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Chapter 1

Introduction

1.1 Philosophy

This package implements a complete infrastructure for vectors over finite fields. The basic idea is,
that one can store an element of a finite field using only a few bits rather than a full machine word.
Therefore one can pack more than one finite field element in a machine word. This approach not only
saves memory but also allows fast arithmetic.

Contrary to other implementations this package uses long word instructions for arithmetic and
other operations rather than table lookups, because modern microprocessor designs seem to support
faster memory access in this way and memory access is the main limiting factor for computations over
finite fields. This approach also allows for bigger finite fields with more than 256 elements. For a
more detailed descriptions of this design see Chapter 3.

The main purpose of this implementation is to use it in MeatAxe-like applications, that is, working
with matrices consisting of compressed vectors over finite fields, doing linear algebra calculations like
nullspaces, spinning of vectors, multiplying and inverting matrices and the like. Another purpose
could be matrix group calculations. Usually in such computations, the base field does not change too
often and not many different lengths of vectors occur. This implementation is optimized with these
applications in mind and might not be very efficient for other purposes like using compressed vectors
as coefficient lists of polynomials.

Another important point is that compressed vectors in this package do not even try to behave
exactly like GAP lists. To the contrary, they disallow many operations that are possible for GAP lists
for example changing their length or assigning arbitrary GAP objects to positions in the vector. The
reason for this is that the chosen data structure does not allow to assign anything but elements of the
one base field to positions in the vector and the option to change the representation “on the fly” is not
desirable in most applications. On the other hand one can be relatively sure not to “lose compression”
along the way.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 describes the basic design and all
the data structures used in this package, including the external representation of matrices on storage.
These descriptions might be very valuable to understand the behaviour of the implementation and
various performance issues. Those and other performance issues are covered in Chapter 7, where
you mainly find hints on how to tune your own programs that use this package. Chapters 4 to 5
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describe the available functionality for vectors and matrices respectively. Chapter 8 describes, how
the functionality in this package is or is not usable in connection with the GAP library. Finally,
Chapter 9 shows instructive examples for the usage of this package.

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

https://github.com/gap-packages/cvec/issues


Chapter 2

Installation of the cvec-Package

To get the newest version of this GAP 4 package download one of the archive files

• cvec-x.x.tar.gz

• cvec-x.x.tar.bz2

• cvec-x.x.zip

and unpack it using

gunzip cvec-x.x.tar.gz; tar xvf cvec-x.x.tar

or

bzip2 -d cvec-x.x.tar.bz2; tar xvf cvec-x.x.tar

or

unzip -x cvec-x.x.zip

respectively.
Do this in a directory called “pkg”, preferably (but not necessarily) in the “pkg” subdirectory of

your GAP 4 installation. It creates a subdirectory called “cvec”.
The package will not work without the following compilation step.
To compile the C part of the package do (in the pkg directory)

cd cvec
./configure
make

If you installed the package in another “pkg” directory than the standard “pkg” directory in your
GAP 4 installation, then you have to do two things. Firstly during compilation you have to use the
option –with-gaproot=PATH of the configure script where “PATH” is a path to the main GAP root
directory (if not given the default “../..” is assumed).

Secondly you have to specify the path to the directory containing your “pkg” directory to GAP’s
list of directories. This can be done by starting GAP with the “-l” command line option followed by
the name of the directory and a semicolon. Then your directory is prepended to the list of directories
searched. Otherwise the package is not found by GAP. Of course, you can add this option to your
GAP startup script.

7



Chapter 3

The Data Structures

This chapter describes all the data structures used in this package. We start with a section on finite
fields and what is already there in the GAP kernel and library. Then we describe compressed vectors
and compressed matrices.

3.1 Finite field elements

Throughout the package, elements in the field GF(p) of p elements are represented by numbers
0,1, . . . , p−1 and arithmetic is just the standard arithmetic in the integers modulo p.

Bigger finite fields are done by calculating in the polynomial ring
GF(p)[x] in one indeterminate x modulo a certain irreducible polyno-
mial. By convention, we use the so-called “Conway polynomials” (see
http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol/index.html)
for this purpose, because they provide a standard way of embedding finite fields into their extension
fields. Because Conway polynomials are monic, we can store coset representatives by storing
polynomials of degree less than d, where d is the degree of the finite field over its prime field.

As of this writing, GAP has two implementation of finite field elements built into its kernel and
library, the first of which stores finite field elements by storing the discrete logarithm with respect
to a primitive root of the field. Although this is nice and efficient for small finite fields, it becomes
unhandy for larger finite fields, because one needs a lookup table of length pd for doing efficient
addition. This implementation thus is limited to fields with less than or equal to 65536 elements. The
other implementation using polynomial arithmetic modulo the Conway polynomial is used for fields
with more than 65536 elements. For prime fields of characteristic p with more than that elements,
there is an implementation using integers modulo p.

3.2 Compressed Vectors in Memory

3.2.1 Packing of prime field elements

For this section, we assume that the base field is GF(pd), the finite field with pd elements, where p is
a prime and d is a positive integer. This is realized as a field extension of degree d over the prime field
GF(p) using the Conway polynomial c ∈ GF(p)[x]. We always represent field elements of GF(pd)
by polynomials a = ∑

d−1
i=0 aixi where the coefficients ai are in GF(p). Because c is monic, this gives a

one-to-one correspondence between polynomials and finite field elements.

8
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The memory layout for compressed vectors is determined by two important constants, depend-
ing only on p and the word length of the machine. The word length is 4 bytes on 32bit machines
(for example on the i386 architecture) and 8 bytes on 64bit machines (for example on the AMD64
architecture). More concretely, a “Word” is an unsigned long int in C and the length of a Word is
sizeof(unsigned long int).

Those constants are bitsperel (bits per prime field element) and elsperword (prime field
elements per Word). bitsperel is 1 for p = 2 and otherwise the smallest integer, such that
2bitsperel > 2 · p− 1. This means, that we can store the numbers from 0 to 2 · p− 1 in bitsperel
bits. elsperword is 32/bitsperel rounded down to the next integer and multiplied by 2 if the length
of a Word is 8 bytes. Note that we thus store as many prime field elements as possible into one Word,
however, on 64bit machines we store only twice as much as would fit into 32bit, even if we could pack
one more into a Word. This has technical reasons to make conversion between different architectures
more efficient.

These definitions imply that we can put elsperword prime field elements into one Word. We
do this by using the bitsperel least significant bits in the Word for the first prime field element,
using the next bitsperel bits for the next prime field element and so on. Here is an example that
shows how the 6 finite field elements 0,1,2,3,4,5 of GF(11) are stored in that order in one 32bit
Word. bitsperel is here 4, because 24 < 2 ·11−1 = 21 < 25. Therefore elsperword is 5 on a 32bit
machine.

Example
most significant xx|.....|.....|.....|.....|.....|..... least significant

00|00101|00100|00011|00010|00001|00000
| 5| 4| 3| 2| 1| 0

Here is another example that shows how the 20 finite field elements
0,1,2,0,0,0,1,1,1,2,2,2,0,1,2,2,1,0,2,2 of GF(3) are stored in that order in one 64bit Word.
bitsperel is here 3, because 22 < 2 · 3− 1 = 5 < 23. Therefore elsperword is 20 on a 32bit
machine. Remember, that we only put twice as many elements in one 64bit Word than we could in
one 32bit Word!

Example
xxxx..!..!..!..!..!..!..!..!..!..!..!..!..!..!..!..!..!..!..!..!
0000010010000001010010001000010010010001001001000000000010001000

2 2 0 1 2 2 1 0 2 2 2 1 1 1 0 0 0 2 1 0

(The exclamation marks mark the right hand side of the prime field elements.)
Note that different architectures store their Words in a different byte order in memory (“endi-

aness”). We do not specify how the data is distributed into bytes here! All access is via Words and
their arithmetic (shifting, addition, multiplication, etc.). See Section 3.4 for a discussion of this with
respect to our external representation.

