
GAP
Release 4.5
May 2012

Migrating to GAP 4

The GAP Group

http://www.gap-system.org

Contents

1 Migrating to GAP 4 4

1.1 Changed Command Line Options . . 4

1.2 Fail 4

1.3 Changed Functionality 5

1.4 Changed Variable Names 6

1.5 Naming Conventions 6

1.6 Immutable Objects 7

1.7 Copy 7

1.8 Attributes vs. Record Components . . 8

1.9 Different Notions of Generation . . . 8

1.10 Operations Records 8

1.11 Operations vs. Dispatcher Functions . 9

1.12 Parents and Subgroups 9

1.13 Homomorphisms vs. General Mappings 10

1.14 Homomorphisms vs. Factor Structures 10

1.15 Isomorphisms vs. Isomorphic Structures 11

1.16 Elements of Finitely Presented Groups 11

1.17 Polynomials 11

1.18 The Info Mechanism 12

1.19 Debugging 12

Contents 3

Copyright c© (1987-2012) for the core part of the GAP system by the GAP Group.

Most parts of the GAP distribution, including the core part of the GAP system, are distributed under the terms of the
GNU General Public License (see http://www.gnu.org/licenses/gpl.html or the file GPL in the etc directory
of the GAP installation).

More detailed information about copyright and licenses of parts of this distribution can be found in the GAP 4
Reference manual (see Reference: Copyright and License).

GAP is developed over a long time and has many authors and contributors. More detailed information can be found
in the GAP 4 Reference manual (see Reference: Authors and Maintainers).

1 Migrating to GAP 4

This chapter is intended to give users who have experience with GAP 3 some information about what has changed in
GAP 4. In particular, it informs about changed command line options (see 1.1), the new global variable fail (see 1.2),
some functions that have changed their behaviour (see 1.3) or their names (see 1.4), and some conventions used for
variable names (see 1.5).

Then the new concepts of GAP 4 are sketched, first that of mutability or immutability (see 1.6), with the explanation
of related changes in functions that copy objects (see 1.7), then the concepts of operations and method selection,
which are compared with the use of operations records in GAP 3 (see 1.8, 1.10, and 1.11).

More local changes affect the concepts of notions of generation (see 1.9), of parents (see 1.12), of homomorphisms
(see 1.13, 1.14, and 1.15), how elements in finitely presented groups are treated (see 1.16), how information about
progress of computations can be obtained (see 1.18), and how one gets information in a break loop (see 1.19).

1.1 Changed Command Line Options

In GAP 4, the -l option is used to specify the root directory (see “GAP Root Directory” in the GAP 4 Reference
Manual) of the GAP distribution, which is the directory containing the lib and doc subdirectories. Note that in
GAP 3 this option was used to specify the path to the lib directory.

The -h option of GAP 3 has been removed, the path(s) for the documentation are deduced automatically in GAP 4.

The option -g is now used to print information only about full garbage collections. The new option -g -g generates
information about partial garbage collections too.

1.2 Fail

There is a new global variable

1 I fail

in GAP 4. It is intended as a return value of a function for the case that it could not perform its task. For example,
Inverse returns fail if it is called with a singular matrix, and Position returns fail if the second argument is not
contained in the list given as first argument.

GAP 3 handled such situations by either signalling an error, for example if it was asked for the inverse of a singular
matrix, or by (mis)using false as return value, as in the example Position. Note that in the first example, in GAP 3
it was necessary to check the invertibility of a matrix before one could safely ask for its inverse, which meant that
roughly the same work was done twice.

Section 3. Changed Functionality 5

1.3 Changed Functionality

Some functions that were already available in GAP 3 behave differently in GAP 4. This section lists them.

1 I Orbit(G,pnt)

The GAP 3 manual promised that pnt would be the first entry of the resulting orbit. This was wrong already there in
a few cases, therefore GAP 4 does not promise anything about the ordering of points in an orbit.

2 I Order(g)

only takes the element g and computes its multiplicative order. (Note that it does not make sense anymore to specify
a group as first argument w.r.t. which the order of the second argument shall be computed, see 1.16.)

3 I Position(list, obj)

If obj is not contained in the list list then fail is returned in GAP 4 (see 1.2), whereas false was returned in GAP 3.

4 I PermGroupOps.ElementProperty(G, prop[, K])

In GAP 3, this function took either two or three arguments, the optional argument K being a subgroup of G that
stabilizes prop in the sense that for any element g in G, either all elements or no element in the coset g * K have the
property prop.

