GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

105 publications using GAP published in 2001

[A01] Abdollahi, A., Some Engel conditions on finite subsets of certain groups, Houston J. Math., 27 (3) (2001), 511--522.

[A01] Aichinger, E., On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions of $\Omega$-groups, Quaest. Math., 24 (4) (2001), 453--480.

[A01] Alp, M., Sections in GAP, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 14 (2001), 18--26, 206.

[A01] Alp, M., Induced $\rm cat^1$-groups, Turkish J. Math., 25 (2) (2001), 245--261.

[AC+01] Artal, E., Carmona, J., Cogolludo, J. I., and Tokunaga, H., Sextics with singular points in special position, J. Knot Theory Ramifications, 10 (4) (2001), 547--578.

[BGP01] Bader, L., Ghinelli, D., and Penttila, T., On monomial flocks, European J. Combin., 22 (4) (2001), 447--454.

[B01] Baker, M. D., Link complements and the Bianchi modular groups, Trans. Amer. Math. Soc., 353 (8) (2001), 3229--3246.

[B01] Beals, R., Improved algorithms for the Tits alternative, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 63--77.

[BE01] Besche, H. U. and Eick, B., The groups of order $q^n\cdot p$, Comm. Algebra, 29 (4) (2001), 1759--1772.

[BEO01] Besche, H. U., Eick, B., and O'Brien, E. A., The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc., 7 (2001), 1--4.

[BM01] Binder, F. and Mayr, P., Algorithms for finite near-rings and their $N$-groups, J. Symbolic Comput., 32 (1-2) (2001), 23--38
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[B01] Blanchard, P. F., Exceptional group ring automorphisms for groups of order 96, Comm. Algebra, 29 (11) (2001), 4823--4830.

[B01] Boe, B. D., Geometry of the Jantzen region in Lusztig's conjecture, Math. Comp., 70 (235) (2001), 1265--1280.

[BP01] Borges Trenard, M. A. and Pérez Rosés, H., Characterizing the normal forms of a finitely presented monoid, in Fourth Italian-Latin American Conference on Applied and Industrial Mathematics (Havana, 2001), Inst. Cybern. Math. Phys., Havana (2001), 294--300.

[BP01] Borges-Trenard, M. A. and Pérez-Rosés, H., Enumerating words in finitely presented monoids, Investigación Oper., 22 (1) (2001), 62--66
(4th International Conference on Operations Research (Havana, 2000)).

[BS+01] Bray, J. N., Suleiman, I. A. I., Walsh, P. G., and Wilson, R. A., Generating maximal subgroups of sporadic simple groups, Comm. Algebra, 29 (3) (2001), 1325--1337.

[BH01] Breuer, T. and Horváth, E., On block induction, J. Algebra, 242 (1) (2001), 213--224.

[B01] Brooksbank, P. A., A constructive recognition algorithm for the matrix group $\Omega(d,q)$, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 79--93.

[BK01] Brundan, J. and Kleshchev, A. S., Representations of the symmetric group which are irreducible over subgroups, J. Reine Angew. Math., 530 (2001), 145--190.

[CO01] Caprotti, O. and Oostdijk, M., Formal and efficient primality proofs by use of computer algebra oracles, J. Symbolic Comput., 32 (1-2) (2001), 55--70
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[C01] Carrara, C., (Finite) presentations of the Albert-Frank-Shalev Lie algebras, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 4 (2) (2001), 391--427.

[CS01] Cid, C. and Schulz, T., Computation of five- and six-dimensional Bieberbach groups, Experiment. Math., 10 (1) (2001), 109--115.

[CS+01] Cohen, A. M., Steinbach, A., Ushirobira, R., and Wales, D., Lie algebras generated by extremal elements, J. Algebra, 236 (1) (2001), 122--154.

[C01] Cooperman, G., Parallel GAP: mature interactive parallel computing, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 123--138.

[CKK01] Cornelissen, G., Kato, F., and Kontogeorgis, A., Discontinuous groups in positive characteristic and automorphisms of Mumford curves, Math. Ann., 320 (1) (2001), 55--85.

[CM01] Curran, M. J. and McCaughan, D. J., Central automorphisms that are almost inner, Comm. Algebra, 29 (5) (2001), 2081--2087.

[C01] Curtin, E., Cubic Cayley graphs with small diameter, Discrete Math. Theor. Comput. Sci., 4 (2) (2001), 123--131 (electronic).

[CSW01] Cutolo, G., Smith, H., and Wiegold, J., On core-2 groups, J. Algebra, 237 (2) (2001), 813--841.