3.2.2 Extension Fields

Now that we have seen how prime field elements are packed into Words, we proceed to the description
how compressed vectors are stored over arbitrary extension fields:

Assume a compressed vector has length l with l ≥ 0. If d = 1 (prime field), it just uses
elsperword/l Words (division rounded up to the next integer), where the first Word stores the left-
most elsperword field elements in the first Word as described above and so on. This means, that the
very first field element is stored in the least significant bits of the first Word.
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In the extension field case GF(pd), a vector of length l uses (elsperword/l) ∗ d Words (division
rounded up to the next integer), where the first d Words store the leftmost elsperword field ele-
ments. The very first word stores all the constant coefficients of the polynomials representing the first
elsperword field elements in their order from left to right, the second Word stores the coefficients of
x1 and so on until the d’th Word, which stores the coefficients of xd−1. Unused entries behind the end
of the actual vector data within the last Word has to be zero!.

The following example shows, how the 9 field elements x2 + x+1, x2 +2x+2, x2 +3x+3, x2 +
4x+4, 2x2 +x, 2x2 +3x+1, 2x2 +4x+2, 3x2 +1, and 4x2 +x+3 of GF(53) occurring in a vector of
length 9 in that order are stored on a 32bit machine:

Example
^^^ lower memory addresses ^^^

....|....|....|....|....|....|....|.... (least significant bit)
1st Word: 0001|0010|0001|0000|0100|0011|0010|0001| (first
2nd Word: 0000|0100|0011|0001|0100|0011|0010|0001| 8 field
3rd Word: 0011|0010|0010|0010|0001|0001|0001|0001| elements)
---------------------------------------------------
4th Word: 0000|0000|0000|0000|0000|0000|0000|0011| (second
5th Word: 0000|0000|0000|0000|0000|0000|0000|0001| 8 field
6th Word: 0000|0000|0000|0000|0000|0000|0000|0100| elements)
VVV higher memory addresses VVV

A “cvec” (one of our compressed vectors) is a GAP “Data object” (that is with TNUM equal to
T_DATOBJ). The first machine word in its bag is a pointer to its type, from the second machine word
on the Words containing the above data are stored. The bag is exactly long enough to hold the type
pointer and the data Words.

3.2.3 How is information about the base field stored?

But how does the system know, over which field the vector is and how long it is? The type of a GAP
object consists of 3 pieces: A family, a bit list (for the filters), and one GAP object for “defining data”.
The additional information about the vector is stored in the third piece, the defining data, and is called
a “cvecclass”.

A cvecclass is a positional object with 5 components:

Position Name Content
1 IDX_fieldinfo a fieldinfo object, see below
2 IDX_len the length of the vector as immediate GAP integer
3 IDX_wordlen the number of Words used as immediate GAP integer
4 IDX_type a GAP type used to create new vectors
5 IDX_GF a GAP object for the base field
6 IDX_lens a list holding lengths of vectors in cvecclasses for the same field
7 IDX_classes a list holding cvecclasses for the same field with lengths as in entry number 6

Table: Components of a cvecclass

In position 5 we have just the GAP finite field object GF(p,d). The names appear as symbols in
the code.

The field is described by the GAP object in position 1, a so-called fieldinfo object, which is
described in the following table:
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Position Name Content
1 IDX_p p as an immediate GAP integer
2 IDX_d d as an immediate GAP integer
3 IDX_q q = pd as a GAP integer
4 IDX_conway a GAP string containing the coefficients of the Conway Polynomial as unsigned int []
5 IDX_bitsperel number of bits per element of the prime field (bitsperel)
6 IDX_elsperword prime field elements per Word (elsperword)
7 IDX_wordinfo a GAP string containing C data for internal use
8 IDX_bestgrease the best grease level (see Section 5.8)
9 IDX_greasetabl the length of a grease table using best grease

10 IDX_filts a filter list for the creation of new vectors over this field
11 IDX_tab1 a table for GF(q) to [0..q-1] conversion if q≤ 65536
12 IDX_tab2 a table for [0..q-1] to GF(q) conversion if q≤ 65536
13 IDX_size 0 for q≤ 65536, otherwise 1 if q is a GAP immediate integer and 2 if not
14 IDX_scafam the scalars family

Table: Components of a fieldinfo

Note that GAP has a family for all finite field elements of a given characteristic p, vectors over a
finite field are then in the collections family of that family and matrices are in the collections family of
the collections family of the scalars family. We use the same families in the same way for compressed
vectors and matrices.

3.2.4 Limits that follow from the Data Format

The following limits come from the above mentioned data format or other internal restrictions (an
“immediate integer” in GAP can take values between 2−28 and (228)−1 inclusively on 32bit machines
and between 2−60 and (260)−1 on 64bit machines):

• The prime p must be an immediate integer.

• The degree d must be smaller than 1024 (this limit is arbitrarily chosen at the moment and could
be increased easily).

• The Conway polynomial must be known to GAP.

• The length of a vector must be an immediate integer.

3.3 Compressed Matrices

The implementation of cmats (compressed matrices) is done mainly on the GAP level without using
too many C parts. Only the time critical parts for some operations for matrices are done in the kernel.

A cmat object is a positional object with at least the following components:

Component name Content
len the number of rows, can be 0
vecclass a cvecclass object describing the class of rows
scaclass a cscaclass object holding a reference to GF(p,d)
rows a list containing the rows of the matrix, which are cvecs
greasehint the recommended greasing level
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Table: Components of a cmat object

The cvecclass in the component vecclass determines the number of columns of the matrix by
the length of the rows.

The length of the list in component rows is len+1, because the first position is equal to the integer
0 such that the type of the list rows can always be computed efficiently. The rows are then stored in
positions 2 to len+1.

The component greasehint contains the greasing level for the next matrix multiplication, in
which this matrix occurs as the factor on the right hand side (if greasing is worth the effort, see
Section 5.8).

A cmat can be “pre-greased”, which just means, that a certain number of linear combinations of
its rows is already precomputed (see Section 5.8). In that case, the object is in the additional filter
HasGreaseTab and the following components are bound additionally:

Component name Content
greaselev the grease level
greasetab the grease table, a list of lists of cvecs
greaseblo the number of greasing blocks
spreadtab a lookup table for indexing the right linear combination

Table: Additional components of a cmat object when pre-greased

3.4 External Representation of Matrices on Storage

3.4.1 Byte ordering and word length

This section describes the external representation of matrices. A special data format is needed here,
because of differences between computer architectures with respect to word length (32bit/64bit) and
endianess. The term “endianess” refers to the fact, that different architectures store their long words in
a different way in memory, namely they order the bytes that together make up a long word in different
orders.

The external representation is the same as the internal format of a 32bit machine with little en-
dianess, which means, that the lower significant bytes of a Word are stored in lower addresses. The
reasons for this decision are firstly that 64bit machines can do the bit shifting to convert between in-
ternal and external representation easier using their wide registers, and secondly, that the nowadays
most popular architectures i386 and AMD64 use both little endianess, such that conversion is only
necessary on a minority of machines.

3.4.2 The header of a cmat file

The header of a cmat file consists of 5 words of 64bit each, that are stored in little endian byte order:

the magic value “GAPCMat1” as ASCII letters (8 bytes) in this order
the value of p to describe the base field
the value of d to describe the base field
the number of rows of the matrix
the number of columns of the matrix

Table: Header of a cmat file
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After these 40 bytes follow the data words as described above using little endian 32bit Words as in
the internal representation on 32bit machines.