The GAP 4 function ElementProperty, however, takes between two and four arguments, and the subgroup K known
from GAP 3 has to be entered as the fourth argument not the third. (The third argument in the GAP 4 function
denotes a subgroup U stabilizing prop in the sense that either all elements or no element in right cosets U * g have
the property prop.)

(This discrepancy was discovered only in March 2002, short before the release of GAP 4.3.)

5 I Print(obj, ...)

Objects may appear on the screen in a different way, depending on whether they are printed by the read eval print
loop or by an explicit call of Print. The reason is that the read eval print loop calls the operation ViewObj and not
PrintObj, whereas Print calls PrintObj for each of its arguments. This permits the installation of methods for
printing objects in a short form in the read eval print loop while retaining Print to display the object completely. See
also Section “View and Print” in the GAP 4 Reference Manual.

(PrintObj is installed as standard method ViewObj, so it is not really necessary to have a ViewObj method for an
object.)

6 I PrintTo(filename, obj, ...)

In GAP 3, PrintTo could be (mis)used to “redirect” the text printed by a function (that is, not only the output of
a function) to a file by entering the function call as second argument. This was used mainly in order to avoid many
calls of AppendTo. In GAP 4, this feature has disappeared. One can use streams (see Chapter “Streams” in the GAP 4
Reference Manual) instead in order to write files efficiently.

6 Chapter 1. Migrating to GAP 4

1.4 Changed Variable Names

Some functions have changed their name without changing the functionality. A – probably incomplete – list follows

GAP 3 GAP 4

AgGroup PcGroup # (also composita)
ApplyFunc CallFuncList
Backtrace Where
CharTable CharacterTable # (also composita)
Denominator DenominatorRat
DepthVector PositionNonZero
Elements AsSSortedList
IsBijection IsBijective
IsFunc IsFunction
IsMat IsMatrix
IsRec IsRecord
IsSet IsSSortedList
LengthWord Length
NOfCyc Conductor
Numerator NumeratorRat
NormedVector NormedRowVector
Operation Action # (also composita)
Order(G,g) Order(g)
OrderMat Order
OrderPerm Order
RandomInvertableMat RandomInvertibleMat
RecFields RecNames
X Indeterminate

1.5 Naming Conventions

The way functions are named has been unified in GAP 4. This might help to memorize or even guess names of library
functions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may modify its argument(s) but does not return
anything, for example Append appends the list given as second argument to the list given as first argument. Otherwise
the function returns an object without changing the arguments, for example Concatenation returns the concatenation
of the lists given as arguments.

If the name of a function contains the word By then the return value is thought of as built in a certain way from
the parts given as arguments. For example, GroupByGenerators returns a group built from its group generators,
and creating a group as a factor group of a given group by a normal subgroup can be done by taking the image of
NaturalHomomorphismByNormalSubgroup (see also 1.14). Other examples of “By” functions are GroupHomomor-
phismByImages and UnivariateLaurentPolynomialByCoefficients.

If the name of a function contains the word Of then the return value is thought of as information deduced from the
arguments. Usually such functions are attributes (see “Attributes” in the GAP 4 Reference Manual). Examples are
GeneratorsOfGroup, which returns a list of generators for the group entered as argument, or DiagonalOfMat.

For the setter and tester functions of an attribute attr (see 1.8 in this document and “Attributes” in the GAP 4 Reference
Manual) the names Setattr resp. Hasattr are available.

Section 7. Copy 7

If the name of a function fun1 ends with NC then there is another function fun2 with the same name except that the
NC is missing. NC stands for “no check”. When fun2 is called then it checks whether its arguments are valid, and if so
then it calls fun1. The functions SubgroupNC and Subgroup are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure that they are
unnecessary. For example, if an algorithm produces generators of the derived subgroup of a group then it is guaranteed
that they lie in the original group; Subgroup would check this, and SubgroupNC omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero instead of two
operations ZeroOfElement and ZeroOfAdditiveGroup.

1.6 Immutable Objects

GAP 4 supports “immutable” objects. Such objects cannot be changed, attempting to do so issues an error. Typically
attribute values are immutable, and also the results of those binary arithmetic operations where both arguments are
immutable. For example, [1..100]+[1..100] is a mutable list and 2 * Immutable([1..100]) is an immutable
list, both are equal to the (mutable) list [2,4..200].

