Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

<, for two elements in a PathAlgebraModule 6.7-12
<, for two elements in a path algebra 4.5-2
<, for two elements of a path algebra 4.13-4
<, for two paths in a quiver 3.7-7
* 3.7-5
., for a path algebra 4.4-4
., for quiver 3.5-1
/ 6.7-13
1stSyzygy 8.1-1
= 3.7-6
\* (maps) 7.2-3
\+ (maps) 7.2-2
\=, for two path algebra matrix modules 6.1-3
\= (maps) 7.2-1
\^ 10.2-6
\in, elt. in path alg. and ideal 4.7-6
^, a PathAlgebraMatModule element and a PathAlgebra element 6.3-1
^, a PathAlgebraModule element and a PathAlgebra element 6.7-11
AddNthPowerToRelations 4.7-5
AdjacencyMatrixOfQuiver 3.5-4
AdmitsFinitelyManyNontips 5.3-1
AlgebraAsModuleOverEnvelopingAlgebra 4.16-11
AlgebraAsQuiverAlgebra 4.17-1
AllComplementsOfAlmostCompleteCotiltingModule 8.1-2
AllComplementsOfAlmostCompleteTiltingModule 8.1-2
AlmostSplitSequence 9.1-1
AlmostSplitSequence 9.1-1
AlmostSplitSequenceInPerpT 9.1-2
AnnihilatorOfModule 6.4-1
ARQuiverNumerical 13.3-1
ARQuiverNumerical 13.3-1
ARQuiverNumerical 13.3-1
ARQuiverNumerical 13.3-1
ArrowsOfQuiver 3.5-3
AssignGeneratorVariables 4.6-1
AssociatedMonomialAlgebra 4.4-1
BasicVersionOfModule 6.4-2
BasisOfProjectives 6.5-1
BilinearFormOfUnitForm 12.2-2
BlockDecompositionOfModule 6.4-3
BlockSplittingIdempotents 6.4-4
BoundariesOfComplex 10.5-6
BrutalTruncation 10.6-6
BrutalTruncationAbove 10.6-5
BrutalTruncationBelow 10.6-4
CanonicalAlgebra 4.14-1
CartanMatrix 4.12-1
CatOfComplex 10.5-1
CatOfRightAlgebraModules 10.3-2
Centre/Center 4.12-2
ChainMap 10.7-2
Coefficients 4.13-2
CoKernel 7.3-1
CoKernelOfWhat 7.2-4
CoKernelProjection 7.3-2
CommonDirectSummand 6.4-5
ComparisonLifting 10.7-8
ComparisonLiftingToProjectiveResolution 10.7-9
CompletelyReduce 5.3-2
CompletelyReduceGroebnerBasis 5.3-3
CompletelyReduceGroebnerBasisForModule 6.7-2
Complex 10.4-3
ComplexAndChainMaps 10.7-5
ComplexityOfAlgebra 4.12-3
ComplexityOfModule 6.4-6
ConnectedComponentsOfQuiver 3.5-11
ConstantInfList 10.2-25
CosyzygyTruncation 10.6-8
CotiltingModule 8.1-3
CoxeterMatrix 4.12-4
CoxeterPolynomial 4.12-5
Cut 10.2-20
CyclesOfComplex 10.5-5
DecomposeModule 6.4-7
DecomposeModuleWithMultiplicities 6.4-8
DegOrderDirectPredecessors 13.5-3
DegOrderDirectSuccessors 13.5-6
DegOrderLEQ 13.4-6
DegOrderLEQNC 13.4-7
DegOrderPredecessors 13.5-2
DegOrderPredecessorsWithDirect 13.5-4
DegOrderSuccessors 13.5-5
DegOrderSuccessorsWithDirect 13.5-7
DifferentialOfComplex 10.5-3
DifferentialsOfComplex 10.5-4
DimEnd 13.4-3
Dimension 4.12-6
Dimension, for a PathAlgebraMatModule 6.4-9
DimensionVector 6.4-10
DimensionVector, DimVectFT 13.4-1
DimHom 13.4-2
Direction 10.2-9
DirectSumInclusions 6.4-12
DirectSumOfQPAModules 6.4-11