Note that the decision to put not more than twice as many prime field elements into a 64bit Word
than would fit into a 32bit Word makes the conversion between internal and external representation
much easier to implement.



Chapter 4

Vectors

See Section 3.2 for a documentation of the data format of cvecs and its restrictions.

4.1 Creation

Note that many functions described later in this chapter implicitly create new cvecs, such that it is
usually only in the beginning of a calculation necessary to create cvecs explicitly.

4.1.1 CVec

. CVec(arg) (operation)

Returns: a new mutable cvec
Creates a new cvec. See the method descriptions for details.

4.1.2 CVec (cvecclass)

. CVec(cvecclass) (method)

Returns: a new mutable cvec
cvecclass must be a cvecclass. Creates a new cvec containing only zeroes. For an explanation

of the term cvecclass see Section 3.2 and CVecClass (4.1.12).

4.1.3 CVec (coefflcvecclass)

. CVec(coeffs, cvecclass) (method)

Returns: a new mutable cvec
This method takes a coefficient list and a cvecclass as arguments. Assume the vector will be

over GF(p,d) with q = pd . For the coefficient list coeffs there exist several possibilities, partially
depending on the base field size. The easiest way is to use GAP finite field elements, which will be put
into the new vector in the same order. If d = 1, one can always use GAP immediate integers between
0 and p− 1, the vector will then contain the corresponding cosets in GF(p) = Z/pZ. If q is small
enough to be a GAP immediate integer, then one can use GAP immediate integers that are equal to
the p-adic expansion using the coefficients of the representing polynomial as coefficients. That is, if
an element in GF(p,d) is represented by the polynomial ∑

d−1
i=0 aixi with ai ∈ {0, . . . , p−1}, then one

has to put ∑
d−1
i=0 ai pi as integer into the coefficient list coeffs . If q is larger, then coeffs must be

a list of lists of length d and contains for each field element of GF(p,d) in the vector a list of its d

14
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coefficients of the representing polynomial. For an explanation of the term cvecclass see Section
3.2 and CVecClass (4.1.12). Of course, the length of the list coeffs must match the length of the
vector given in the cvecclass.

4.1.4 CVec (coefflpd)

. CVec(coeffs, p, d) (method)

Returns: a new mutable cvec
This method takes a coefficient list and two positive integers p and d as arguments. A new cvec

over GF(p,d) will be created. Let q := pd .
For a description of the possible values of the coefficient list coeffs see the description of the

method CVec (4.1.3).

4.1.5 CVec (compvec)

. CVec(v) (method)

Returns: a new cvec
v must be a GAP compressed vector either over GF(2) or GF(p,d) with pd ≤ 256. Creates a new

cvec containing the same numbers as v over the field which the Field operation returns for v .

4.1.6 CVec (coefflff)

. CVec(coeffs, f) (method)

Returns: a new mutable cvec
This method takes a coefficient list and a finite field f as arguments. A new cvec over f will be

created. Let q :=Size(f).
For a description of the possible values of the coefficient list coeffs see the description of the

method CVec (4.1.3).
After having encountered the concept of a cvecclass already a few times it is time to learn how

to create one. The following operation is used first to create new cvecclasses and second to ask a
cvec for its class. In addition, it is used for cscas.

4.1.7 CVecClass

. CVecClass(arg) (operation)

Returns: a cvecclass
Creates new cvecclasses and asks cvecs for their class. See the following method descriptions

for details. For an explanation of the term cvecclass see Section 3.2.

4.1.8 CVecClass

. CVecClass(p, d, l) (method)

Returns: a cvecclass
All three arguments must be integers. The arguments p and d must be positive and describe the

base field GF(p,d). The third argument must be non-negative and the method returns the cvecclass
of vectors over GF(p,d) of length l .

For an explanation of the term cvecclass and its data structure see Section 3.2.
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4.1.9 CVecClass

. CVecClass(v) (method)

Returns: a cvecclass
The argument v must be a cvec. The method returns the corresponding cvecclass. For an

explanation of the term cvecclass and its data structure see Section 3.2.

4.1.10 CVecClass

. CVecClass(v, l) (method)

Returns: a cvecclass
The argument v must be a cvec. The method returns the corresponding cvecclass for vectors

over the same field as v but with length l . This is much faster than producing the same object by
giving p and d. For an explanation of the term cvecclass and its data structure see Section 3.2.

4.1.11 CVecClass

. CVecClass(c, l) (method)

Returns: a cvecclass
The argument c must be a cvecclass. The method returns the corresponding cvecclass for

vectors over the same field as those in c but with length l . This is much faster than producing the
same object by giving p and d. For an explanation of the term cvecclass and its data structure see
Section 3.2.

4.1.12 CVecClass

. CVecClass(f, l) (method)

Returns: a cvecclass
The argument f must be a finite field. The method returns the corresponding cvecclass for

vectors over the field f with length l . For an explanation of the term cvecclass and its data structure
see Section 3.2.

4.1.13 ZeroSameMutability (cvec)

. ZeroSameMutability(v) (method)

Returns: the zero cvec in the same cvecclass as v
v must be a cvec.

4.1.14 ShallowCopy (cvec)

. ShallowCopy(v) (method)

Returns: a mutable copy of v
v must be a cvec.

4.1.15 Randomize (cvec)

. Randomize(v) (method)

. Randomize(v, rs) (method)

Returns: the vector v
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v must be a cvec and rs must be a random source object if given. This method changes the
vector v in place by (pseudo) random values in the field over which the vector lives. If a random
source is given, the pseudo random numbers used are taken from this source, otherwise the global
random source in the GAP library is taken.

4.2 Arithmetic

Of course, the standard arithmetic infix operations +, − and ∗ (for vectors and scalars) work as
expected by using the methods below. We start this section with a subsection on the usage of scalars
in arithmetic operations involving vectors.

4.2.1 Handling of scalars in arithmetic operations

In all places (like in \*) where vectors and scalars occur, the following conventions apply to scalars:
GAP finite field elements can be used as scalars.
Integers between 0 and p−1 (inclusively) can always be used as scalars representing prime field

elements via the isomorphism GF(p) = Z/pZ, also for extension fields. Larger integers than p− 1,
as long as they are GAP immediate integers, are interpreted as the p-adic expansion of the coefficient
list of the polynomial representing the scalar. Note that this usage of immediate integers differs from
the standard list arithmetic in GAP because multiplication with the integer n not necessarily means
the same than n times addition! Larger integers than immediate integers are not supported.

4.2.2 \+ (cveccvec)

. \+(v, w) (method)

Returns: the sum v +w as a new cvec
For two cvecs v and w . Works as expected.

4.2.3 \- (cveccvec)

. \-(v, w) (method)

Returns: the difference v −w as a new cvec
For two cvecs v and w . Works as expected.

4.2.4 AdditiveInverseSameMutability (cvec)

. AdditiveInverseSameMutability(v) (method)

. \-(v) (method)

Returns: the additive inverse of v as a new cvec
For a cvec v . Works as expected.

4.2.5 AdditiveInverseMutable (cvec)

. AdditiveInverseMutable(v) (method)

Returns: the additive inverse of v as a new mutable cvec
For a cvec v . Works as expected.
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4.2.6 \* (cvecsca)

. \*(v, s) (method)

. \*(s, v) (method)

Returns: the scalar multiple s ·v
For a cvec v and a scalar s . For the format of the scalar see 4.2.1. Works as expected.

