GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

17 publications using GAP in the category "Dynamical systems and ergodic theory"

[AGL14] Akiyama, S., Gähler, F., and Lee, J., Determining pure discrete spectrum for some self-affine tilings, Discrete Math. Theor. Comput. Sci., 16 (3) (2014), 305--316.

[AC13] Almeida, J. and Costa, A., Presentations of Schützenberger groups of minimal subshifts, Israel J. Math., 196 (1) (2013), 1--31.

[AB+09] Antoneli, F., Baptistelli, P. H., Dias, A. P. S., and Manoel, M., Invariant theory and reversible-equivariant vector fields, J. Pure Appl. Algebra, 213 (5) (2009), 649--663.

[ADM08] Antoneli, F., Dias, A. P. S., and Matthews, P. C., Invariants, equivariants and characters in symmetric bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A, 138 (3) (2008), 477--512.

[BM12] Baptistelli, P. H. and Manoel, M., The $\sigma$-isotypic decomposition and the $\sigma$-index of reversible-equivariant systems, Topology Appl., 159 (2) (2012), 389--396.

[BB+15] Bartholdi, L., Buff, X., Graf von Bothmer, H., and Kröker, J., Algorithmic construction of Hurwitz maps, Exp. Math., 24 (1) (2015), 76--92.

[B10] Butler, L. T., Positive-entropy integrable systems and the Toda lattice, II, Math. Proc. Cambridge Philos. Soc., 149 (3) (2010), 491--538.

[C15] Chillingworth, D. R. J., Critical points and symmetries of a free energy function for biaxial nematic liquid crystals, Nonlinearity, 28 (5) (2015), 1483--1537.

[CFF11] Chossat, P., Faye, G., and Faugeras, O., Bifurcation of hyperbolic planforms, J. Nonlinear Sci., 21 (4) (2011), 465--498.

[CS16] Costa, A. and Steinberg, B., A categorical invariant of flow equivalence of shifts, Ergodic Theory Dynam. Systems, 36 (2) (2016), 470--513.

[DLZ08] Dubrovin, B., Liu, S., and Zhang, Y., Frobenius manifolds and central invariants for the Drinfeld-Sokolov biHamiltonian structures, Adv. Math., 219 (3) (2008), 780--837.

[EW10] Effenberger, F. and Weiskopf, D., Finding and classifying critical points of 2D vector fields: a cell-oriented approach using group theory, Comput. Vis. Sci., 13 (8) (2010), 377--396.

[FT04] Ferrario, D. L. and Terracini, S., On the existence of collisionless equivariant minimizers for the classical $n$-body problem, Invent. Math., 155 (2) (2004), 305--362.

[K07] Kohl, S., Wildness of iteration of certain residue-class-wise affine mappings, Adv. in Appl. Math., 39 (3) (2007), 322--328.

[M04] Matthews, P. C., Automating symmetry-breaking calculations, LMS J. Comput. Math., 7 (2004), 101--119 (electronic).

[NSS13] Neuberger, J. M., Sieben, N., and Swift, J. W., Newton's method and symmetry for semilinear elliptic PDE on the cube, SIAM J. Appl. Dyn. Syst., 12 (3) (2013), 1237--1279.

[S05] Sottocornola, N., Simple homoclinic cycles in low-dimensional spaces, J. Differential Equations, 210 (1) (2005), 135--154.