GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

15 publications using GAP in the category "Operations research, mathematical programming"

[AB16] Arquette, D. M. and Bulutoglu, D. A., The linear programming relaxation permutation symmetry group of an orthogonal array defining integer linear program, LMS J. Comput. Math., 19 (1) (2016), 206--216.

[BCN02] Barnes, J. W., Colletti, B. W., and Neuway, D. L., Using group theory and transition matrices to study a class of metaheuristic neighborhoods, European J. Oper. Res., 138 (3) (2002), 531--544.

[BP12] Blanco, V. and Puerto, J., An application of integer programming to the decomposition of numerical semigroups, SIAM J. Discrete Math., 26 (3) (2012), 1210--1237.

[BD+09] Boyd, S., Diaconis, P., Parrilo, P., and Xiao, L., Fastest mixing Markov chain on graphs with symmetries, SIAM J. Optim., 20 (2) (2009), 792--819.

[DLM10] Dai Pra, P., Louis, P., and Minelli, I. G., Realizable monotonicity for continuous-time Markov processes, Stochastic Process. Appl., 120 (6) (2010), 959--982.

[KDP11] de Klerk, E., Dobre, C., and Pasechnik, D. V., Numerical block diagonalization of matrix $\ast$-algebras with application to semidefinite programming, Math. Program., 129 (1, Ser. B) (2011), 91--111.

[KES13] de Klerk, E., E. -Nagy, M., and Sotirov, R., On semidefinite programming bounds for graph bandwidth, Optim. Methods Softw., 28 (3) (2013), 485--500.

[KM+06] de Klerk, E., Maharry, J., Pasechnik, D. V., Richter, R. B., and Salazar, G., Improved bounds for the crossing numbers of $K_m,n$ and $K_n$, SIAM J. Discrete Math., 20 (1) (2006), 189--202.

[KS10] de Klerk, E. and Sotirov, R., Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem, Math. Program., 122 (2, Ser. A) (2010), 225--246.

[GP04] Gatermann, K. and Parrilo, P. A., Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192 (1-3) (2004), 95--128.

[HRS15] Herr, K., Rehn, T., and Schürmann, A., On lattice-free orbit polytopes, Discrete Comput. Geom., 53 (1) (2015), 144--172.

[LO14] Liberti, L. and Ostrowski, J., Stabilizer-based symmetry breaking constraints for mathematical programs, J. Global Optim., 60 (2) (2014), 183--194.

[OL+08] Ostrowski, J., Linderoth, J., Rossi, F., and Smriglio, S., Constraint orbital branching, in Integer programming and combinatorial optimization, Springer, Berlin, Lecture Notes in Comput. Sci., 5035 (2008), 225--239.

[RT+13] Riener, C., Theobald, T., Andrén, L. J., and Lasserre, J. B., Exploiting symmetries in SDP-relaxations for polynomial optimization, Math. Oper. Res., 38 (1) (2013), 122--141.

[DS15] van Dam, E. R. and Sotirov, R., Semidefinite programming and eigenvalue bounds for the graph partition problem, Math. Program., 151 (2, Ser. B) (2015), 379--404.