Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

57 Modules
 57.1 Generating modules
 57.2 Submodules
 57.3 Free Modules

57 Modules

57.1 Generating modules

57.1-1 IsLeftOperatorAdditiveGroup
‣ IsLeftOperatorAdditiveGroup( D )( category )

A domain D lies in IsLeftOperatorAdditiveGroup if it is an additive group that is closed under scalar multiplication from the left, and such that \(\lambda * ( x + y ) = \lambda * x + \lambda * y\) for all scalars \(\lambda\) and elements \(x, y \in D\) (here and below by scalars we mean elements of a domain acting on D from left or right as appropriate).

57.1-2 IsLeftModule
‣ IsLeftModule( M )( category )

A domain M lies in IsLeftModule if it lies in IsLeftOperatorAdditiveGroup, and the set of scalars forms a ring, and \((\lambda + \mu) * x = \lambda * x + \mu * x\) for scalars \(\lambda, \mu\) and \(x \in M\), and scalar multiplication satisfies \(\lambda * (\mu * x) = (\lambda * \mu) * x\) for scalars \(\lambda, \mu\) and \(x \in M\).

gap> V:= FullRowSpace( Rationals, 3 );
( Rationals^3 )
gap> IsLeftModule( V );
true

57.1-3 GeneratorsOfLeftOperatorAdditiveGroup
‣ GeneratorsOfLeftOperatorAdditiveGroup( D )( attribute )

returns a list of elements of D that generates D as a left operator additive group.

57.1-4 GeneratorsOfLeftModule
‣ GeneratorsOfLeftModule( M )( attribute )

returns a list of elements of M that generate M as a left module.

gap> V:= FullRowSpace( Rationals, 3 );;
gap> GeneratorsOfLeftModule( V );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]

57.1-5 AsLeftModule
‣ AsLeftModule( R, D )( operation )

if the domain D forms an additive group and is closed under left multiplication by the elements of R, then AsLeftModule( R, D ) returns the domain D viewed as a left module.

gap> coll:= [[0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];
[ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ], 
  [ Z(2)^0, Z(2)^0 ] ]
gap> AsLeftModule( GF(2), coll );
<vector space of dimension 2 over GF(2)>

57.1-6 IsRightOperatorAdditiveGroup
‣ IsRightOperatorAdditiveGroup( D )( category )

A domain D lies in IsRightOperatorAdditiveGroup if it is an additive group that is closed under scalar multiplication from the right, and such that \(( x + y ) * \lambda = x * \lambda + y * \lambda\) for all scalars \(\lambda\) and elements \(x, y \in D\).

57.1-7 IsRightModule
‣ IsRightModule( M )( category )

A domain M lies in IsRightModule if it lies in IsRightOperatorAdditiveGroup, and the set of scalars forms a ring, and \(x * (\lambda + \mu) = x * \lambda + x * \mu\) for scalars \(\lambda, \mu\) and \(x \in M\), and scalar multiplication satisfies \((x * \mu) * \lambda = x * (\mu * \lambda)\) for scalars \(\lambda, \mu\) and \(x \in M\).

57.1-8 GeneratorsOfRightOperatorAdditiveGroup
‣ GeneratorsOfRightOperatorAdditiveGroup( D )( attribute )

returns a list of elements of D that generates D as a right operator additive group.

57.1-9 GeneratorsOfRightModule
‣ GeneratorsOfRightModule( M )( attribute )

returns a list of elements of M that generate M as a left module.

57.1-10 LeftModuleByGenerators
‣ LeftModuleByGenerators( R, gens[, zero] )( operation )

returns the left module over R generated by gens.

gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );
<vector space over GF(2^4), with 3 generators>

57.1-11 LeftActingDomain
‣ LeftActingDomain( D )( attribute )

Let D be an external left set, that is, D is closed under the action of a domain \(L\) by multiplication from the left. Then \(L\) can be accessed as value of LeftActingDomain for D.

57.2 Submodules

57.2-1 Submodule
‣ Submodule( M, gens[, "basis"] )( function )

is the left module generated by the collection gens, with parent module M. If the string "basis" is entered as the third argument then the submodule of M is created for which the list gens is known to be a list of basis vectors; in this case, it is not checked whether gens really is linearly independent and whether all in gens lie in M.

gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );;
gap> W:= Submodule( V, [ coll[1], coll[2] ] );
<vector space over GF(2^4), with 2 generators>
gap> Parent( W ) = V;
true

57.2-2 SubmoduleNC
‣ SubmoduleNC( M, gens[, "basis"] )( function )

SubmoduleNC does the same as Submodule (57.2-1), except that it does not check whether all in gens lie in M.