[G01] de Graaf, W. A., Constructing representations of split semisimple Lie algebras, J. Pure Appl. Algebra, 164 (1-2) (2001), 87--107
(Effective methods in algebraic geometry (Bath, 2000)).

[G01] de Graaf, W. A., Computing with quantized enveloping algebras: PBW-type bases, highest-weight modules and $R$-matrices, J. Symbolic Comput., 32 (5) (2001), 475--490.

[DIM01] Dekimpe, K., Igodt, P., and Malfait, W., Infra-nilmanifolds and their fundamental groups, J. Korean Math. Soc., 38 (5) (2001), 883--914
(Mathematics in the new millennium (Seoul, 2000)).

[D01] Delgado, M., Commutative images of rational languages and the abelian kernel of a monoid, Theor. Inform. Appl., 35 (5) (2001), 419--435.

[D01] Draisma, J., Recognizing the symmetry type of O.D.E.s, J. Pure Appl. Algebra, 164 (1-2) (2001), 109--128
(Effective methods in algebraic geometry (Bath, 2000)).

[DSV01] Dumas, J., Saunders, B. D., and Villard, G., On efficient sparse integer matrix Smith normal form computations, J. Symbolic Comput., 32 (1-2) (2001), 71--99
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[EJ+01] Egner, S., Johnson, J., Padua, D., Püschel, M., and Xiong, J., Automatic Derivation and Implementation of Signal Processing Algorithms, SIGSAM Bulletin, 35 (2) (2001), 1--19.

[EP01] Egner, S. and Püschel, M., Automatic generation of fast discrete signal transforms, IEEE Trans. Signal Process., 49 (9) (2001), 1992--2002.

[E01] Eick, B., Algorithms for polycyclic groups, Habilitationsschrift, University of Kassel (2001).

[E01] Eick, B., On the Fitting subgroup of a polycyclic-by-finite group and its applications, J. Algebra, 242 (1) (2001), 176--187.

[E01] Eick, B., Computing with infinite polycyclic groups, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 139--154.

[EH01] Eick, B. and Hulpke, A., Computing the maximal subgroups of a permutation group. I, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 155--168.

[FH+01] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, non-abelian orbifolds and the Schur multiplier, J. High Energy Phys. (1) (2001), Paper 33, 25.

[FH+01] Feng, B., Hanany, A., He, Y., and Prezas, N., Discrete torsion, covering groups and quiver diagrams, J. High Energy Phys. (4) (2001), Paper 37, 27.

[F01] Fernandes, V. H., The monoid of all injective order preserving partial transformations on a finite chain, Semigroup Forum, 62 (2) (2001), 178--204.

[FM01] Fernández-Alcober, G. A. and Moretó, A., Groups with two extreme character degrees and their normal subgroups, Trans. Amer. Math. Soc., 353 (6) (2001), 2171--2192 (electronic).

[F01] Ferrario, D. L., Self homotopy equivalences of equivariant spheres, in Groups of homotopy self-equivalences and related topics (Gargnano, 1999), Amer. Math. Soc., Providence, RI, Contemp. Math., 274 (2001), 105--131.

[FG+01] Fields, J. E., Gaborit, P., Huffman, W. C., and Pless, V., On the classification of extremal even formally self-dual codes of lengths 20 and 22, Discrete Appl. Math., 111 (1-2) (2001), 75--86.

[GM01] Ganief, S. and Moori, J., On the spread of the sporadic simple groups, Comm. Algebra, 29 (8) (2001), 3239--3255.

[GV01] Golemac, A. and Vu\vci\vci\'c, T., New difference sets in nonabelian groups of order 100, J. Combin. Des., 9 (6) (2001), 424--434.

[GHS01] Green, E. L., Heath, L. S., and Struble, C. A., Constructing homomorphism spaces and endomorphism rings, J. Symbolic Comput., 32 (1-2) (2001), 101--117
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[HH01] Hanany, A. and He, Y., A monograph on the classification of the discrete subgroups of $\rm SU(4)$, J. High Energy Phys. (2) (2001), Paper 27, 12.

[HSW01] Havas, G., Soicher, L. H., and Wilson, R. A., A presentation for the Thompson sporadic simple group, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 193--200.

[HM01] Hiss, G. and Malle, G., Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math., 4 (2001), 22--63 (electronic).

[HM01] Hiss, G. and Malle, G., Low-dimensional representations of special unitary groups, J. Algebra, 236 (2) (2001), 745--767.