DirectSumProjections 6.4-13
DominantDimensionOfAlgebra 8.1-4
DominantDimensionOfModule 8.1-5
DTr 6.6-3
DualOfAlgebraAsModuleOverEnvelopingAlgebra 4.16-12
DualOfModule 6.6-1
DualOfModuleHomomorphism 6.6-2
DualOfTranspose 6.6-3
DynkinQuiver, DynkinQuiver 3.2-2
ElementFunction 10.2-12
ElementOfIndecProjective 6.5-2
ElementOfPathAlgebra 4.5-1
ElementOfQuotientOfPathAlgebra 4.13-5
EndModuloProjOverAlgebra 7.3-3
EndOfModuleAsQuiverAlgebra 7.3-4
EndOverAlgebra 7.3-5
Enumerator 5.3-4
EnvelopingAlgebra 4.16-9
EulerBilinearFormOfAlgebra 12.2-9
ExtAlgebraGenerators 8.1-6
ExtOverAlgebra 8.1-7
FaithfulDimension 8.1-8
FiniteChainMap 10.7-4
FiniteComplex 10.4-5
FiniteInfList 10.2-26
FinitePartAsList 10.2-36
ForEveryDegree 10.5-17
FromEndMToHomMM 7.3-6
FromHomMMToEndM 7.3-7
FullSubquiver 3.5-10
FunctionInfList 10.2-24
GeneratorsOfQuiver 3.5-5
GlobalDimension 4.12-7
GlobalDimensionOfAlgebra 8.1-9
GorensteinDimension 8.1-10
GorensteinDimensionOfAlgebra 8.1-11
GroebnerBasis 5.1-2
GroebnerBasisOfIdeal 4.10-1
HalfInfList 10.2-21
HaveFiniteCoresolutionInAddM 8.1-12
HaveFiniteResolutionInAddM 8.1-13
HighestKnownDegree 10.5-12
HighestKnownPosition 10.2-32
HighestKnownValue 10.2-18
HomFactoringThroughProjOverAlgebra 7.3-8
HomFromProjective 7.3-9
HomologyOfComplex 10.5-7
HomomorphismFromImages 7.2-27
HomOverAlgebra 7.3-10
Ideal 4.7-1
IdealOfQuotient 4.7-2
IdentityMapping 7.2-5
Image 7.3-11
ImageElm 7.2-6
ImageInclusion 7.3-12
ImageOfWhat 7.2-8
ImageProjection 7.3-13
ImageProjectionInclusion 7.3-14
ImagesSet 7.2-7
IncludeInProductQuiver 4.16-4
IncomingArrowsOfVertex 3.8-1
IndecInjectiveModules 6.5-3
IndecProjectiveModules 6.5-4
InDegreeOfVertex 3.8-3
InfConcatenation 10.2-41
InfList 10.2-42
InfListType 10.2-10
InfoGroebnerBasis 5.1-1
InfoQuiver 3.1-1
InitialValue 10.2-16
InjDimension 8.1-14
InjDimensionOfModule 8.1-15
InjectiveEnvelope 8.1-16
InjectiveResolution 11.1-1
IntegersList 10.2-43
IntersectionOfSubmodules 6.4-14
IsAcyclicQuiver 3.3-2
IsAdmissibleIdeal 4.8-1
IsAdmissibleQuotientOfPathAlgebra 4.11-1
IsARQuiverNumerical 13.3-2
IsArrow 3.6-3
IsBasicAlgebra 4.17-2
IsCanonicalAlgebra 4.11-4
IsCat 10.3-1
IsChainMap 10.7-1
IsCompleteGroebnerBasis 5.2-2
IsCompletelyReducedGroebnerBasis 5.2-1
IsConnectedQuiver 3.3-4
IsCotiltingModule 8.1-17
IsDirectSummand 6.4-15
IsDirectSumOfModules 6.4-16
IsDistributiveAlgebra 4.11-5
IsDynkinQuiver 3.3-6
IsElementaryAlgebra 4.17-3
IsElementOfQuotientOfPathAlgebra 4.13-1
IsEnvelopingAlgebra 4.16-10
IsExactInDegree 10.5-15
IsExactSequence 10.5-14
IsExceptionalModule 6.4-17
IsFiniteComplex 10.5-8
IsFiniteDimensional 4.11-3
IsFiniteGlobalDimensionAlgebra 4.11-6
IsFiniteTypeAlgebra 4.11-24
IsGentleAlgebra 4.11-7