4.2.7 AddRowVector (cveccvecsca)

. AddRowVector(v, w, s) (method)

. AddRowVector(v, w, s, fr, to) (method)

Returns: nothing
v and w must be cvecs over the same field with equal length, s a scalar (see Subsection 4.2.1)

and v must be mutable. Adds s ·w to v modifying v . If fr and to are given, they give a hint, that
w is zero outside positions fr to to (inclusively). The method can, if it chooses so, save time by not
computing outside that range. In fact, the implemented method restricts the operation to the Words
involved.

If either fr or to is 0 it defaults to 1 and Length(v) respectively.

4.2.8 MultVector (cvecsca)

. MultVector(v, s) (method)

. MultVector(v, s, fr, to) (method)

Returns: nothing
v must be a mutable cvec and s a scalar (see Subsection 4.2.1). Multiplies v by s modifying v .

If fr and to are given, they give a hint, that v is zero outside positions fr to to (inclusively). The
method can, if it chooses so, save time by not computing outside that range. In fact, the implemented
method restricts the operation to the Words involved.

If either fr or to is 0 it defaults to 1 and Length(v) respectively.

4.2.9 ScalarProduct (cveccvec)

. ScalarProduct(v, w) (method)

Returns: the scalar product
Both v and w must be cvecs over the same field with equal length. The function returns the scalar

product of the two vectors. Note that there is a very efficient method for prime fields with p < 65536.
In the other cases the method taken is not extremely fast.

4.2.10 ZeroMutable (cvec)

. ZeroMutable(v) (method)

Returns: a mutable copy of the zero cvec in the same cvecclass as v
v must be a cvec.

4.2.11 ZeroVector (cvec)

. ZeroVector(l, v) (method)

Returns: a mutable copy of the zero cvec over the same field than v but with length l
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v must be a cvec and l a GAP integer.

4.3 Element access and slicing

cvecs behave to some extend like lists with respect to element access and slicing. However, they allow
only actions that can be implemented efficiently and that do not change their length. In addition there
is a highly optimised function to copy contiguous sections of cvecs into another cvec.

4.3.1 ELM_LIST

. ELM_LIST(v, pos) (method)

Returns: a finite field element
This is a method for (reading) element access of vectors. v must be a cvec and pos must be

a positive integer not greater than the length of v . The finite field element at position pos in v is
returned.

Note that the list access syntax “v [pos ]” triggers a call to the ELM_LIST (5.2.3) operation.

4.3.2 ASS_LIST

. ASS_LIST(v, pos, s) (method)

Returns: nothing
This is a method for (writing) element access of vectors. v must be a cvec and pos must be a

positive integer not greater than the length of v . s must be a finite field element or an integer. The
finite field element at position pos in v is set to s .

The scalar s is treated exactly as described in Subsection 4.2.1.
Note that the list access syntax “v[pos] := s” triggers a call to the ASS_LIST (5.2.4) operation.

4.3.3 ELMS_LIST

. ELMS_LIST(v, l) (method)

Returns: a cvec
This is a method for (reading) slice access of vectors. v must be a cvec and l must be a range

object or a list of positive integers not greater than the length of v . In both cases the list of numbers
must be contiguous list of valid positions in the vector. A new cvec over the same field as v and with
the same length as l is created and returned. The finite field element at i positions l in v are copied
into the new vector.

Note that the list slice access syntax “v{l}” triggers a call to the ELMS_LIST (5.2.5) operation.
Note that there intentionally is no write slice access to cvecs, because in most cases this would

lead to code that unnecessarily copies data around in an expensive way. Please use the following
function instead:

4.3.4 CVEC_Slice

. CVEC_Slice(src, dst, srcpos, len, dstpos) (function)

Returns: nothing
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src and dst must be cvecs over the same field. The field elements from positions srcpos to
srcpos +len −1 in src are copied to positions from dstpos in dst . Of course all positions must
be within the vectors.

Note that this functions is quite efficient, however, the ranges are checked. If you want to avoid
this, use CVEC_SLICE instead (with same calling convention), but do not complain later if crashes
occur in case of illegal positions used.

4.3.5 CopySubVector

. CopySubVector(src, dst, srcposs, dstposs) (method)

Returns: nothing
Implements the operation CopySubVector (CopySubVector???) for cvecs src and dst , that is,

srcposs and dstposs must be ranges or plain lists of integers of equal length such that all numbers
contained lie between 1 and the length of src and dst respectively. The result is undefined if src
and dst are the same objects. The method is particularly efficient if both srcposs and dstposs are
ranges with increment 1.

4.3.6 CVEC_Concatenation

. CVEC_Concatenation(arg) (method)

Returns: a new cvec by concatenating all arguments
This function provides concatenation of cvecs over the same base field. The result is a new cvec.

A variable number of cvecs over the same field can be given.

4.4 Comparison of Vectors and other information

4.4.1 =

. =(v, w) (method)

Returns: true or false
Returns true if the cvecs v and w are equal. The vectors must be over the same field and must

have equal length.

4.4.2 LT

. LT(v, w) (method)

Returns: true or false
Returns true if the cvec v is smaller than w . The vectors must be over the same field and must

have equal length. The order implemented is very efficient but is not compatible with lexicographic
ordering of lists of finite field elements! This method should therefore only be used for binary search
purposes. Note that the operation LT is the same as \<.

4.4.3 IsZero

. IsZero(v) (method)

Returns: true or false
Returns true if the cvec v is equal to zero, meaning that all entries are equal to zero.
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4.4.4 PositionNonZero

. PositionNonZero(v) (method)

Returns: a positive integer
Returns the index of the first entry in the cvec v that is not equal to zero. If the vector is equal to

zero, then its Length plus one is returned.

4.4.5 PositionLastNonZero

. PositionLastNonZero(v) (method)

Returns: a non-negative integer
Returns the index of the last entry in the cvec v that is not equal to zero. If the vector is equal to

zero, then 0 is returned.

4.4.6 Length

. Length(v) (method)

Returns: a non-negative integer
Returns the length of the cvec v .

4.5 Changing representation, Unpacking

4.5.1 Unpack (cvec)

. Unpack(v) (method)

Returns: a list of finite field elements
This operation unpacks a cvec v . A new plain list containing the corresponding numbers as GAP

finite field elements. Note that the vector v remains unchanged.

4.5.2 IntegerRep (cvec)

. IntegerRep(v) (method)

Returns: a list of integers or of lists of integers
This operation unpacks a cvec v into its integer representation. A new plain list containing the

corresponding numbers of the vector is returned. The integer representation of a finite field element
is either one integer (containing the p-adic expansion of the polynomial representative of the residue
class modulo the Conway polynomial, if the field has less or equal to 65536 elements. For larger finite
fields each field element is represented as a list of d integers between 0 and p− 1, where d is the
degree of the finite field over its prime field. Note that the vector v remains unchanged.

4.5.3 NumberFFVector (cvec)

. NumberFFVector(v, sz) (method)

Returns: an integer
This implements the library operation NumberFFVector (Reference: NumberFFVector). Note

that only the case that sz is the number of elements in the base field of v is implemented. There is an
inverse operation called CVecNumber (4.5.4).
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4.5.4 CVecNumber

. CVecNumber(nr, cl) (operation)

. CVecNumber(nr, p, d, l) (operation)

Returns: a cvec
This is the inverse operation to NumberFFVector (Reference: NumberFFVector). Of course,

the base field of the vector and its length has to be specified, either by giving a cvecclass cl or the
parameters p , d , and l . For both cases corresponding methods are available.

4.6 Access to the base field

4.6.1 BaseDomain (cvec)

. BaseDomain(v) (method)

Returns: the base field of v
For a cvec v this returns the GAP object GF(p,d).

4.6.2 BaseField (cvec)

. BaseField(v) (method)

Returns: the base field of v
For a cvec v this returns the GAP object GF(p,d).

