GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
18 publications using GAP in the category "Numerical analysis"[BB+15] Bartholdi, L., Buff, X., Graf von Bothmer, H., and Kröker, J., Algorithmic construction of Hurwitz maps, Exp. Math., 24 (1) (2015), 76–92. [BD+09] Boyd, S., Diaconis, P., Parrilo, P., and Xiao, L., Fastest mixing Markov chain on graphs with symmetries, SIAM J. Optim., 20 (2) (2009), 792–819. [CW17] Chan, J. and Warburton, T., On the penalty stabilization mechanism for upwind discontinuous Galerkin formulations of first order hyperbolic systems, Comput. Math. Appl., 74 (12) (2017), 3099–3110. [KDX11] de Klerk, E., Dobre, C., and Pasechnik, D. V., Numerical block diagonalization of matrix $\ast$algebras with application to semidefinite programming, Math. Program., 129 (1, Ser. B) (2011), 91–111.
[DSV01] Dumas, J., Saunders, B. D., and Villard, G.,
On efficient sparse integer matrix Smith normal form computations,
J. Symbolic Comput.,
32 (12)
(2001),
71–99 [EW10] Effenberger, F. and Weiskopf, D., Finding and classifying critical points of 2D vector fields: a celloriented approach using group theory, Comput. Vis. Sci., 13 (8) (2010), 377–396. [EP01] Egner, S. and Püschel, M., Automatic generation of fast discrete signal transforms, IEEE Trans. Signal Process., 49 (9) (2001), 1992–2002. [EP04] Egner, S. and Püschel, M., Symmetrybased matrix factorization, J. Symbolic Comput., 37 (2) (2004), 157–186. [GGZ96] Grabowski, J., Grell, J., and Zlatina, L., Space models of molecules based on interatomic distances and point symmetry group, Match (34) (1996), 123–155. [LS09] Leykin, A. and Sottile, F., Galois groups of Schubert problems via homotopy computation, Math. Comp., 78 (267) (2009), 1749–1765. [MO99] Makai, M. and Orechwa, Y., Symmetries of boundary value problems in mathematical physics, J. Math. Phys., 40 (10) (1999), 5247–5263. [NSS13] Neuberger, J. M., Sieben, N., and Swift, J. W., Newton's method and symmetry for semilinear elliptic PDE on the cube, SIAM J. Appl. Dyn. Syst., 12 (3) (2013), 1237–1279. [NSS06] Neuberger, J. M., Sieben, N., and Swift, J. W., Symmetry and automated branch following for a semilinear elliptic PDE on a fractal region, SIAM J. Appl. Dyn. Syst., 5 (3) (2006), 476–507. [NP08] Neunhöffer, M. and Praeger, C. E., Computing minimal polynomials of matrices, LMS J. Comput. Math., 11 (2008), 252–279. [OM01] Owren, B. and Marthinsen, A., Integration methods based on canonical coordinates of the second kind, Numer. Math., 87 (4) (2001), 763–790. [PM03] Püschel, M. and Moura, J. M. F., The algebraic approach to the discrete cosine and sine transforms and their fast algorithms, SIAM J. Comput., 32 (5) (2003), 1280–1316. [PRB99] Püschel, M., Rötteler, M., and Beth, T., Fast quantum Fourier transforms for a class of nonabelian groups, in Applied algebra, algebraic algorithms and errorcorrecting codes (Honolulu, HI, 1999), Springer, Berlin, Lecture Notes in Comput. Sci., 1719 (1999), 148–159. [PS+13] Pellikka, M., Suuriniemi, S., Kettunen, L., and Geuzaine, C., Homology and cohomology computation in finite element modeling, SIAM J. Sci. Comput., 35 (5) (2013), B1195–B1214. 
The GAP Group Last updated: Thu Jun 7 12:15:03 2018 