GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

27 publications using GAP published in 2018

[XS18] Östergård, P. R. J. and Soicher, L. H., There is no McLaughlin geometry, J. Combin. Theory Ser. A, 155 (2018), 27–41.

[BR18] Bagarello, F. and Russo, F. G., A description of pseudo-bosons in terms of nilpotent Lie algebras, J. Geom. Phys., 125 (2018), 1–11.

[BLS18] Bamberg, J., Li, C. H., and Swartz, E., A classification of finite antiflag-transitive generalized quadrangles, Trans. Amer. Math. Soc., 370 (3) (2018), 1551–1601.

[B18] Bulai, L., Unlinking numbers of links with crossing number 10, Involve, 11 (2) (2018), 335–353.

[BR18] Bulutoglu, D. A. and Ryan, K. J., Integer programming for classifying orthogonal arrays, Australas. J. Combin., 70 (2018), 362–385.

[CG+18] Conaway, R., Gotti, F., Horton, J., O'Neill, C., Pelayo, R., Pracht, M., and Wissman, B., Minimal presentations of shifted numerical monoids, Internat. J. Algebra Comput., 28 (1) (2018), 53–68.

[DS18] Dantas, A. C. and Sidki, S. N., On state-closed representations of restricted wreath product of groups $G_p,d =C_pwrC^d$, J. Algebra, 500 (2018), 335–361.

[D18] De Graaf, W. A., Classification of nilpotent associative algebras of small dimension, Internat. J. Algebra Comput., 28 (1) (2018), 133–161.

[DFH18] Detinko, A., Flannery, D. L., and Hulpke, A., Zariski density and computing in arithmetic groups, Math. Comp., 87 (310) (2018), 967–986.

[DW18] Dietrich, H. and Wanless, I. M., Small partial Latin squares that embed in an infinite group but not into any finite group, J. Symbolic Comput., 86 (2018), 142–152.

[GLM18] García-Sánchez, P. A., Llena, D., and Moscariello, A., Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math., 30 (1) (2018), 15–30.

[GLS18] Gąsior, A., Lutowski, R., and Szczepański, A., A short note about diffuse Bieberbach groups, J. Algebra, 494 (2018), 237–245.

[GLD18] Gomi, Y., Loyola, M. L., and De Las Peñas, M. L. A. N., String C-groups of order 1024, Contrib. Discrete Math., 13 (1) (2018), 1–22.

[K18] Karakaş, H. İ., Parametrizing numerical semigroups with multiplicity up to 5, Internat. J. Algebra Comput., 28 (1) (2018), 69–95.

[K18] Keilberg, M., Examples of non-$FSZ$ $p$-groups for primes greater than three, Proc. Amer. Math. Soc., 146 (1) (2018), 85–92.

[KKW18] Kiermaier, M., Kurz, S., and Wassermann, A., The order of the automorphism group of a binary $q$-analog of the Fano plane is at most two, Des. Codes Cryptogr., 86 (2) (2018), 239–250.

[KY18] Kitture, R. D. and Yadav, M. K., Note on Caranti's method of construction of Miller groups, Monatsh. Math., 185 (1) (2018), 87–101.

[K18] Krčadinac, V., Some new designs with prescribed automorphism groups, J. Combin. Des., 26 (4) (2018), 193–200.

[LL18] Li, W. and Li, X., On two problems of almost synchronizing groups, Theoret. Comput. Sci., 707 (2018), 94–95.

[LT18] Long, D. D. and Thistlethwaite, M. B., Zariski dense surface subgroups in $\rm SL(4,\Bbb Z)$, Exp. Math., 27 (1) (2018), 82–92.

[M18] Malcolm, A. J., The involution width of finite simple groups, J. Algebra, 493 (2018), 297–340.

[MNS18] Malle, G., Navarro, G., and Späth, B., On blocks with one modular character, Forum Math., 30 (1) (2018), 57–73.

[SW18] Shareshian, J. and Woodroofe, R., Divisibility of binomial coefficients and generation of alternating groups, Pacific J. Math., 292 (1) (2018), 223–238.

[SKG18] Sharma, M., Kalra, H., and Gumber, D., Some finite $p$-groups with central automorphism group of non-minimal order, J. Algebra Appl., 17 (2) (2018), 1850026, 5.

[S18] Shimada, I., An even extremal lattice of rank 64, J. Number Theory, 185 (2018), 1–15.

[WW+18] Wang, C., Wang, S., Zhang, Y., and Zimmermann, B., Graphs in the 3-sphere with maximum symmetry, Discrete Comput. Geom., 59 (2) (2018), 331–362.

[ZZ18] Zhou, S. and Zhan, X., Flag-transitive automorphism groups of 2-designs with $\lambda\ge(r,\lambda)^2$ and an application to symmetric designs, Ars Math. Contemp., 14 (1) (2018), 187–195.