IsGorensteinAlgebra 4.11-8
IsGroebnerBasis 5.2-3
IsHalfInfList 10.2-5
IsHereditaryAlgebra 4.11-9
IsHomogeneousGroebnerBasis 5.2-4
IsIdealInPathAlgebra 4.8-2
IsInAdditiveClosure 6.4-19
IsIndecomposableModule 6.4-18
IsInfiniteNumber 10.2-1
IsInfList 10.2-4
IsInjective 7.2-9
IsInjectiveComplex 11.1-3
IsInjectiveModule 6.4-20
IsIsomorphism 7.2-10
IsKroneckerAlgebra 4.11-10
IsLeftDivisible 6.7-3
IsLeftMinimal 7.2-11
IsLeftUniform 4.5-3
IsMonomialAlgebra 4.11-11
IsMonomialIdeal 4.8-3
IsNakayamaAlgebra 4.11-12
IsNormalForm 4.13-3
IsOmegaPeriodic 8.1-18
IsomorphicModules 6.4-21
IsomorphismOfModules 7.3-15
IsPath 3.6-1
IsPathAlgebra 4.3-1
IsPathAlgebraMatModule 6.2-1
IsPathAlgebraModule 6.7-4
IsPathAlgebraModuleHomomorphism 7.1-1
IsPathAlgebraVector 6.7-5
IsPrefixOfTipInTipIdeal 5.3-5
IsProjectiveComplex 11.1-2
IsProjectiveModule 6.4-22
IsQPAComplex 10.4-1
IsQuadraticIdeal 4.8-4
IsQuiver 3.3-1
IsQuiverAlgebra 4.11-13
IsQuiverProductDecomposition 4.16-3
IsQuiverVertex 3.6-2
IsQuotientOfPathAlgebra 4.11-2
IsRadicalSquareZeroAlgebra 4.11-14
IsRepeating 10.2-15
IsRightGroebnerBasis 5.4-1
IsRightMinimal 7.2-12
IsRightUniform 4.5-4
IsRigidModule 6.4-23
IsSchurianAlgebra 4.11-15
IsSelfinjectiveAlgebra 4.11-16
IsSemicommutativeAlgebra 4.11-17
IsSemisimpleAlgebra 4.11-18
IsSemisimpleModule 6.4-24
IsShortExactSequence 10.5-16
IsSimpleQPAModule 6.4-25
IsSpecialBiserialAlgebra 4.11-19
IsSpecialBiserialQuiver 4.14-5
IsSplitEpimorphism 7.2-13
IsSplitMonomorphism 7.2-14
IsStoringValues 10.2-13
IsStringAlgebra 4.11-20
IsSurjective 7.2-15
IsSymmetricAlgebra 4.11-21
IsTauPeriodic 9.1-3
IsTauRigidModule 6.4-26
IsTipReducedGroebnerBasis 5.2-5
IsTreeQuiver 3.3-5
IsTriangularReduced 4.11-22
IsTtiltingModule 8.1-19
IsUAcyclicQuiver 3.3-3
IsUniform 4.5-5
IsUnitForm 12.2-1
IsWeaklyNonnegativeUnitForm 12.2-3
IsWeaklyPositiveUnitForm 12.2-4
IsWeaklySymmetricAlgebra 4.11-23
IsZero 6.4-28
IsZero 7.2-16
IsZeroComplex 10.4-2
IsZeroPath 3.6-4
Iterator 5.3-6
IyamaGenerator 8.1-20
Kernel 7.3-16
KernelInclusion 7.3-16
KernelOfWhat 7.2-17
KroneckerAlgebra 4.14-2
LeadingCoefficient 4.5-7
LeadingCoefficient (of PathAlgebraVector) 6.7-6
LeadingComponent 6.7-7
LeadingMonomial 4.5-8
LeadingPosition 6.7-8
LeadingTerm 4.5-6
LeadingTerm (of PathAlgebraVector) 6.7-9
LeftApproximationByAddTHat 8.1-21
LeftDivision 6.7-10
LeftFacMApproximation 8.1-22
LeftInverseOfHomomorphism 7.2-18
LeftMinimalVersion 7.3-17
LeftMutationOfCotiltingModuleComplement 8.1-23
LeftMutationOfTiltingModuleComplement 8.1-23
LeftSubMApproximation 8.1-24
LengthOfComplex 10.5-11
LengthOfPath 3.7-3
LiftingCompleteSetOfOrthogonalIdempotents 4.18-1
LiftingIdempotent 4.18-2
LiftingInclusionMorphisms 8.1-25