4.6.3 Characteristic (cvec)

. Characteristic(v) (method)

Returns: the characteristic of the base field of v
Returns the characteristic of the base field of v (see BaseField (4.6.2)).

4.6.4 DegreeFFE (cvec)

. DegreeFFE(v) (method)

Returns: the degree of the base field of v over its prime field
Returns the degree of the base field of v over its prime field (see BaseField (4.6.2)).

4.7 Hashing techniques for cvecs

4.7.1 CVEC_HashFunctionForCVecs

. CVEC_HashFunctionForCVecs(v, data) (function)

Returns: an integer hash value
This is a hash function usable for the ChooseHashFunction (orb: ChooseHashFunction) frame-

work. It takes as arguments a cvec v and a list data of length 2. The first entry of data is the length
of the hash table used and the second entry is the number of bytes looked at in the cvec.
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4.7.2 ChooseHashFunction

. ChooseHashFunction(v, hashlen) (method)

Returns: a record describing a hash function
Chooses a hash function to store cvecs like v in a hash table of length hashlen . The return value

is a record with components func and data bound to CVEC_HashFunctionForCVecs (4.7.1) and a
list of length 2 to be given as a second argument to CVEC_HashFunctionForCVecs (4.7.1). This
allows to use cvecs in the ChooseHashFunction (orb: ChooseHashFunction) framework.



Chapter 5

Matrices

A compressed matrix (a cmat) behaves very much like a list of cvecs. However, it insists on having
only cvecs of the same length and over the same base field as its elements, and it insists on being a list
without holes. Apart from these restrictions, you can use all the standard list operations with cmats
(see Section 5.2.

In the rest of this chapter, we document all methods for matrices for the sake of completeness.
If they behave exactly as is to be expected by the already defined operation no further explanation is
given.

5.1 Creation

The basic operation to create new cmats is CMat, for which a variety of methods is available:

5.1.1 CMat

. CMat(l, cl, dochecks) (method)

. CMat(l, cl) (method)

Returns: a new cmat
A new cmat is created with rows being in the cvecclass cl . All elements of the list l must be

cvecs in that class. The boolean flag dochecks indicates, whether this should be checked or not. If
the flag is omitted, checks are performed. Note that l may be the empty list.

5.1.2 CMat

. CMat(l, dochecks) (method)

. CMat(l) (method)

Returns: a new cmat
A new cmat is created with rows being in the cvecclass of the vectors in l . All elements of the

list l must be cvecs in the same class. The boolean flag dochecks indicates, whether this should be
checked or not. If the flag is omitted, checks are performed. Note that l may not be the empty list.

5.1.3 CMat

. CMat(l, v) (method)

Returns: a new cmat

24
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A new cmat is created with rows being in the cvecclass of the cvec v . All elements of the list
l must be cvecs in the that same class. This is checked. Note that l may be the empty list.

5.1.4 CMat

. CMat(m) (method)

Returns: a new cmat
Creates a new cmat which is equal to m , which must be a compressed matrix in the filter

IsGF2MatrixRep or the filter Is8BitMatrixRep.
There are some methods to create cmats of special form:

5.1.5 CVEC_ZeroMat

. CVEC_ZeroMat(rows, cl) (function)

. CVEC_ZeroMat(rows, cols, p, d) (function)

Returns: a new cmat
Creates a zero matrix with rows rows and cols columns over the field GF(p,d). If a cvecclass

cl is given, the number of columns and the field follow from that.

5.1.6 CVEC_IdentityMat

. CVEC_IdentityMat(cl) (function)

. CVEC_IdentityMat(n, p, d) (function)

Returns: a new cmat
Creates an identity matrix with n rows and columns over the field GF(p,d). If a cvecclass cl

is given, the number of columns and the field follow from that.

5.1.7 CVEC_RandomMat

. CVEC_RandomMat(rows, cl) (function)

. CVEC_RandomMat(rows, cols, p, d) (function)

Returns: a new cmat
Creates a random matrix with rows rows and cols columns over the field GF(p,d). If a

cvecclass cl is given, the number of columns and the field follow from that. Note that this is
not particularly efficient.

5.1.8 MutableCopyMat

. MutableCopyMat(m) (method)

Returns: a mutable copy of m
Creates a mutable copy of the cmat m .

5.1.9 Matrix

. Matrix(vectorlist, vector) (method)

. MatrixNC(vectorlist, vector) (method)

Returns: a new mutable cmat
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Returns a new cmat containing the vectors in vectorlist as rows. The elements in vectorlist
must be vectors of the same length as the sample vector vector and must live over the same base
field. The sample vector is always necessary to be able to use the method selection. The vectorlist
may be empty. The NC method does not check the inputs.

5.2 Matrices as lists

In this section, arguments named m and n are cmats and v and w are cvecs that fit into the corre-
sponding matrices. pos is an integer between 1 and Length(m) if it applies to the matrix m .

5.2.1 Add

. Add(m, v[, pos]) (method)

Returns: nothing
Behaves exactly as expected. Note that one can only add cvecs of the right length and over the

right field.

5.2.2 Remove

. Remove(m[, pos]) (method)

Returns: a cvec
Behaves exactly as expected. No holes can be made.

5.2.3 ELM_LIST

. ELM_LIST(m, pos) (method)

Returns: a cvec
Behaves exactly as expected. Note that this method is triggered when one uses the (reading) syntax

“m[pos]”.

5.2.4 ASS_LIST

. ASS_LIST(m, pos, v) (method)

Returns: nothing
Behaves exactly as expected. Note that one can only assign to positions such that the resulting

matrix has no holes. This method is triggered when one uses the (assignment) syntax “m[pos] := ”.

5.2.5 ELMS_LIST

. ELMS_LIST(m, poss) (method)

Returns: a sub cmat
Behaves exactly as expected: A new matrix containing a subset of the rows is returned. Note that

the row vectors are the same GAP objects as the corresponding rows of m . This operation is triggered
by the expression m{poss}.
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5.2.6 ASSS_LIST

. ASSS_LIST(m, poss, vals) (method)

Returns: nothing
Behaves exactly as expected. Of course all values in vals must be cvecs over the correct field

and the cmat m must be a dense list afterwards. This operation is triggered by the statement m{poss}
:= vals .

5.2.7 Length

. Length(m) (method)

Returns: the number of rows of the cmat m
Behaves exactly as expected.

5.2.8 ShallowCopy

. ShallowCopy(m) (method)

Returns: a new matrix containing the same rows than the cmat m
Behaves exactly as expected. Note that the rows of the result are the very same GAP objects than

the rows of the cmat m .

5.2.9 Collected

. Collected(m) (method)

Returns: the same as the collected list of the rows of m
Behaves exactly as expected. Just uses the standard Collected (Reference: Collected) on the

list of rows.

5.2.10 DuplicateFreeList

. DuplicateFreeList(m) (method)

Returns: a new mutable cmat containing the rows of m with duplicates removed
Behaves exactly as expected. Just uses the standard DuplicateFreeList (Reference: Dupli-

cateFreeList) on the list of rows.

5.2.11 Append

. Append(m, n) (method)

Returns: nothing
Behaves exactly as expected. Of course, the cmats m and n must be over the same field and have

the same number of columns. Note that the rows of n themselves (and no copies) will be put into the
matrix m .

5.2.12 Filtered

. Filtered(m, f) (method)

Returns: a new cmat containing some of the rows of m
Behaves exactly as expected. The function f will be called for each row of m .
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5.2.13 Unbind

. Unbind(m, f) (method)

Returns: nothing
Behaves exactly as expected. Of course, only the last bound row may be unbound.

5.3 Arithmetic

Of course, the standard arithmetic infix operations +, − and ∗ (for vectors and scalars) work as
expected by using the methods below. The comments on the usage of scalars in arithmetic operations
involving vectors from Subsection 4.2.1 apply analogously.