There is no way to make an immutable object mutable, one can only get a mutable copy by ShallowCopy. The other
way round, MakeImmutable makes a (mutable or immutable) object and all its subobjects immutable; one must be
very careful to use MakeImmutable only for those objects that are really newly created, for such objects the advantage
over Immutable is that no copy is made.

More about immutability can be found in Sections “Immutability” in the GAP 4 Tutorial and “Mutability and Copy-
ability” in the GAP 4 Reference Manual.

1.7 Copy

The function Copy of GAP 3 is not supported in GAP 4. This function was used to create a copy cop of its argument
obj with the properties that cop and obj had no subobjects in common and that if two subobjects of obj were identical
then also the corresponding subobjects of cop were identical.

The possibility of having immutable objects (see 1.6) can and should be used to avoid unnecessary copying. Namely,
given an immutable object one needs to copy it only if one wants to get a modified object, and in such a situation
usually it is sufficient to use ShallowCopy, or at least one knows how deep one must copy in order to do the changes
one has in mind.

For example, suppose you have a matrix group, and you want to construct a list of matrices by modifying the group
generators. This list of generators is immutable, so you call ShallowCopy to get a mutable list that contains the same
matrices. If you only want to exchange some of them, or to append some other matrices, this shallow copy is already
what you need. So suppose that you are interested in a list of matrices where some rows are also changed. For that,
you call ShallowCopy for the matrices in question, and you get matrices whose rows can be changed. If you want to
change single entries in some rows, ShallowCopy must be called to get mutable copies of these rows. Note that in all
these situations there is no danger to change, i.e., to destroy the original generators of the matrix group.

If one needs the facility of the Copy function of GAP 3 to get a copy with the same structure then one can use the
new GAP 4 function StructuralCopy. It returns a structural copy that has no mutable subobject in common with
its argument. So if StructuralCopy is called with an immutable object then this object itself is returned, and if
StructuralCopy is called with a mutable list of immutable objects then a shallow copy of this list is returned.

Note that ShallowCopy now is an operation. So if you create your own type of (copyable) objects then you must
define what a shallow copy of these objects is, and install an appropriate method.

8 Chapter 1. Migrating to GAP 4

1.8 Attributes vs. Record Components

In GAP 3, many complex objects were represented via records, for example all domains. Information about these ob-
jects was stored in components of these records. For the user, this was usually not relevant, since there were functions
for computing information about the objects in question. For example, if one was interested in the size of a group then
one could call Size.

But since it was guaranteed that the size of a domain D was stored as value of the component size, it was allowed to
access D.size if this component was bound, and a check for this was possible via IsBound(D.size).

In GAP 4, only the access via functions is admissible. One reason is the following basic rule.

From the information that a given GAP 4 object is for example a domain, one cannot conclude that this object
has a certain representation.

For attributes like Size, GAP 4 provides two related functions, the setter and the tester of the attribute, which can
be used to set an attribute value and to check whether the value of an attribute is already stored for an object (see also
“Attributes” in the GAP 4 Reference Manual). For example, if D is a domain in GAP 4 then HasSize(D) is true
if the size of D is already stored, and false otherwise. In the latter case, if you know that the size of D is size then
you may store it by SetSize(D, size).

Besides the flexibility in the internal representation of objects, storing information only via function calls has also the
advantage that GAP 4 is able to draw conclusions automatically. For example, as soon as it is stored that a group is
nilpotent, it is also stored that it is solvable, see Chapters “Types of Objects” and “Method Selection” in the GAP 4
Reference Manual for the details.

As a consequence, you cannot put your favourite information into a domain D by assigning it to a new component like
D.myPrivateInfo. Instead you can introduce a new attribute and then use its setter, see Section “Attributes” in the
GAP 4 Reference Manual.

1.9 Different Notions of Generation

As in GAP 3, a domain in GAP 4 is a structured set.

The same set can have different structures, for example a field can be regarded as a ring or as an algebra or vector
space over a subfield.

In GAP 3, however, an object representing a ring did not represent a field, and an object representing a field did not
represent a ring. One reason for this was that the record component generators was used to denote the appropriate
generators of the domain. For a ring R, the component R.generators was a list of ring generators, and for a field F,
F.generators was a list of field generators.

GAP 4 cleans this up, see “Notions of Generation” in the GAP 4 Tutorial. It supports many different notions of
generation, for example one can ask for magma generators of a group or for generators of a field as an additive group.
A subtle but important distinction is that between generators of an algebra and of an algebra-with-one.