LiftingMorphismFromProjective 8.1-26
LoewyLength 4.12-8
LoewyLength, for a PathAlgebraMatModule 6.4-27
LowerBound 10.2-35
LowerBound 10.5-10
LowestKnownDegree 10.5-13
LowestKnownPosition 10.2-17
LowestKnownPosition 10.2-33
MakeHalfInfList 10.2-7
MakeInfList 10.2-23
MakeInfListFromHalfInfLists 10.2-22
MakeUniformOnRight 4.5-9
MappedExpression 4.5-10
MappingCone 10.7-10
MatricesOfPathAlgebraMatModuleHomomorphism 7.2-19
MatricesOfPathAlgebraModule 6.4-29
MaximalCommonDirectSummand 6.4-30
MiddleEnd 10.2-28
MiddlePart 10.2-29
MiddleStart 10.2-27
MinimalGeneratingSetOfModule 6.4-32
MinimalLeftAddMApproximation 8.1-27
MinimalLeftApproximation 8.1-27
MinimalLeftFacMApproximation 8.1-22
MinimalLeftSubMApproximation 8.1-24
MinimalRightAddMApproximation 8.1-28
MinimalRightApproximation 8.1-28
MinimalRightFacMApproximation 8.1-40
MinimalRightSubMApproximation 8.1-42
ModulesOfDimVect 13.5-1
MorphismOfChainMap 10.7-6
MorphismOnCoKernel 8.1-29
MorphismOnImage 8.1-29
MorphismOnKernel 8.1-29
MorphismsOfChainMap 10.7-7
N_RigidModule 8.1-43
NakayamaAlgebra 4.14-3
NakayamaAutomorphism 4.12-9
NakayamaFunctorOfModule 6.6-4
NakayamaFunctorOfModuleHomomorphism 6.6-5
NakayamaPermutation 4.12-10
NegativeInfinity 10.2-3
NegativePart 10.2-31
NegativePartFrom 10.2-38
NeighborsOfVertex 3.8-5
NewValueCallback 10.2-14
Nontips 5.3-7
NontipSize 5.3-8
NthPowerOfArrowIdeal 4.7-4
NthSyzygy 8.1-30
NthSyzygyNC 8.1-31
NumberOfArrows 3.5-7
NumberOfComplementsOfAlmostCompleteCotiltingModule 8.1-32
NumberOfComplementsOfAlmostCompleteTiltingModule 8.1-32
NumberOfIndecomposables 13.3-3
NumberOfNonIsoDirSummands 6.4-31
NumberOfProjectives 13.3-4
NumberOfVertices 3.5-6
ObjectOfComplex 10.5-2
OppositePath 4.15-1
OppositePathAlgebra 4.15-2
OppositePathAlgebraElement 4.15-3
OppositeQuiver 3.5-9
OrbitCodim 13.4-5
OrbitDim 13.4-4
OrderedBy 3.2-3
OrderingOfAlgebra 4.4-3
OrderingOfQuiver 3.5-8
OrderOfNakayamaAutomorphism 4.12-11
OriginalPathAlgebra 4.13-6
OutDegreeOfVertex 3.8-4
OutgoingArrowsOfVertex 3.8-2
PathAlgebra 4.2-1
PathAlgebraOfMatModuleMap 7.2-20
PathAlgebraVector 6.7-14
PathsOfLengthTwo 4.7-3
PositiveInfinity 10.2-2
PositivePart 10.2-30
PositivePartFrom 10.2-37
PositiveRootsOfUnitForm 12.2-5
PredecessorOfModule 9.1-4
PreImagesRepresentative 7.2-21
PrimitiveIdempotents 4.17-4
PrintMultiplicityVector 13.4-8
PrintMultiplicityVectors 13.4-9
ProductOfIdeals 4.9-1
ProjDimension 8.1-33
ProjDimensionOfModule 8.1-34
ProjectFromProductQuiver 4.16-5
ProjectiveCover 8.1-35
ProjectivePathAlgebraPresentation 6.7-15
ProjectiveResolution 11.1-4
ProjectiveResolutionOfComplex 11.2-1
ProjectiveResolutionOfPathAlgebraModule 8.1-36
ProjectiveToInjectiveComplex 11.2-2
ProjectiveToInjectiveFiniteComplex 11.2-2
