> < ^ Date: Mon, 13 Jul 1998 09:22:57 -0400
> < ^ From: David Joyner <wdj@usna.edu >
> < ^ Subject: Re: Permutation group enumeration by disjoint permutations

Dear Gap Forum:

Mr. Aslam wrote:

Dear Gap Forum,

I am looking for an algorithm(s) that would enumerate
a permutation group (from a set of genrators) such
that each element of the
group is represented as a product of the disjoint permutations
(which would be from the set of the generators).

That is if each element pi of the group G is represented as
pi = g1*g2* ... gr ,
(where r is clearly a polynomial in the degree of the group),

then g1,g2, .. gr are mutually disjoint.

Here the size of set of generators could be a polynomial in r.
Clearly, it is not important whether the generators are strong are not.

Hope to receive some references in this direction.

Gray Codes for Reflection Groups, J. H. Conway, N. J. A. Sloane and A. R. Wilks,

Graphs and Combinatorics,
5 (1989), pp. 315-325.
available at

Thanking you all.
David Joyner, Assoc Prof of Math
US Naval Academy, Annapolis, MD 21402
"A Mathematician is a machine for turning
coffee into theorems." Alfred Renyi

> < [top]