[H01] Holt, D. F., Computing automorphism groups of finite groups, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 201--208.

[HRT01] Howlett, R. B., Rylands, L. J., and Taylor, D. E., Matrix generators for exceptional groups of Lie type, J. Symbolic Comput., 31 (4) (2001), 429--445.

[H01] Hulpke, A., Representing subgroups of finitely presented groups by quotient subgroups, Experiment. Math., 10 (3) (2001), 369--381.

[H01] Höfling, B., Finite irreducible imprimitive nonmonomial complex linear groups of degree 4, J. Algebra, 236 (2) (2001), 419--470.

[H01] Höfling, B., Computing projectors, injectors, residuals and radicals of finite soluble groups, J. Symbolic Comput., 32 (5) (2001), 499--511.

[J01] Jamali, A., A further class of 3-generator, 3-relation finite groups, Comm. Algebra, 29 (2) (2001), 879--887.

[KS01] Kantor, W. M. and Seress, A., Black box classical groups, Mem. Amer. Math. Soc., 149 (708) (2001), viii+168.

[K01] Karaarslan, E., Large Random \& Prime Number Generation, MSc Thesis, International Computer Institute, Ege University (2001).

[KLM01] Kemper, G., Lübeck, F., and Magaard, K., Matrix generators for the Ree groups $^2G_2(q)$, Comm. Algebra, 29 (1) (2001), 407--413.

[K01] Kohlhase, M., OMDOC: Towards an Internet standard for the administration, distribution, and teaching of mathematical knowledge, ARTIFICIAL INTELLIGENCE AND SYMBOLIC COMPUTATION, 1930 (2001), 32--52.

[K01] Konovalov, A., Computer Algebra System GAP, ``CHIP'' Magazine (9) (2001)
(Supplementary article for the GAP 4.2 distribution on the CD-appendix to the magazine.).

[K01] Konovalov, A. B., Computer algebra system GAP, in Ukrainian Mathematical Congress-2001. Kiev, August 21-23, Mathematical Institute of the Ukrainian National Academy of Sciences (2001), 29--30.

[K01] Konovalov, A. B., Computer algebra system GAP, 3rd Internat. Conf. on Algebra in Ukraine (2001), 194-195.

[K01] Kratzer, M., Konkrete Charaktertafeln und kompatible Charaktere, Universität Essen, Fachbereich Mathematik, Essen, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], 30 (2001), vi+106 pages
(Dissertation, Universität Essen, Essen, 2001).

[KP01] Köhler, C. and Pahlings, H., Regular orbits and the $k(GV)$-problem, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 209--228.

[L01] Leedham-Green, C. R., The computational matrix group project, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 229--247.

[L01] Lempken, W., On the existence and uniqueness of the sporadic simple groups $J_2$ and $J_3$ of Z. Janko, J. Group Theory, 4 (2) (2001), 223--232.

[LST01] Lempken, W., Schröder, B., and Tiep, P. H., Symmetric squares, spherical designs, and lattice minima, J. Algebra, 240 (1) (2001), 185--208
(With an appendix by Christine Bachoc and Tiep).

[L01] Lorenz, M., Multiplicative invariants and semigroup algebras, Algebr. Represent. Theory, 4 (3) (2001), 293--304.

[LP01] Lubotzky, A. and Pak, I., The product replacement algorithm and Kazhdan's property (T), J. Amer. Math. Soc., 14 (2) (2001), 347--363 (electronic).

[L01] Lutz, F. H., Some results related to the evasiveness conjecture, J. Combin. Theory Ser. B, 81 (1) (2001), 110--124.

[LW01] Lux, K. and Wiegelmann, M., Determination of socle series using the condensation method, J. Symbolic Comput., 31 (1-2) (2001), 163--178
(Computational algebra and number theory (Milwaukee, WI, 1996)).

[L01] Lübeck, F., Smallest degrees of representations of exceptional groups of Lie type, Comm. Algebra, 29 (5) (2001), 2147--2169.

[LN01] Lübeck, F. and Neunhöffer, M., Enumerating large orbits and direct condensation, Experiment. Math., 10 (2) (2001), 197--205.

[MZ01] May, C. L. and Zimmerman, J., The group of symmetric Euler characteristic $-3$, Houston J. Math., 27 (4) (2001), 737--752.

[MPS01] Meier, A., Pollet, M., and Sorge, V., Classifying isomorphic residue classes, COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2001, 2178 (2001), 494--508.

[M01] Michler, G. O., The character values of multiplicity-free irreducible constituents of a transitive permutation representation, Kyushu J. Math., 55 (1) (2001), 75--106.

