GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
18 publications using GAP in the category "Topological groups, Lie groups"[B01] Baker, M. D., Link complements and the Bianchi modular groups, Trans. Amer. Math. Soc., 353 (8) (2001), 3229–3246. [BM99] Barbasch, D. and Moy, A., Classification of one $\rm K$type representations, Trans. Amer. Math. Soc., 351 (10) (1999), 4245–4261. [CN10] Campbell, P. S. and Nevins, M., Branching rules for ramified principal series representations of GL(3) over a $p$adic field, Canad. J. Math., 62 (1) (2010), 34–51. [CLY04] Chua, K. S., Lang, M. L., and Yang, Y., On Rademacher's conjecture: congruence subgroups of genus zero of the modular group, J. Algebra, 277 (1) (2004), 408–428. [C05] Cochet, C., Kostka numbers and LittlewoodRichardson coefficients, in Integer points in polyhedra—geometry, number theory, algebra, optimization, Amer. Math. Soc., Providence, RI, Contemp. Math., 374 (2005), 79–89. [CGL93] Cohen, A. M., Griess Jr. , R. L., and Lisser, B., The group $L(2,61)$ embeds in the Lie group of type $E_8$, Comm. Algebra, 21 (6) (1993), 1889–1907. [CZ13] Coquereaux, R. and Zuber, J., Drinfeld doubles for finite subgroups of $\rm SU(2)$ and $\rm SU(3)$ Lie groups, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 039, 36. [E13] Essert, J., A geometric construction of panelregular lattices for buildings of types $\tilde A_2$ and $\tilde C_2$, Algebr. Geom. Topol., 13 (3) (2013), 1531–1578. [GAE07] Gross, D., Audenaert, K., and Eisert, J., Evenly distributed unitaries: on the structure of unitary designs, J. Math. Phys., 48 (5) (2007), 052104, 22. [LP02] Lansky, J. and Pollack, D., Hecke algebras and automorphic forms, Compositio Math., 130 (1) (2002), 21–48. [LT18] Long, D. D. and Thistlethwaite, M. B., Zariski dense surface subgroups in $\rm SL(4,\Bbb Z)$, Exp. Math., 27 (1) (2018), 82–92. [LP01] Lubotzky, A. and Pak, I., The product replacement algorithm and Kazhdan's property (T), J. Amer. Math. Soc., 14 (2) (2001), 347–363. [M06] Moreau, A., Indice du normalisateur du centralisateur d'un élément nilpotent dans une algèbre de Lie semisimple, Bull. Soc. Math. France, 134 (1) (2006), 83–117. [R17] Radu, N., A lattice in a residually nonDesarguesian $\tilde A_2$building, Bull. Lond. Math. Soc., 49 (2) (2017), 274–290.
[R00] Reeder, M.,
Formal degrees and $L$packets of unipotent discrete series representations of
exceptional $p$adic groups,
J. Reine Angew. Math.,
520
(2000),
37–93 [SS16] Savchuk, D. M. and Sidki, S. N., Affine automorphisms of rooted trees, Geom. Dedicata, 183 (2016), 195–213. [S02] Stroppel, M., Locally compact groups with few orbits under automorphisms, in Proceedings of the 16th Summer Conference on General Topology and its Applications (New York), Topology Proc., 26 (2001/02), 819–842. [PR14] van Pruijssen, M. and Román, P., Matrix valued classical pairs related to compact Gelfand pairs of rank one, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), Paper 113, 28. 
The GAP Group Last updated: Thu Jun 7 12:15:03 2018 