Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

3 Generalized Morphism Category by Spans
 3.1 GAP Categories
 3.2 Properties
 3.3 Attributes
 3.4 Operations
 3.5 Constructors

3 Generalized Morphism Category by Spans

3.1 GAP Categories

3.1-1 IsGeneralizedMorphismCategoryBySpansObject
‣ IsGeneralizedMorphismCategoryBySpansObject( object )( filter )

Returns: true or false

The GAP category of objects in the generalized morphism category by spans.

3.1-2 IsGeneralizedMorphismBySpan
‣ IsGeneralizedMorphismBySpan( object )( filter )

Returns: true or false

The GAP category of morphisms in the generalized morphism category by spans.

3.2 Properties

3.2-1 HasIdentityAsReversedArrow
‣ HasIdentityAsReversedArrow( alpha )( property )

Returns: true or false

The argument is a generalized morphism \alpha by a span a \leftarrow b \rightarrow c. The output is true if a \leftarrow b is congruent to an identity morphism, false otherwise.

3.3 Attributes

3.3-1 UnderlyingHonestObject
‣ UnderlyingHonestObject( a )( attribute )

Returns: an object in \mathbf{A}

The argument is an object a in the generalized morphism category by spans. The output is its underlying honest object.

3.3-2 Arrow
‣ Arrow( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(b,c)

The argument is a generalized morphism \alpha by a span a \leftarrow b \rightarrow c. The output is its arrow b \rightarrow c.

3.3-3 ReversedArrow
‣ ReversedArrow( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{A}}(b,a)

The argument is a generalized morphism \alpha by a span a \leftarrow b \rightarrow c. The output is its reversed arrow a \leftarrow b.

3.3-4 NormalizedSpanTuple
‣ NormalizedSpanTuple( alpha )( attribute )

Returns: a pair of morphisms in \mathbf{A}.

The argument is a generalized morphism \alpha: a \rightarrow b by a span. The output is its normalized span pair (a \leftarrow d, d \rightarrow b).

3.3-5 PseudoInverse
‣ PseudoInverse( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)

The argument is a generalized morphism \alpha: a \rightarrow b by a span. The output is its pseudo inverse b \rightarrow a.

3.3-6 GeneralizedInverseBySpan
‣ GeneralizedInverseBySpan( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,a)

The argument is a morphism \alpha: a \rightarrow b \in \mathbf{A}. The output is its generalized inverse b \rightarrow a by span.

3.3-7 IdempotentDefinedBySubobjectBySpan
‣ IdempotentDefinedBySubobjectBySpan( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)

The argument is a subobject \alpha: a \hookrightarrow b \in \mathbf{A}. The output is the idempotent b \rightarrow b \in \mathbf{G(A)} by span defined by \alpha.

3.3-8 IdempotentDefinedByFactorobjectBySpan
‣ IdempotentDefinedByFactorobjectBySpan( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(b,b)

The argument is a factorobject \alpha: b \twoheadrightarrow a \in \mathbf{A}. The output is the idempotent b \rightarrow b \in \mathbf{G(A)} by span defined by \alpha.

3.3-9 NormalizedSpan
‣ NormalizedSpan( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)

The argument is a generalized morphism \alpha: a \rightarrow b by a span. The output is its normalization by span.

3.4 Operations

3.4-1 GeneralizedMorphismFromFactorToSubobjectBySpan
‣ GeneralizedMorphismFromFactorToSubobjectBySpan( beta, alpha )( operation )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(c,a)

The arguments are a a factorobject \beta: b \twoheadrightarrow c, and a subobject \alpha: a \hookrightarrow b. The output is the generalized morphism by span from the factorobject to the subobject.

3.5 Constructors

3.5-1 GeneralizedMorphismBySpan
‣ GeneralizedMorphismBySpan( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)

The arguments are morphisms \alpha: a \leftarrow c and \beta: c \rightarrow b in \mathbf{A}. The output is a generalized morphism by span with arrow \beta and reversed arrow \alpha.

3.5-2 GeneralizedMorphismBySpan
‣ GeneralizedMorphismBySpan( alpha, beta, gamma )( operation )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,d)

The arguments are morphisms \alpha: a \leftarrow b, \beta: b \rightarrow c, and \gamma: c \leftarrow d in \mathbf{A}. The output is a generalized morphism by span defined by the composition the given three arrows regarded as generalized morphisms.

3.5-3 GeneralizedMorphismBySpanWithRangeAid
‣ GeneralizedMorphismBySpanWithRangeAid( alpha, beta )( operation )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,c)

The arguments are morphisms \alpha: a \rightarrow b, and \beta: b \leftarrow c in \mathbf{A}. The output is a generalized morphism by span defined by the composition the given two arrows regarded as generalized morphisms.

3.5-4 AsGeneralizedMorphismBySpan
‣ AsGeneralizedMorphismBySpan( alpha )( attribute )

Returns: a morphism in \mathrm{Hom}_{\mathbf{G(A)}}(a,b)

The argument is a morphism \alpha: a \rightarrow b in \mathbf{A}. The output is the honest generalized morphism by span defined by \alpha.

3.5-5 GeneralizedMorphismCategoryBySpans
‣ GeneralizedMorphismCategoryBySpans( A )( attribute )

Returns: a category

The argument is an abelian category \mathbf{A}. The output is its generalized morphism category \mathbf{G(A)} by spans.

3.5-6 GeneralizedMorphismBySpansObject
‣ GeneralizedMorphismBySpansObject( a )( attribute )

Returns: an object in \mathbf{G(A)}

The argument is an object a in an abelian category \mathbf{A}. The output is the object in the generalized morphism category by spans whose underlying honest object is a.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Ind

generated by GAPDoc2HTML