GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
24 publications using GAP in the category "Dynamical systems and ergodic theory"[AGL14] Akiyama, S., Gähler, F., and Lee, J., Determining pure discrete spectrum for some selfaffine tilings, Discrete Math. Theor. Comput. Sci., 16 (3) (2014), 305–316. [AC13] Almeida, J. and Costa, A., Presentations of Schützenberger groups of minimal subshifts, Israel J. Math., 196 (1) (2013), 1–31. [AB+09] Antoneli, F., Baptistelli, P. H., Dias, A. P. S., and Manoel, M., Invariant theory and reversibleequivariant vector fields, J. Pure Appl. Algebra, 213 (5) (2009), 649–663. [ADM08] Antoneli, F., Dias, A. P. S., and Matthews, P. C., Invariants, equivariants and characters in symmetric bifurcation theory, Proc. Roy. Soc. Edinburgh Sect. A, 138 (3) (2008), 477–512. [BM12] Baptistelli, P. H. and Manoel, M., The $\sigma$isotypic decomposition and the $\sigma$index of reversibleequivariant systems, Topology Appl., 159 (2) (2012), 389–396. [BB+15] Bartholdi, L., Buff, X., Graf von Bothmer, H., and Kröker, J., Algorithmic construction of Hurwitz maps, Exp. Math., 24 (1) (2015), 76–92. [B10] Butler, L. T., Positiveentropy integrable systems and the Toda lattice, II, Math. Proc. Cambridge Philos. Soc., 149 (3) (2010), 491–538. [C15] Chillingworth, D. R. J., Critical points and symmetries of a free energy function for biaxial nematic liquid crystals, Nonlinearity, 28 (5) (2015), 1483–1537. [CFF11] Chossat, P., Faye, G., and Faugeras, O., Bifurcation of hyperbolic planforms, J. Nonlinear Sci., 21 (4) (2011), 465–498. [CS16] Costa, A. and Steinberg, B., A categorical invariant of flow equivalence of shifts, Ergodic Theory Dynam. Systems, 36 (2) (2016), 470–513. [DK17] Dellnitz, M. and Klus, S., Sensing and control in symmetric networks, Dyn. Syst., 32 (1) (2017), 61–79. [DLZ08] Dubrovin, B., Liu, S., and Zhang, Y., Frobenius manifolds and central invariants for the DrinfeldSokolov biHamiltonian structures, Adv. Math., 219 (3) (2008), 780–837. [EW10] Effenberger, F. and Weiskopf, D., Finding and classifying critical points of 2D vector fields: a celloriented approach using group theory, Comput. Vis. Sci., 13 (8) (2010), 377–396. [FT04] Ferrario, D. L. and Terracini, S., On the existence of collisionless equivariant minimizers for the classical $n$body problem, Invent. Math., 155 (2) (2004), 305–362. [G11] Gonçalves, D., On the $K$theory of the stable $C^*$algebras from substitution tilings, J. Funct. Anal., 260 (4) (2011), 998–1019. [HP12] Ha\"issinsky, P. and Pilgrim, K. M., An algebraic characterization of expanding Thurston maps, J. Mod. Dyn., 6 (4) (2012), 451–476. [K07] Kohl, S., Wildness of iteration of certain residueclasswise affine mappings, Adv. in Appl. Math., 39 (3) (2007), 322–328. [LS17] Lauterbach, R. and Schwenker, S. N., Equivariant bifurcations in fourdimensional fixed point spaces, Dyn. Syst., 32 (1) (2017), 117–147. [M04] Matthews, P. C., Automating symmetrybreaking calculations, LMS J. Comput. Math., 7 (2004), 101–119. [N16] Nekrashevych, V., Mating, paper folding, and an endomorphism of $\BbbPC^2$, Conform. Geom. Dyn., 20 (2016), 303–358. [NSS13] Neuberger, J. M., Sieben, N., and Swift, J. W., Newton's method and symmetry for semilinear elliptic PDE on the cube, SIAM J. Appl. Dyn. Syst., 12 (3) (2013), 1237–1279. [S05] Sottocornola, N., Simple homoclinic cycles in lowdimensional spaces, J. Differential Equations, 210 (1) (2005), 135–154. [U12] Ugolini, S., Graphs associated with the map $x\mapsto x+x^1$ in finite fields of characteristic two, in Theory and applications of finite fields, Amer. Math. Soc., Providence, RI, Contemp. Math., 579 (2012), 187–204. [U18] Ugolini, S., Functional graphs of rational maps induced by endomorphisms of ordinary elliptic curves over finite fields, Period. Math. Hungar., 77 (2) (2018), 237–260. 
The GAP Group Last updated: Wed Mar 27 16:29:20 2019 