5.3.1 \+ (cmatcmat)

. \+(m, n) (method)

Returns: the sum m +n as a new cmat
For two cmats m and n . Works as expected.

5.3.2 \- (cmatcmat)

. \-(m, n) (method)

Returns: the difference m −n as a new cmat
For two cmats m and n . Works as expected.

5.3.3 AdditiveInverseSameMutability (cmat)

. AdditiveInverseSameMutability(m) (method)

. \-(m) (method)

Returns: the additive inverse of m as a new cmat
For a cmat m . Works as expected.

5.3.4 AdditiveInverseMutable (cmat)

. AdditiveInverseMutable(m) (method)

Returns: the additive inverse of m as a new mutable cmat
For a cmat m . Works as expected.

5.3.5 \* (cmatsca)

. \*(m, s) (method)

. \*(s, m) (method)

Returns: the scalar multiple s ·m
For a cmat m and a scalar s . For the format of the scalar see 4.2.1. Works as expected.
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5.3.6 \* (cveccmat)

. \*(v, m) (method)

Returns: the product v ·m
For a cmat m and a cvec s with the same length as the number of rows of m . Works as expected.

Note that there is a very fast method for the case that m is pre-greased (see 5.8).

5.3.7 \^ (cveccmat)

. \^(v, m) (method)

Returns: the product v ·m
For a cmat m and a cvec s with the same length as the number of rows of m . Works as expected.

Note that there is a very fast method for the case that m is pre-greased (see 5.8).

5.3.8 \* (cmatcmat)

. \*(m, n) (method)

Returns: the product m ·n
Of course, the cmat m must have as many columns as the cmat n has rows. Works as expected.

Note that there is a very fast method for the case that n is pre-greased (see 5.8).

5.3.9 ZeroSameMutability (cmat)

. ZeroSameMutability(m) (method)

Returns: the zero cmat over the same field and with the same dimensions as m
m must be a cmat.

5.3.10 ZeroMutable (cmat)

. ZeroMutable(m) (method)

Returns: a mutable copy of the zero cmat over the same field and with the same dimensions as m
m must be a cmat.

5.3.11 OneSameMutability (cmat)

. OneSameMutability(m) (method)

Returns: the identity cmat over the same field and with the same dimensions as m
m must be a square cmat.

5.3.12 OneMutable (cmat)

. OneMutable(m) (method)

Returns: a mutable copy of the identity cmat over the same field and with the same dimensions
as m

m must be a square cmat.
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5.3.13 InverseMutable

. InverseMutable(m) (method)

Returns: the multiplicative inverse of m
If the cmat is not square or not invertible then fail is returned. Behaves exactly as expected.

5.3.14 InverseSameMutability

. InverseSameMutability(m) (method)

Returns: the multiplicative inverse of m
If the cmat is not square or not invertible then fail is returned. Behaves exactly as expected.

5.3.15 TransposedMat

. TransposedMat(m) (method)

Returns: the transpose of m
Behaves exactly as expected.

5.3.16 KroneckerProduct

. KroneckerProduct(m, n) (method)

Returns: the Kronecker product of m and n
Behaves exactly as expected.

5.4 Comparison of matrices and other information

5.4.1 =

. =(m, n) (method)

Returns: true or false
Returns true if the cmats m and n are equal. The matrices must be over the same field and must

have equal dimensions.

5.4.2 LT

. LT(m, n) (method)

Returns: true or false
Returns true if the cmat m is smaller than n . The matrices must be over the same field and must

have equal dimensions. The method implements the lexicographic order and uses LT for the ordering
of vectors. Note that the operation LT is the same as \<.

5.4.3 IsZero

. IsZero(m) (method)

Returns: true or false
Returns true if the cmat m is equal to zero, meaning that all entries are equal to zero.
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5.4.4 IsOne

. IsOne(m) (method)

Returns: true or false
Returns true iff the cmat m is equal to the identity matrix.

5.4.5 IsDiagonalMat

. IsDiagonalMat(m) (method)

Returns: true or false
Returns true iff the cmat m is a diagonal matrix.

5.4.6 IsUpperTriangularMat

. IsUpperTriangularMat(m) (method)

Returns: true or false
Returns true iff the cmat m is an upper triangular matrix.

5.4.7 IsLowerTriangularMat

. IsLowerTriangularMat(m) (method)

Returns: true or false
Returns true iff the cmat m is a lower triangular matrix.

5.4.8 CVEC_HashFunctionForCMats

. CVEC_HashFunctionForCMats(m, data) (function)

Returns: an integer hash value
This is a hash function usable for the ChooseHashFunction (orb: ChooseHashFunction) frame-

work. It takes as arguments a cmat m and a list data of length 2. The first entry of data is the length
of the hash table used and the second entry is the number of bytes looked at in the cvecs in the
matrices.

5.4.9 ChooseHashFunction

. ChooseHashFunction(m, l) (method)

Returns: a record with entries func and data.
Chooses a hash function to be used for cmats like m (that is, over the same field with the same

number of columns) and for hash tables of length l . The hash function itself is stored in the func
component of the resulting record. The hash function has to be called with two arguments: the first
must be a matrix like m and the second must be the value of the data component of the resulting
record.

5.5 Slicing and submatrices

As described in Section 5.2 you can use the slicing operator \{\} for read and write access of a subset
of the rows of a cmat. However, the double slicing operator is not supported. The reason for this is
twofold: First there is a technical issue that the double slicing operator cannot easily be overloaded in
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the GAP system. The second is, that very often the double slicing operator is used to copy a part of
one matrix to another part of another matrix using double slicing on both sides of an assignment. This
is quite inefficient because it creates an intermediate object, namely the submatrix which is extracted.

Therefore we have chosen to support submatrix access through two operations
ExtractSubMatrix (5.5.1) and CopySubMatrix (5.5.2) described below.

5.5.1 ExtractSubMatrix

. ExtractSubMatrix(m, rows, cols) (operation)

Returns: a submatrix of m
This operation extracts the submatrix of the matrix m consisting of the rows described by the

integer list (or range) rows and of the columns described by the integer list (or range) cols . This is
thus equivalent to the usage m{rows}{cols}. Note that the latter does not work for cmats, whereas
a quite efficient method for ExtractSubMatrix is available for cmats.

5.5.2 CopySubMatrix

. CopySubMatrix(src, dst, srows, drows, scols, dcols) (operation)

Returns: nothing
This operation extracts the submatrix of the matrix src consisting of the rows described by the in-

teger list (or range) srows and of the columns described by the integer list (or range) scols and
copies it into the submatrix of dst described by the integer lists (or ranges) drows and dcols .
No intermediate object is created. This is thus equivalent to the usage dst{drows}{dcols} :=
src{srows}{scols}. Note that the latter does not work for cmats, whereas a quite efficient method
for CopySubMatrix is available for cmats.

5.6 Information about matrices

5.6.1 BaseField (cmat)

. BaseField(m) (method)

Returns: the base field of m
For a cmat m this returns the GAP object GF(p,d) corresponding to the base field of m . Note that

this is a relatively fast lookup.

5.6.2 Characteristic (cmat)

. Characteristic(m) (method)

Returns: the characteristic of the base field of m
Returns the characteristic of the base field of m (see BaseField (5.6.1)).

5.6.3 DegreeFFE (cmat)

. DegreeFFE(m) (method)

Returns: the degree of the base field of m over its prime field
Returns the degree of the base field of m over its prime field (see BaseField (5.6.1)).
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5.6.4 DefaultField (cmat)

. DefaultField(m) (method)

Returns: the base field of m
For a cmat m this returns the GAP object GF(p,d) corresponding to the base field of m . Note that

this is a relatively fast lookup.

