GAP

Main BranchesDownloads Installation Overview Data Libraries Packages Documentation Contacts FAQ GAP 3 
Find us on GitHubSitemapNavigation Tree 
20 publications using GAP in the category "Operations research, mathematical programming"[AB16] Arquette, D. M. and Bulutoglu, D. A., The linear programming relaxation permutation symmetry group of an orthogonal array defining integer linear program, LMS J. Comput. Math., 19 (1) (2016), 206–216. [BCN02] Barnes, J. W., Colletti, B. W., and Neuway, D. L., Using group theory and transition matrices to study a class of metaheuristic neighborhoods, European J. Oper. Res., 138 (3) (2002), 531–544. [BP12] Blanco, V. and Puerto, J., An application of integer programming to the decomposition of numerical semigroups, SIAM J. Discrete Math., 26 (3) (2012), 1210–1237. [BD+09] Boyd, S., Diaconis, P., Parrilo, P., and Xiao, L., Fastest mixing Markov chain on graphs with symmetries, SIAM J. Optim., 20 (2) (2009), 792–819. [BR18] Bulutoglu, D. A. and Ryan, K. J., Integer programming for classifying orthogonal arrays, Australas. J. Combin., 70 (2018), 362–385. [CR16] Craven, M. J. and Robertz, D., A parallel evolutionary approach to solving systems of equations in polycyclic groups, Groups Complex. Cryptol., 8 (2) (2016), 109–125. [DLM10] Dai Pra, P., Louis, P., and Minelli, I. G., Realizable monotonicity for continuoustime Markov processes, Stochastic Process. Appl., 120 (6) (2010), 959–982. [KDX11] de Klerk, E., Dobre, C., and Pasechnik, D. V., Numerical block diagonalization of matrix $\ast$algebras with application to semidefinite programming, Math. Program., 129 (1, Ser. B) (2011), 91–111. [KES13] de Klerk, E., E. Nagy, M., and Sotirov, R., On semidefinite programming bounds for graph bandwidth, Optim. Methods Softw., 28 (3) (2013), 485–500. [KM+06] de Klerk, E., Maharry, J., Pasechnik, D. V., Richter, R. B., and Salazar, G., Improved bounds for the crossing numbers of $K_m,n$ and $K_n$, SIAM J. Discrete Math., 20 (1) (2006), 189–202. [KS10] de Klerk, E. and Sotirov, R., Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem, Math. Program., 122 (2, Ser. A) (2010), 225–246. [GP04] Gatermann, K. and Parrilo, P. A., Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192 (13) (2004), 95–128. [HRS14] Hauenstein, J., Rodriguez, J. I., and Sturmfels, B., Maximum likelihood for matrices with rank constraints, J. Algebr. Stat., 5 (1) (2014), 18–38. [HRS15] Herr, K., Rehn, T., and Schürmann, A., On latticefree orbit polytopes, Discrete Comput. Geom., 53 (1) (2015), 144–172. [LWW17] Li, C., Weber, S., and Walsh, J. M., On multisource networks: enumeration, rate region computation, and hierarchy, IEEE Trans. Inform. Theory, 63 (11) (2017), 7283–7303. [LO14] Liberti, L. and Ostrowski, J., Stabilizerbased symmetry breaking constraints for mathematical programs, J. Global Optim., 60 (2) (2014), 183–194. [OL+08] Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S., Constraint orbital branching, in Integer programming and combinatorial optimization, Springer, Berlin, Lecture Notes in Comput. Sci., 5035 (2008), 225–239. [RT+13] Riener, C., Theobald, T., Andrén, L. J., and Lasserre, J. B., Exploiting symmetries in SDPrelaxations for polynomial optimization, Math. Oper. Res., 38 (1) (2013), 122–141. [TL11] Tian, Y. and Lu, C., Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems, J. Ind. Manag. Optim., 7 (4) (2011), 1027–1039. [DS15] van Dam, E. R. and Sotirov, R., Semidefinite programming and eigenvalue bounds for the graph partition problem, Math. Program., 151 (2, Ser. B) (2015), 379–404. 
The GAP Group Last updated: Thu Jun 7 12:15:03 2018 