=1$ and alternating socle, Front. Math. China, 10 (6) (2015), 1483–1496.

[ZTZ16] Zhu, Y., Tian, D., and Zhou, S., Flag-transitive point-primitive $(v,k,\lambda)$-symmetric designs with $\lambda$ at most 100 and alternating socle, Math. Slovaca, 66 (5) (2016), 1037–1046.

[Z03] Zhurtov, A. K., On a group acting locally freely on an abelian group, Sibirsk. Mat. Zh., 44 (2) (2003), 343–346.

[Z01] Zhurtov, A. K., Frobenius groups generated by two elements of order $3$, Sibirsk. Mat. Zh., 42 (3) (2001), 533–537, i.

[ZR08] Zimba, K. and Raboshakga, M., The conjugacy classes of a subgroup $S^m_n:C_m$ of $S_mn$, prime $m$, Internat. J. Algebra Comput., 18 (4) (2008), 705–717.

[Z99] Zimmerman, J., The symmetric genus of $2$-groups, Glasg. Math. J., 41 (1) (1999), 115–124.

[Z13] Zvezdina, M. A., On nonabelian simple groups with the same prime graph as an alternating group, Sibirsk. Mat. Zh., 54 (1) (2013), 65–76.