5.7 Input and output

5.7.1 CVEC_WriteMat

. CVEC_WriteMat(f, m) (method)

Returns: true or fail
f must be a file object from the IO package (see IsFile (IO: IsFile)) and m must be a cmat. The

matrix m is written to the file f . Note that the format (see Section 3.4) is platform independent, such
that matrices can be exchanged between different architectures. The result is true or fail depending
on whether everything worked or an error occurred respectively.

5.7.2 CVEC_WriteMatToFile

. CVEC_WriteMatToFile(fn, m) (method)

Returns: true or fail
fn must be a string object containing a file name and m must be a cmat. The matrix m is written

to the file with name fn on the local storage. Note that the format (see Section 3.4) is platform
independent, such that matrices can be exchanged between different architectures. The result is true
or fail depending on whether everything worked or an error occurred respectively.

5.7.3 CVEC_WriteMatsToFile

. CVEC_WriteMatsToFile(fnpref, l) (method)

Returns: true or fail
fnpref must be a string object containing a file name prefix and m must be a list of cmats. The

matrices in l are written to the files with names determined by using the string fnpref and appending
the natural numbers from 1 to the length of l on the local storage. Note that the format (see Section
3.4) is platform independent, such that matrices can be exchanged between different architectures. The
result is true or fail depending on whether everything worked or an error occurred respectively.

5.7.4 CVEC_ReadMat

. CVEC_ReadMat(f) (method)

Returns: a cmat or fail
f must be a file object from the IO package (see IsFile (IO: IsFile)). A matrix is read from

the file f . Note that the format (see Section 3.4) is platform independent, such that matrices can be
exchanged between different architectures. The result is fail if an error occurred.



cvec 34

5.7.5 CVEC_ReadMatFromFile

. CVEC_ReadMatFromFile(fn) (method)

Returns: a cmat or fail
fn must be a string object containing a file name. A matrix is read from the file with name fn on

the local storage. Note that the format (see Section 3.4) is platform independent, such that matrices
can be exchanged between different architectures. The result is fail if an error occurred.

5.7.6 CVEC_ReadMatsFromFile

. CVEC_ReadMatsFromFile(fnpref) (method)

Returns: a list of cmats or fail
fnpref must be a string object containing a file name prefix. A list of matrices is read from the

files with names determined by using the string fnpref and appending the natural numbers from 1
on from the local storage. The number of matrices read is determined by the highest number such that
the corresponding filename exists in the filesystem. Note that the format (see Section 3.4) is platform
independent, such that matrices can be exchanged between different architectures. The result is fail
if an error occurred.

5.8 Grease

The basic idea behind the “grease” technique is that over a finite field there are only finitely many
linear combinations of a fixed list of vectors. Thus, many operations including matrix multiplication
can be speeded up by precomputing all possible linear combinations and then just looking up the right
one. For the case of matrix multiplication this can for example gain a factor of about 4 over the field
with 2 elements using “grease level8”, which means that for blocks of 8 rows all linear combinations
are precomputed.

The cvec uses grease whenever appropriate automatically for example for matrix multiplication.
However, occasionally the user has to take a conscious decision, which matrices to grease, because
this of course uses more memory.

A cmat can be “pre-greased” with level l, which means that it is chopped into chunks of l rows
and for each such chunk all possible linear combinations are precomputed and stored. This increases
the memory used to store the matrix by a factor of ql if the base field of the matrix has q elements.
However, operations like vector matrix multiplication and matrix matrix multiplication (here the right
hand side matrix must be greased!) are speeded up. As a rule of thumb the factor one can hope for is
about l · (q− 1)/q. Note that for big matrices matrix multiplication does greasing on the fly anyway
and therefore one cannot hope for such a big factor by pre-greasing.

5.8.1 GreaseMat

. GreaseMat(m, l) (operation)

. GreaseMat(m) (operation)

Returns: nothing
m must be a cmat. It is pregreased with level l . Without the argument l a grease level depending

of the field size is chosen automatically. Note that the matrix will need much more memory when
pregreased.
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5.8.2 UnGreaseMat

. UnGreaseMat(m) (operation)

Returns: nothing
m must be a cmat. The pregreased information is deleted. This can save a lot of memory.

5.9 Everything else

5.9.1 Randomize (cmat)

. Randomize(m) (method)

. Randomize(m, rs) (method)

Returns: the matrix m
m must be a cmat and rs must be a random source object if given. This method changes the

matrix m in place by (pseudo) random values in the field over which the matrix lives. If a random
source is given, the pseudo random numbers used are taken from this source, otherwise the global
random source in the GAP library is taken.

5.9.2 OverviewMat (cmat)

. OverviewMat(m) (function)

Returns: nothing
An ASCII art overview over the cmat m is printed. Stars indicate nonzero blocks in the matrix and

dots zero blocks.

5.9.3 Unpack (cmat)

. Unpack(m) (method)

Returns: a list of lists of finite field elements
This operation unpacks a cmat m . A new plain list of plain lists containing the corresponding

numbers as GAP finite field elements. Note that the matrix m remains unchanged.
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Linear Algebra routines

6.1 Semi echelonised bases and cleaning

A semi echelonised basis is a record with the following components: vectors is a list of vectors of
equal length, optionally (and optimally) they can be wrapped to a matrix. pivots is a list of integers.
The number i in position j indicates that the jth vector in vectors has a one in column number i and
all vectors with a number bigger than j in vectors have a zero in column number i.

Note that for technical reasons another component helper is bound containing a cvec of length
1 over the same field.

Note further that the output of the GAP library operation SemiEchelonMat (Reference:
SemiEchelonMat) is not compatible to this setup, because it contains a component heads that con-
tains at position i, if nonzero, the number of the row for that the pivot element is in column i.

6.1.1 EmptySemiEchelonBasis

. EmptySemiEchelonBasis(v) (method)

Returns: a new mutable empty semi echelonised basis
The argument v must be a sample vector or matrix. If it is a matrix, then one of its rows is taken

as sample vector.

6.1.2 Vectors

. Vectors(b) (operation)

Returns: a matrix
The argument b must be a semi echelonised basis. This operation returns a (mutable) matrix

whose rows are the basis vectors.

6.1.3 Length (for a semi echelonised basis)

. Length(b) (operation)

Returns: an integer
The argument b must be a semi echelonised basis. This operation returns the number of vectors

in the basis.
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6.1.4 CleanRow

. CleanRow(b, v, extend, dec) (method)

Returns: true or false
This is the basic operation for cleaning with a semi echelonised basis b . The vector v is cleaned

with the vectors in the semi echelonised basis. The function returns true if v lies in the span of b and
false otherwise.

The boolean value extend indicates, whether the basis should be extended in the latter case by
the newly cleaned vector.

The argument dec is either fail in which case it is not used or a vector over the same field as
v that is at least as long as the number n of vectors in b (plus one if extend is true). In this case,
the first n components of dec are changed such that ∑

n
i=1 dec ib i. If extend is true and v is not

contained in the span of the vectors in b and dec is a vector, then the first n+ 1 components of dec
are changed such that v = ∑

n+1
i=1 dec ib i.

6.1.5 SemiEchelonBasisMutable

. SemiEchelonBasisMutable(b) (method)

Returns: a semi echelonised basis
Turns the output b of SemiEchelonMat (Reference: SemiEchelonMat) into a valid semi eche-

lonised basis in the sense of the cvec package. This means that the component pivots is calculated
from the component heads. Use this function only if absolutely necessary. Instead, directly invoke
SemiEchelonBasisMutable on the original matrix.

