GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
12 publications using GAP in the category "Statistics"[BC+17] Bailey, R. A., Cameron, P. J., Filipiak, K., Kunert, J., and Markiewicz, A., On optimality and construction of circular repeatedmeasurements designs, Statist. Sinica, 27 (1) (2017), 1–22. [BDW09] Buczyńska, W., Donten, M., and Wiśniewski, J. A., Isotropic models of evolution with symmetries, in Interactions of classical and numerical algebraic geometry, Amer. Math. Soc., Providence, RI, Contemp. Math., 496 (2009), 111–131. [C09] Cameron, P. J., Root systems and optimal block designs, Michigan Math. J., 58 (1) (2009), 181–194. [GLM03] Graczyk, P., Letac, G., and Massam, H., The complex Wishart distribution and the symmetric group, Ann. Statist., 31 (1) (2003), 287–309. [HM98] Hanaki, A. and Miyamoto, I., Classification of association schemes with $16$ and $17$ vertices, Kyushu J. Math., 52 (2) (1998), 383–395. [HRS14] Hauenstein, J., Rodriguez, J. I., and Sturmfels, B., Maximum likelihood for matrices with rank constraints, J. Algebr. Stat., 5 (1) (2014), 18–38. [K08] Koloydenko, A., Symmetric measures via moments, Bernoulli, 14 (2) (2008), 362–390. [M15] Michałek, M., Toric varieties in phylogenetics, Dissertationes Math. (Rozprawy Mat.), 511 (2015), 86. [M07] Morgan, J. P., Optimal incomplete block designs, J. Amer. Statist. Assoc., 102 (478) (2007), 655–663. [RSW14] Reiner, V., Saliola, F., and Welker, V., Spectra of symmetrized shuffling operators, Mem. Amer. Math. Soc., 228 (1072) (2014), vi+109. [S13] Soicher, L. H., Optimal and efficient semiLatin squares, J. Statist. Plann. Inference, 143 (3) (2013), 573–582. [WM17] Whidden, C. and Matsen IV, F. A., RicciOllivier curvature of the rooted phylogenetic subtreepruneregraft graph, Theoret. Comput. Sci., 699 (2017), 1–20. 
The GAP Group Last updated: Thu Jun 7 12:15:03 2018 