So the attributes GeneratorsOfGroup, GeneratorsOfMagma, GeneratorsOfRing, GeneratorsOfField, Gener-
atorsOfVectorSpace, and so on, replace the access to the generators component.

1.10 Operations Records

Already in GAP 3 there were several functions that were applicable to many different kinds of objects, for example
Size could be applied to any domain, and the binary infix multiplication * could be used to multiply two matrices,
an integer with a row vector, or a permutation with a permutation group. This was implemented as follows. Functions
like Size and * tried to find out what situation was described by its arguments, and then it called a more specific
function to compute the desired information. These more specific functions, let us call them methods as they are also
called in GAP 4, were stored in so-called operations records of the arguments.

Section 12. Parents and Subgroups 9

For example, every domain in GAP 3 was represented as a record, and the operations record was stored in the record
component operations. If Size was called for the domain then the method to compute the size of the domain was
found as value of the Size component of the operations record.

This was fine for functions taking only one argument, and in principle it is possible that for those functions an object
stored an optimal method in its operations record. But in the case of more arguments this is not possible. In a mul-
tiplication of two objects in GAP 3, one had to choose between the methods stored in the operations records of the
arguments, and if for example the method stored for the left operand was called, this method had to handle all possible
right operands.

So operations records turned out to be not flexible enough. In GAP 4, operations records are not supported A detailed
description of the new mechanism to select methods can be found in Chapter “Method Selection” in the GAP 4
Reference Manual.

An important point is that the new mechanism allows GAP to take the relation between arguments into account. So
it is possible (and recommended) to install different methods for different relations between the arguments. Note that
such methods need not do the extensive argument checking that was necessary in GAP 3, because most of the checks
are done already by the method selection mechanism.

1.11 Operations vs. Dispatcher Functions

GAP 3 functions like Size, CommutatorSubgroup, or SylowSubgroup did mainly call an appropriate method
(see 1.10) after they had checked their arguments. Such functions were called dispatchers in GAP 3. In GAP 4,
many dispatchers have been replaced by operations, due to the fact that methods are no longer stored in operations
records (see “Method Selection” in in the GAP 4 Reference Manual for the details).

Most dispatchers taking only one argument were treated in a special way in GAP 3, they had the additional task of
storing computed values and using these values in subsequent calls. For example, the dispatcher Size first checked
whether the size of the argument was already stored, and if so then this value was returned; otherwise a method was
called, the value returned by this method was stored in the argument, and then returned by Size.

In GAP 4, computed values of operations that take one argument (these operations are called attributes) are also
stored, only the mechanism to achieve this has changed, see the sections “Attributes” and “Properties” in the GAP 4
Reference Manual.

So the behaviour of Size is the same in GAP 3 and GAP 4. But note that in GAP 4, it is not possible to access
D.size, see 1.8. As described in 1.10, GAP 4 does not admit “bypassing the dispatcher” by calling for example
D.operations.Size. This was done in GAP 3 often for efficiency reasons, but the method selection mechanism of
GAP 4 is fast enough to make this unnecessary.

If you had written your own dispatchers and put your own methods into existing operations records then this code
will not work in GAP 4. See “Creating New Objects” and “Method Selection” in the GAP 4 Reference Manual for a
description of how to define operations and to install methods.

Finally, some functions in GAP 3 were hidden in operations records, e.g., PermGroupOps.MovedPoints. These
functions became proper operations in GAP 4.

1.12 Parents and Subgroups

In GAP 3 there was a strict distinction between parent groups and subgroups. The use of the name “parent” (instead
of “supergroup”) was chosen to indicate that the parent of an object was more than just useful information. In fact the
main reason for the introduction of parents was to provide a common roof for example for all groups of polycyclic
words that belonged to the same PC-presentation, or for all subgroups of a finitely presented group (see 1.16). A
subgroup was never a parent group, and it was possible to create subgroups only of parent groups.

In GAP 4 this common roof is provided already by the concept of families, see Section “Families” in the GAP 4
Reference Manual. Thus it is no longer compulsory to use parent groups at all. On the other hand, parents may be
used in GAP 4 to provide information about an object, for example the normalizer of a group in its parent group may

10 Chapter 1. Migrating to GAP 4

be stored as an attribute value. Note that there is no restriction on the supergroup that is set to be the parent, it is
possible to create a subgroup of any group, this group then being the parent of the new subgroup. This permits for
example chains of subgroups with respective parents, of arbitrary length.