6.1.6 SemiEchelonBasisMutable

. SemiEchelonBasisMutable(m) (method)

Returns: a semi echelonised basis
The argument m must be a cmat. This method calculates a semi echelonised basis for the row

space of m .
There are a number of similar operations the names of which are derived from

SemiEchelonBasisMutable by appending single letters: The letters “P”, “T” and “X” are modi-
fiers and there are operations for most of the 8 combinations of those letters being present or not
respectively. Always give the present letters in alphabetical order.

The “X” indicates, that the input matrix may be destroyed, that is, the rows of m will be changed
and the very same objects be used in the semi echelonised result basis.

The “T” indicates, that the transformation is calculated, that is, the resulting record r will have
a component coeffs, such that r.coeffs * m is equal to r.vectors component of the semi eche-
lonised result. Further, with given letter “T” there will be a component relations which is a basis
for the (left) nullspace of m .

The “P” indicates, that a component r.p is calculated such that r.p * r.vectors is the original
matrix m .

Currently the variants with “P” and “T” both present are not implement because they will probably
not be very useful.
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6.1.7 SemiEchelonBasisMutableX

. SemiEchelonBasisMutableX(m) (method)

Returns: a semi echelonised basis
Same as SemiEchelonBasisMutable (6.1.6) but destructive in m .

6.1.8 SemiEchelonBasisMutableT

. SemiEchelonBasisMutableT(m) (method)

Returns: a semi echelonised basis
Same as SemiEchelonBasisMutable (6.1.6) but in addition stores the transformation, see

SemiEchelonBasisMutable (6.1.6).

6.1.9 SemiEchelonBasisMutableTX

. SemiEchelonBasisMutableTX(m) (method)

Returns: a semi echelonised basis
Same as SemiEchelonBasisMutableT (6.1.8) but destructive in m .

6.1.10 SemiEchelonBasisMutableP

. SemiEchelonBasisMutableP(m) (method)

Returns: a semi echelonised basis
Same as SemiEchelonBasisMutable (6.1.6) but in addition stores the inverse transformation,

see SemiEchelonBasisMutable (6.1.6).

6.1.11 SemiEchelonBasisMutablePX

. SemiEchelonBasisMutablePX(m) (method)

Returns: a semi echelonised basis
Same as SemiEchelonBasisMutableP (6.1.10) but destructive in m .

6.1.12 MutableNullspaceMat

. MutableNullspaceMat(m) (method)

Returns: a cmat
Returns a cmat the rows of which are a basis of the (left) nullspace of the cmat m . Internally,

SemiEchelonBasisMutableT (6.1.8) is used and the component relations of the result is re-
turned. The result is mutable, which is the reason for the introduction of a new operation besides
NullspaceMat (Reference: NullspaceMat).

6.1.13 MutableNullspaceMatX

. MutableNullspaceMatX(m) (method)

Returns: a cmat
Same as MutableNullspaceMat (6.1.12) but destructive in m .
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6.1.14 NullspaceMat

. NullspaceMat(m) (method)

Returns: an immutable cmat
Behaves exactly as expected. m must be a cmat.

6.1.15 NullspaceMatDestructive

. NullspaceMatDestructive(m) (method)

Returns: an immutable cmat
Behaves exactly as expected. m must be a cmat.

6.2 Characteristic and minimal polynomial

6.2.1 CharacteristicPolynomialOfMatrix

. CharacteristicPolynomialOfMatrix(m) (method)

. CharacteristicPolynomialOfMatrix(m, indetnr) (method)

Returns: a record
Calculates the characteristic polynomial of the cmat m over its base field. Because during the

calculations the polynomial automatically comes as a product of some not necessarily irreducible
factors, the result is returned in a record with two components. The poly component contains the
full characteristic polynomial. The factors component contains a list of not necessarily irreducibly
factors the product of which is the characteristic polynomial. If an indeterminate number is given as
second argument, the polynomials are written in that indeterminate, otherwise in the first indeterminate
over the base field.

6.2.2 FactorsOfCharacteristicPolynomial

. FactorsOfCharacteristicPolynomial(m) (method)

. FactorsOfCharacteristicPolynomial(m, indetnr) (method)

Returns: a list
Calculates the characteristic polynomial of the cmat m over its base field. The result is a list of

irreducible factors of the characteristic polynomial of m , the product of which is the characteristic poly-
nomial. Because during the calculations the polynomial automatically comes as a product of some not
necessarily irreducible factors, this is more efficient than just calculating the characteristic polynomial
and then factoring it. If an indeterminate number is given as second argument, the polynomials are
written in that indeterminate, otherwise in the first indeterminate over the base field.

6.2.3 MinimalPolynomialOfMatrix

. MinimalPolynomialOfMatrix(m) (method)

. MinimalPolynomialOfMatrix(m, indetnr) (method)

Returns: a polynomial over the base field of m
Calculates the minimal polynomial of the cmat m over its base field. The polynomial is returned.

If an indeterminate number is given as second argument, the polynomials are written in that indeter-
minate, otherwise in the first indeterminate over the base field.
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6.2.4 CharAndMinimalPolynomialOfMatrix

. CharAndMinimalPolynomialOfMatrix(m) (method)

. CharAndMinimalPolynomialOfMatrix(m, indetnr) (method)

Returns: a record
Calculates the characteristic and minimal polynomial of the cmat m over its base field. Because

during the calculation of the minimal polynomial the characteristic polynomial is calculated anyway,
the result is returned in a record with five components: The charpoly component contains the full
characteristic polynomial. The irreds component contains the set of irreducible factors of the char-
acteristic polynomial as a list. The mult component contains a corresponding list of multiplicities,
that is in position i is the multiplicity of the irreducible factor number i in the characteristic polyno-
mial. The component minpoly contains the minimal polynomial and the component multmin the
corresponding multiplicities of the irreducible factors of the characteristic polynomial in the minimal
polynomial. If an indeterminate number is given as second argument, the polynomials are written in
that indeterminate, otherwise in the first indeterminate over the base field.

6.2.5 MinimalPolynomialOfMatrixMC

. MinimalPolynomialOfMatrixMC(m, prob[, indetnr]) (operation)

Returns: a record
This method calculates the characteristic and minimal polynomials of the row list matrix m over

its base domain. It uses the Monte Carlo algorithm by Neunhoeffer and Praeger. The second argument
prob is an upper bound for the error probability, it can be 0 in which case a deterministic verification
is done. The optional argument indetnr is the number of the indeterminate over the base domain to
be used to express polynomials.

The result is a record with the following components bound: The component charpoly is the
characteristic polynomial which is guaranteed to be correct. The component minpoly is always a
divisor of the minimal polynomial and usually is equal to it. See below for details. The component
irreds is a sorted list of the irreducible factors of the characteristic polynomial. The component mult
is a corresponding list of the same length containing the multiplicities of these irreducible factors in
the characteristic polynomial. The component minmult is a corresponding list of the same length
containing the multiplicities of these irreducible factors in the polynomial given in minpoly. The
component proof is set to true if the result is proved to be correct, which can happen even if prob
was non-zero (for example in the case of a cyclic matrix). The component iscyclic is set to true
if and only if the minimal polynomial is equal to the characteristic polynomial. The component prob
is set to the probability given in prob , if that was zero then it is set to 1/10000 but proof will be
true. The components A, B and S describe a base change for m to a sparse form which is obtained as
a byproduct. S is a semi echelonised basis which was obtained by a spin-up computation with m and
if Y is the sparse basis then Y = A ·S and B = A−1.

The given result for the minimal polynomial could be a proper divisor of the real minimal polyno-
mial if prob was non-zero, however, the probability for this outcome is guaranteed to be less than or
equal to prob . Note that it is always guaranteed that all irreducible factors of the minimal polynomial
are actually present, it can only happen that the multiplicities are too small.
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Performance

Here comes text.
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