GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
27 publications using GAP in the category "Quantum theory"[A07] Asaeda, M., Galois groups and an obstruction to principal graphs of subfactors, Internat. J. Math., 18 (2) (2007), 191–202. [B03] Bantay, P., Permutation orbifolds and their applications, in Vertex operator algebras in mathematics and physics (Toronto, ON, 2000), Amer. Math. Soc., Providence, RI, Fields Inst. Commun., 39 (2003), 13–23. [CDH14] Cheng, M. C. N., Duncan, J. F. R., and Harvey, J. A., Umbral moonshine, Commun. Number Theory Phys., 8 (2) (2014), 101–242. [CZ13] Coquereaux, R. and Zuber, J., Drinfeld doubles for finite subgroups of $\rm SU(2)$ and $\rm SU(3)$ Lie groups, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 039, 36. [G01] de Graaf, W. A., Computing with quantized enveloping algebras: PBWtype bases, highestweight modules and $R$matrices, J. Symbolic Comput., 32 (5) (2001), 475–490. [DJR11] Douglas, A., Joseph, W., and Repka, J., A classification of the embeddings of the Diamond Lie algebra into $\germsl(3,\Bbb C)$ and $\germsp(4,\Bbb C)$ and restrictions of irreducible modules, J. Math. Phys., 52 (10) (2011), 103507, 10. [DR14] Douglas, A. and Repka, J., The GraviGUT algebra is not a subalgebra of $E_8$, but $E_8$ does contain an extended GraviCUT algebra, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), Paper 072, 10. [FH+01] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, nonabelian orbifolds and the Schur multiplier, J. High Energy Phys. (1) (2001), Paper 33, 25. [FH+04] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, nonabelian orbifolds and the Schur multiplier, in Horizons in world physics. Vol. 245, Nova Sci. Publ., New York, Horiz. World Phys., 245 (2004), 27–44. [FH+01] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, covering groups and quiver diagrams, J. High Energy Phys. (4) (2001), Paper 37, 27. [G16] Gannon, T., Much ado about Mathieu, Adv. Math., 301 (2016), 322–358. [GL10] Grimus, W. and Ludl, P. O., Principal series of finite subgroups of $\rm SU(3)$, J. Phys. A, 43 (44) (2010), 445209, 35. [GAE07] Gross, D., Audenaert, K., and Eisert, J., Evenly distributed unitaries: on the structure of unitary designs, J. Math. Phys., 48 (5) (2007), 052104, 22. [HH01] Hanany, A. and He, Y., A monograph on the classification of the discrete subgroups of $\rm SU(4)$, J. High Energy Phys. (2) (2001), Paper 27, 12. [H03] He, Y., $G_2$ quivers, J. High Energy Phys. (2) (2003), 023, 14. [HRW08] Hong, S., Rowell, E., and Wang, Z., On exotic modular tensor categories, Commun. Contemp. Math., 10 (suppl. 1) (2008), 1049–1074. [H13] Huffman, W. C., On the theory of $\Bbb F_q$linear $\Bbb F_q^t$codes, Adv. Math. Commun., 7 (3) (2013), 349–378. [KR03] Klappenecker, A. and Rötteler, M., Unitary error bases: constructions, equivalence, and applications, in Applied algebra, algebraic algorithms and errorcorrecting codes (Toulouse, 2003), Springer, Berlin, Lecture Notes in Comput. Sci., 2643 (2003), 139–149. [KR02] Klappenecker, A. and Rötteler, M., Beyond stabilizer codes. I. Nice error bases, IEEE Trans. Inform. Theory, 48 (8) (2002), 2392–2395. [K11] Kornyak, V. V., Finite quantum models: a constructive approach to the description of quantum behavior, Zap. Nauchn. Sem. S.Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 387 (Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XIX) (2011), 122–144, 191. [L11] Ludl, P. O., Comments on the classification of the finite subgroups of $\rm SU(3)$, J. Phys. A, 44 (25) (2011), 255204, 12. [L11] Ludl, P. O., Corrigendum: On the finite subgroups of $\rm U(3)$ of order smaller than 512 [MR2720062], J. Phys. A, 44 (13) (2011), 139501, 1. [L10] Ludl, P. O., On the finite subgroups of $\rm U(3)$ of order smaller than 512, J. Phys. A, 43 (39) (2010), 395204, 28. [NBV15] Ni, X., Buerschaper, O., and Van den Nest, M., A noncommuting stabilizer formalism, J. Math. Phys., 56 (5) (2015), 052201, 32. [PRB99] Püschel, M., Rötteler, M., and Beth, T., Fast quantum Fourier transforms for a class of nonabelian groups, in Applied algebra, algebraic algorithms and errorcorrecting codes (Honolulu, HI, 1999), Springer, Berlin, Lecture Notes in Comput. Sci., 1719 (1999), 148–159. [SRS08] Skotiniotis, M., Roy, A., and Sanders, B. C., On the epistemic view of quantum states, J. Math. Phys., 49 (8) (2008), 082103, 13. [SC+08] Sorge, V., Colton, S., McCasland, R., and Meier, A., Classification results in quasigroup and loop theory via a combination of automated reasoning tools, Comment. Math. Univ. Carolin., 49 (2) (2008), 319–339. 
The GAP Group Last updated: Thu Jun 7 12:15:03 2018 