As a consequence, the Parent command cannot be used in GAP 4 to test whether the two arguments of Commuta-
torSubgroup fit together, this is now a question that concerns the relation between the families of the groups. So the
2-argument version of Parent and the now meaningless function IsParent have been abolished.

1.13 Homomorphisms vs. General Mappings

In GAP 3 there had been a confusion between group homomorphisms and general mappings, as GroupHomomor-
phismByImages created only a general mapping that did not store whether it was a mapping. This caused expensive,
unwanted, and unnecessary tests whether the mapping was in fact a group homomorphism. Moreover, the “official”
workaround to set some components of the mapping record was quite unwieldy.

In GAP 4, GroupHomomorphismByImages checks whether the desired mapping is indeed a group homomorphism;
if so then this property is stored in the returned mapping, otherwise fail is returned. If you want to avoid the checks
then you can use GroupHomomorphismByImagesNC. If you want to check whether a general mapping that respects
the group operations is really a group homomorphism, you can construct it via GroupGeneralMappingByImages
and then call IsGroupHomomorphism for it. (Note that IsGroupHomomorphism returns true if and only if both
IsGroupGeneralMapping and IsMapping do, so one does in fact check IsMapping in this case.)

There is no function IsHomomorphism in GAP 4, since there are several different operations with respect to which a
mapping can be a homomorphism.

1.14 Homomorphisms vs. Factor Structures

If F is a factor structure of G, with kernel N, complete information about the connection between F and G is provided
by the natural homomorphism.

In GAP 3, the “official way” to construct this natural homomorphism was to create first the factor structure F, and
then to call NaturalHomomorphism with the arguments G and F. For that, the data necessary to compute the homo-
morphism was stored in F when F was constructed.

In GAP 4, factor structures are not treated in a special way, in particular they do not store information about a
homomorphism. Instead, the more natural way is taken to construct the natural homomorphism from G and N by
NaturalHomomorphismByNormalSubgroup if N is a normal subgroup of the group G, or by NaturalHomomor-
phismByIdeal if N is an ideal in the ring G. The factor F can then be accessed as the image of this homomorphism,
and of course G is the preimage and N is the kernel.

Note that GAP 4 does not guarantee anything about the representation of the factor F, it may be a permutation group
or a polycyclically presented group or another kind of group. Also note that a natural homomorphism need not be
surjective.

A consequence of this change is that GAP 4 does not allow you to construct a natural homomorphism from the groups
G and F.

The other common type of homomorphism in GAP 3, “operation homomorphisms”, have been replaced (just a name
change) by action homomorphisms, which are handled in a similar fashion. That is, an action homomorphism is
constructed from an acting group, an action domain, and a function describing the operation. The permutation group
arising by the induced action is then the image of this operation homomorphism.

The GAP 3 function Operation is still supported, under the name Action, but from the original group and the result
of Action it is not possible to construct the action homomorphism.

Section 17. Polynomials 11

1.15 Isomorphisms vs. Isomorphic Structures

In GAP 3, a different representation of a group could be obtained by calling AgGroup to get an isomorphic polycycli-
cally presented group, PermGroup to get an isomorphic permutation group, and so on. The returned objects stored an
isomorphism in the record component bijection.

For the same reason as in 1.14, GAP 4 puts emphasis on the isomorphism, and the isomorphic object in the desired
representation can be accessed as its image. So you can call IsomorphismPcGroup or IsomorphismPermGroup in
order to get an isomorphism to a polycyclically presented group or a permutation group, respectively, and then call
Image to get the isomorphic group.

Note that the image of an action homomorphism with trivial kernel is also an isomorphic permutation group, but an
action homomorphism need not be surjective, since it may be easier to define it into the full symmetric group.

Further note that in GAP 3, a usual application of isomorphisms to polycyclically presented groups was to utilize the
usually more effective algorithms for solvable groups. However, the new concept of polycyclic generating systems in
GAP 4 makes it possible to apply these algorithms to arbitrary solvable groups, independent of the representation.
For example, GAP 4 can handle polycyclic generating systems of solvable permutation groups. So in many cases, a
change of the representation for efficiency reasons may be not necessary any longer.

In general IsomorphismFpGroupwill define a presentation on generators chosen by the algorithm. The corresponding
elements of the original group can be obtained by the command

gens:=List(GeneratorsOfGroup(Image(isofp)),i->PreImagesRepresentative(isofp,i));

If a presentation in the given generators is needed, the command IsomorphismFpGroupByGenerators(G, gens)
will produce one.