[M01] Miyamoto, I., Computing isomorphisms of association schemes and its applications, J. Symbolic Comput., 32 (1-2) (2001), 133--141
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[M01] Mysovskikh, V. I., Computer algebra systems and symbolic computations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 281 (Vopr. Teor. Predst. Algebr. i Grupp. 8) (2001), 227--236, 283--284.

[MS01] Mysovskikh, V. I. and Skopin, A. I., Embedding of nonprimary subgroups in the symmetric group $S_9$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 281 (Vopr. Teor. Predst. Algebr. i Grupp. 8) (2001), 237--252, 284.

[N01] Newman, M. F., On a family of cyclically-presented fundamental groups, J. Aust. Math. Soc., 71 (2) (2001), 235--241
(Special issue on group theory).

[N01] Norton, S., Computing in the Monster, J. Symbolic Comput., 31 (1-2) (2001), 193--201
(Computational algebra and number theory (Milwaukee, WI, 1996)).

[OM01] Owren, B. and Marthinsen, A., Integration methods based on canonical coordinates of the second kind, Numer. Math., 87 (4) (2001), 763--790.

[P01] Pak, I., What do we know about the product replacement algorithm?, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 301--347.

[PR01] Parker, C. and Rowley, P., Sporadic simple groups which are completions of the Goldschmidt $G_3$-amalgam, J. Algebra, 235 (1) (2001), 131--153.

[PY01] Pasini, A. and Yoshiara, S., New distance regular graphs arising from dimensional dual hyperovals, European J. Combin., 22 (4) (2001), 547--560.

[P01] Praeger, C. E., Computers in algebra: new answers, new questions, J. Korean Math. Soc., 38 (4) (2001), 763--780
(Mathematics in the new millennium (Seoul, 2000)).

[PS+01] Püschel, M., Singer, B., Veloso, M., and Moura, J. M. F., Fast Automatic Generation of DSP Algorithms, in Proc.~ICCS 2001, Springer, LNCS 2073 (2001), 97--106.

[RZ01] Reinert, B. and Zeckzer, D., Coset enumeration using prefix Gröbner bases: an experimental approach, LMS J. Comput. Math., 4 (2001), 74--134 (electronic).

[R01] Riese, U., The quasisimple case of the $k(GV)$-conjecture, J. Algebra, 235 (1) (2001), 45--65.

[R01] Ruberman, D., Isospectrality and 3-manifold groups, Proc. Amer. Math. Soc., 129 (8) (2001), 2467--2471 (electronic).

[S01] Sawada, H., On a certain algebraic property of block ciphers, IEICE T FUND ELECTR E, 84A (5) (2001), 1130--1134.

[S01] Seidel, U., Exceptional sequences for quivers of Dynkin type, Comm. Algebra, 29 (3) (2001), 1373--1386.

[S01] Seress, A., All lambda-designs with $\lambda=2p$ are type-1, Des. Codes Cryptogr., 22 (1) (2001), 5--17.

[S01] Suciu, A. I., Fundamental groups of line arrangements: enumerative aspects, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Amer. Math. Soc., Providence, RI, Contemp. Math., 276 (2001), 43--79.

[S01] Swallow, J. R., Quadratic descent for quaternion algebras, Comm. Algebra, 29 (10) (2001), 4523--4544.

[V01] Valero-Elizondo, L., Some simple projective Brauer quotients of simple modules for the symmetric groups in characteristic two, J. Algebra, 236 (2) (2001), 796--818.

[V01] Vojt\vechovsk\'y, P., Generators of nonassociative simple Moufang loops over finite prime fields, J. Algebra, 241 (1) (2001), 186--192.

[VMT01] Vsemirnov, M., Mysovskikh, V., and Tamburini, M. C., Triangle groups as subgroups of unitary groups, J. Algebra, 245 (2) (2001), 562--583.

[W01] Walker, J. L., Constructing critical indecomposable codes, IEEE Trans. Inform. Theory, 47 (5) (2001), 1780--1795.

[ZJ01] Zeiner, P. and Janssen, T., Notes on the normalizer of a finite subgroup of $\rm GL(n,d,\Bbb Z)$ in $\rm GL(n,d,\Bbb Z)$, Acta Cryst. Sect. A, 57 (3) (2001), 256--263.

[Z01] Zhurtov, A. K., Frobenius groups generated by two elements of order $3$, Sibirsk. Mat. Zh., 42 (3) (2001), 533--537, i.