> < ^ Date: Wed, 27 Mar 2002 02:34:44 -0800 (PST)
> < ^ From: Alireza Abdollahi <alireza_abdollahi@yahoo.com >
< ^ Subject: Question

Dears,
Hello

I need a collector function which works as follows,
as far as I know a such function does not exist in
GAP (say me
if I am wrong) so my question is essentially is:

Have a such function been written and now it is
available!!??

If one exists then it will work as follows:

Let $x_1,\dots, x_n$ be the generators of the free
group of rank $n$ and $k$ be a positive integer.

the input of the function is : $x_1,\dots, x_n$ and
$k$.

the output is the list $w_1,\dots, w_s$ satisfying the
following conditions:

$(x_1 \cdots x_n)^k=x_1^k \cdots x_n^k w_1 \cdots w_s$
for all $i=1,\dots, s$
$w_i=[x_{j_1},\dots,x_{j_{t_i}}]$
for some $j_1, \dots, j_{t_i}$ in $\{ 1, \dots, n \}$
and
$t_1 \leq t_2 \leq \dots \leq t_s$. ( "$[y_1,\dots, y_m]$" donotes the usual left normed commutator
defined inductively
by  $[x,_0 y]=x$, $[x,_1 y]:=[x,y]:=x^{-1}y^{-1}xy$
and $[y_1,\dots,y_m]=[[y_1,\dots,y_{m-1}],y_m]$ for
all $m>1$.


Of course the commutators $w_i$'s are depend to the
way of collecting $x_i$'s and in practice they are
not necessarily unique.

Thanks for any help.
With best wishes
Alireza Abdollahi

=====
Alireza Abdollahi
Department of Mathematics
University of Isfahan,
Isfahan 81744,Iran
e-mail: alireza_abdollahi@yahoo.com
URL: http://www.abdollahi.8m.net

__________________________________________________
Do You Yahoo!?
Yahoo! Movies - coverage of the 74th Academy Awards®
http://movies.yahoo.com/


> < [top]