1.16 Elements of Finitely Presented Groups

Strictly speaking, GAP 3 did not support elements of finitely presented groups. Instead, the “words in abstract gener-
ators” of the underlying free groups were (mis)used. This caused problems whenever calculations with elements were
involved, the most obvious ones being wrong results of element comparisons. Also functions that should in principle
work for any group were not applicable to finitely presented groups. In effect, a finitely presented group had to be
treated in a special way in GAP 3.

GAP 4 distinguishes free groups and their elements from finitely presented groups and their elements. Comparing
two elements of a finitely presented group will yield either the correct result or no result at all.

Note that in GAP 4, the arithmetic and comparison operations for group elements do not depend on a context provided
by a group that contains the elements. In particular, in GAP 4 it is not meaningful to call Order(G, g) for a group
G and an element g.

1.17 Polynomials

In GAP 3, polynomials were defined over a field. So a polynomial over GF(3) was different from a polynomial over
GF(9), even if the coefficients were exactly the same.

GAP 4 defines polynomials only over a characteristic. This makes it possible for example to multiply a polynomial
over GF(3) with a polynomial over GF(9) without the need to convert the former to the larger field.

However it has an effect on the result of DefaultRing for polynomials: In GAP 3 the default ring for a polynomial
was the polynomial ring of the field over which the polynomial was defined. In GAP 4 no field is associated, so (to
avoid having to define the algebraic closure as the only other sensible alternative) the default ring of a polynomial is
the DefaultRing of its coefficients.

This has an effect on Factors: If no ring is given, a polynomial is factorized over its DefaultRing and so Fac-
tors(poly) might return different results.

To be safe from this problem, if you are not working over prime fields, rather call Factors(pring,poly) with the
appropriate polynomial ring and change your code accordingly.

12 Chapter 1. Migrating to GAP 4

1.18 The Info Mechanism

Sometimes it is useful to get information about the progress of a calculation. Many GAP functions contain statements
to display such information under certain conditions.

In GAP 3, these statements were calls to functions such as InfoGroup1 or InfoGroup2, and if the user assigned
Print to these variables then this had the effect to switch on the printing of information. InfoGroup2 was used for
more detailed information than InfoGroup1. One could switch off the printing again by assigning Ignore to the
variables, and Ignore was also the default value.

GAP 4 uses one function Info for the same purpose, which is a function that takes as first argument an info class
such as InfoGroup, as second argument an info level, and the print statements as remaining arguments. The level of
an info class class is set to level by calling SetInfoLevel(class, level). An Info statement is printed only if its
second argument is smaller than or equal to the current info level. For example,

gap> test:= function(obj)
> Info(InfoGroup, 2, "This is useful, isn’t it?");
> return obj;
> end;;
gap> test(1);
1
gap> SetInfoLevel(InfoGroup, 2);
gap> test(1);
#I This is useful, isn’t it?
1

As in GAP 3, if an info statement is ignored then its arguments are not evaluated.

1.19 Debugging

If GAP 4 runs into an error or is interrupted, it enters a break loop. The command Where(number), which replaces
Backtrace of GAP 3, can be used to display number lines of information about the current function call stack.

As in GAP 3, access is only possible to the variables of the current level in the function stack, but in GAP 4 the
function DownEnv, with a positive or negative integer as argument, permits one to step down or up in the stack.

When interrupting, the first line printed by Where actually may be one level higher, as the following example shows

gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop
gap> test:= function(n)
> if n > 3 then Error("!\n"); fi; test(n+1); end;;
gap> test(1);
Error, !
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv();

Section 19. Debugging 13

brk> n;
3
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();
called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3
brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

For purposes of debugging, it can be helpful sometimes, to see what information is stored within an object. In GAP 3
this was possible using RecFields because the objects in question were represented via records. For component
objects, GAP 4 permits the same by NamesOfComponents(object), which will list all components present.

	Contents
	Migrating to GAP 4
	Changed Command Line Options
	Fail
	Changed Functionality
	Changed Variable Names
	Naming Conventions
	Immutable Objects
	Copy
	Attributes vs. Record Components
	Different Notions of Generation
	Operations Records
	Operations vs. Dispatcher Functions
	Parents and Subgroups
	Homomorphisms vs. General Mappings
	Homomorphisms vs. Factor Structures
	Isomorphisms vs. Isomorphic Structures
	Elements of Finitely Presented Groups
	Polynomials
	The Info Mechanism
	Debugging