57.2-3 ClosureLeftModule
‣ ClosureLeftModule( M, m )( operation )

is the left module generated by the left module generators of M and the element m.

gap> V:= LeftModuleByGenerators(Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ]);
<vector space over Rationals, with 2 generators>
gap> ClosureLeftModule( V, [ 1, 1, 1 ] );
<vector space over Rationals, with 3 generators>

57.2-4 TrivialSubmodule
‣ TrivialSubmodule( M )( attribute )

returns the zero submodule of M.

gap> V:= LeftModuleByGenerators(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]]);;
gap> TrivialSubmodule( V );
<vector space over Rationals, with 0 generators>

57.3 Free Modules

57.3-1 IsFreeLeftModule
‣ IsFreeLeftModule( M )( category )

A left module is free as module if it is isomorphic to a direct sum of copies of its left acting domain.

Free left modules can have bases.

The characteristic (see Characteristic (31.10-1)) of a free left module is defined as the characteristic of its left acting domain (see LeftActingDomain (57.1-11)).

57.3-2 FreeLeftModule
‣ FreeLeftModule( R, gens[, zero][, "basis"] )( function )

FreeLeftModule( R, gens ) is the free left module over the ring R, generated by the vectors in the collection gens.

If there are three arguments, a ring R and a collection gens and an element zero, then FreeLeftModule( R, gens, zero ) is the R-free left module generated by gens, with zero element zero.

If the last argument is the string "basis" then the vectors in gens are known to form a basis of the free module.

It should be noted that the generators gens must be vectors, that is, they must support an addition and a scalar action of R via left multiplication. (See also Section 31.3 for the general meaning of "generators" in GAP.) In particular, FreeLeftModule is not an equivalent of commands such as FreeGroup (37.2-1) in the sense of a constructor of a free group on abstract generators. Such a construction seems to be unnecessary for vector spaces, for that one can use for example row spaces (see FullRowSpace (61.9-4)) in the finite dimensional case and polynomial rings (see PolynomialRing (66.15-1)) in the infinite dimensional case. Moreover, the definition of a "natural" addition for elements of a given magma (for example a permutation group) is possible via the construction of magma rings (see Chapter 65).

gap> V:= FreeLeftModule(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]], "basis");
<vector space of dimension 2 over Rationals>

57.3-3 Dimension
‣ Dimension( M )( attribute )

A free left module has dimension \(n\) if it is isomorphic to a direct sum of \(n\) copies of its left acting domain.

(We do not mark Dimension as invariant under isomorphisms since we want to call UseIsomorphismRelation (31.13-3) also for free left modules over different left acting domains.)

gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> Dimension( V );
2

57.3-4 IsFiniteDimensional
‣ IsFiniteDimensional( M )( property )

is true if M is a free left module that is finite dimensional over its left acting domain, and false otherwise.

gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> IsFiniteDimensional( V );
true

57.3-5 UseBasis
‣ UseBasis( V, gens )( operation )

The vectors in the list gens are known to form a basis of the free left module V. UseBasis stores information in V that can be derived form this fact, namely

gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );
gap> V;  # now V knows its dimension
<vector space of dimension 2 over Rationals>

57.3-6 IsRowModule
‣ IsRowModule( V )( property )

A row module is a free left module whose elements are row vectors.

57.3-7 IsMatrixModule
‣ IsMatrixModule( V )( property )

A matrix module is a free left module whose elements are matrices.

57.3-8 IsFullRowModule
‣ IsFullRowModule( M )( property )

A full row module is a module \(R^n\), for a ring \(R\) and a nonnegative integer \(n\).

More precisely, a full row module is a free left module over a ring \(R\) such that the elements are row vectors of the same length \(n\) and with entries in \(R\) and such that the dimension is equal to \(n\).

Several functions delegate their tasks to full row modules, for example Iterator (30.8-1) and Enumerator (30.3-2).

57.3-9 FullRowModule
‣ FullRowModule( R, n )( function )

is the row module R^n, for a ring R and a nonnegative integer n.

gap> V:= FullRowModule( Integers, 5 );
( Integers^5 )

57.3-10 IsFullMatrixModule
‣ IsFullMatrixModule( M )( property )

A full matrix module is a module \(R^{{[m,n]}}\), for a ring \(R\) and two nonnegative integers \(m\), \(n\).

More precisely, a full matrix module is a free left module over a ring \(R\) such that the elements are \(m\) by \(n\) matrices with entries in \(R\) and such that the dimension is equal to \(m n\).

57.3-11 FullMatrixModule
‣ FullMatrixModule( R, m, n )( function )

is the matrix module R^[m,n], for a ring R and nonnegative integers m and n.

gap> FullMatrixModule( GaussianIntegers, 3, 6 );
( GaussianIntegers^[ 3, 6 ] )
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 Bib Ind

generated by GAPDoc2HTML