PullBack 8.1-37
PushOut 8.1-38
QuadraticFormOfUnitForm 12.2-6
QuadraticPerpOfPathAlgebraIdeal 4.9-2
Quiver, adjacenymatrix 3.2-1
Quiver, lists of vertices and arrows 3.2-1
Quiver, no. of vertices, list of arrows 3.2-1
QuiverOfPathAlgebra 4.4-2
QuiverProduct 4.16-1
QuiverProductDecomposition 4.16-2
RadicalOfModule 6.4-33
RadicalOfModuleInclusion 7.3-19
RadicalSeries 6.4-34
RadicalSeriesOfAlgebra 4.12-12
Range 7.2-22
ReadAlgebra 4.19-1
RejectOfModule 7.3-20
RelationsOfAlgebra 4.5-12
RepeatingList 10.2-11
RightAlgebraModuleToPathAlgebraMatModule 6.1-2
RightApproximationByPerpT 8.1-39
RightFacMApproximation 8.1-40
RightGroebnerBasis 5.4-2
RightGroebnerBasisOfIdeal 5.4-3
RightGroebnerBasisOfModule 6.7-16
RightInverseOfHomomorphism 7.2-23
RightMinimalVersion 7.3-18
RightModuleHomOverAlgebra 7.1-2
RightModuleOverPathAlgebra, no dimension vector 6.1-1
RightModuleOverPathAlgebra, with dimension vector 6.1-1
RightModuleOverPathAlgebraNC, no dimension vector 6.1-1
RightMutationOfCotiltingModuleComplement 8.1-41
RightMutationOfTiltingModuleComplement 8.1-41
RightProjectiveModule 6.7-1
RightSubMApproximation 8.1-42
SaveAlgebra 4.19-2
SeparatedQuiver 3.5-12
Shift 10.2-19
Shift 10.2-39
Shift 10.6-1
ShiftUnsigned 10.6-2
ShortExactSequence 10.4-7
SimpleModules 6.5-5
SimpleTensor 4.16-7
SocleOfModule 6.4-36
SocleOfModuleInclusion 7.3-21
SocleSeries 6.4-35
Source 7.2-24
SourceOfPath 3.7-1
Splice 10.2-40
StalkComplex 10.4-6
StarOfMapBetweenDecompProjectives 11.2-5
StarOfMapBetweenIndecProjectives 11.2-5
StarOfMapBetweenProjectives 11.2-5
StarOfModule 6.6-6
StarOfModuleHomomorphism 6.6-7
StartPosition 10.2-8
SubRepresentation 6.4-37
SubRepresentationInclusion 7.3-22
SumOfSubmodules 6.4-38
SupportModuleElement 6.4-39
SymmetricMatrixOfUnitForm 12.2-7
SyzygyCosyzygyTruncation 10.6-9
SyzygyTruncation 10.6-7
TargetOfPath 3.7-2
TargetVertex 6.7-17
TauOfComplex 11.2-3
TensorProductDecomposition 4.16-8
TensorProductOfAlgebras 4.16-6
TensorProductOfModules 6.6-8
TiltingModule 8.1-44
Tip 4.5-6
TipCoefficient 4.5-7
TipMonomial 4.5-8
TipReduce 5.3-9
TipReduceGroebnerBasis 5.3-10
TitsUnitFormOfAlgebra 12.2-8
TopOfModule 6.4-40
TopOfModuleProjection 7.3-23
TraceOfModule 7.3-24
TransposeOfDual 6.6-9
TransposeOfModule 6.6-10
TrD 6.6-9
TrivialExtensionOfQuiverAlgebra 4.16-13
TruncatedPathAlgebra 4.14-4
UniformGeneratorsOfModule 6.7-18
UnitForm 12.2-10
UpperBound 10.2-34
UpperBound 10.5-9
Vectorize 6.7-19
VertexPosition 4.5-11
VerticesOfQuiver 3.5-2
WalkOfPath 3.7-4
YonedaProduct 10.6-3
Zero 7.2-25
ZeroChainMap 10.7-3
ZeroComplex 10.4-4
ZeroMapping 7.2-26
ZeroModule 6.5-6

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 Bib Ind

generated by GAPDoc2HTML