FORMAT

A GAP Package
on Formations

Bettina Eick and C.R.B. Wright

Fachbereich Mathematik und Informatik
der Technische Universit &t Braunschweig

and
University of Oregon

(©2000 by

Bettina Eick

Fachbereich fur Mathematik und Informatik, Technisché/®rsitat Braunschweig, 38106 Braunschweig, Germany
www-public.tu-bs.de:8086/beick

beick@tu-bs.de

Charles R.B. Wright
Department of Mathematics, University of Oregon, EugenmegOn 97403, U.S.A.
www.uoregon.edubwright

wright@uoregon.edu

Ccontents

Introduction
to FORMAT

The GAP packagd-ORMAT provides functions to compute with formations of finite sddie groups. In addition to
tools for constructing and combining formations, the paekeontains functions to computg-residual subgroups
and to construct#-normalizers and*-covering subgroups determined by locally defined fornmeticsystem nor-
malizers and Carter subgroups are available as specid, @zt theZ -normalizer functions also apply to the com-
putation of complements. The corresponding algorithmgetiver with applications and a complexity analysis, are
described in [EW].

The package permits the computation of formation-theoseibgroups not only for a number of classical formations,
such as nilpotent, supersolvablepsiength 1 groups, but for other formations that the user nedind. It also allows
computation with classes of finite solvable groups defineddnynal subgroup functions (see [DH], pages 395 ff).
Attention may be restricted to the subgroups of a single graufeature that has applications in the computation of
complements to elementary abelian normal subgroups ire fatitvable groups (see [EW]). An example of such an
application is given in Section “format:other applicagtn

This documentation contains only a brief account of the m@imation-theoretic ideas. For a much more complete
treatment we refer the reader to [DH]. Fundamental ideasrofi&ition theory are described in [G] and [CH].

In the following sections we first describe tBAP definition of a formation and the examples of standard foionat
that are included in the package. We also present some dmsdtiat obtain new formations from ones already defined
or that modify defined formations slightly. (See Sectiorrffiat:formations in gap”.)

Then we describe functions that compute formation-théosebgroups of finite solvable groups (see Sections “for-

mat:residual functions”, “format:fnormalizers” and “foat:covering subgroups”).

Finally we provide examples from @AP session (see Sections “format:formation examples” andiéd:other
applications”) to illustrate the functions in the package.

1»

Formations in GAP

A formation is a class# of groups closed under taking epimorphic images and sutidieducts. Closure under
subdirect products is equivalent to the property that eastefgroupG has a unique smallest normal subgrd&ip
with factor groupG/G” in .Z. The subgrous” is called theZ-residual subgroup ofG. Thus, for example, the
derived subgroup d& is its residual for the formation of abelian groups, and #sédual for the formation of nilpotent
groups is the last term of the descending central series.

In FORMAT a formation is described by a function that compu@es for each (finite solvable) grou@, and from
that perspectiveZ consists of the group§ for which G” is trivial. To define a formation that is not one of the
standard examples provided (see below), one must@iMe an identifier for the formation and also some method for
computing residual subgroups.

Some of the most interesting formations can also be desthpélocal definition.” For each primp let % (p) be a
formation or the empty class, and I&t be the class of all finite solvable grougssuch that for each primeand each
p-chief factorH /K of G the group of automorphisms th@tinduces orH /K by conjugation belongs t& (p). Then

Z is a formation, withlocal definition the set of% (p)s. The set of primep for which .% (p) is not empty is called
the support of .#. A p-chief factor is.%#-central in caseG induces anZ (p)-group on it or, equivalently, in case
G” P centralizes it. It is possible to define a formatiofI@RMAT by giving such a local definition. Indeed one can
define a kind of generalized formation by giving what is adenormal subgroup function secreen which specifies
arbitrary normal subgroups, not necessarily of fa®A(P), to test “centrality.” Section “format:other applicatisn
describes one such usage of general screens. Most appigati formation theory to solvable groups require local
definition, as do th&AP functions for computing#-normalizers and#-covering subgroups.

Formation(rec) (e}
Formation(str [, primes]) O

The definition of a formation iFORMAT begins with the creation of a recotéc, which must contain aame
component and at least one of the compongRésidual or £Screen. The componeniame is a stringfResidual

is a function that computes a normal subgroup of each growupt & reen is a function of two variables, a group and
a prime, that returns a normal subgroup of the input group.

In the second form the functid®rmation can be used to obtain a formation from the supplied librafpohations.
The formations provided are:
Formation("Nilpotent")

The formation of nilpotent groups,

Formation("Supersolvable")
The formation of supersolvable groups,

Formation("Abelian")
The formation of abelian groups,

Formation("ElementaryAbelianProduct")
The formation of direct products of elementary abelian gsu

Formation("PNilpotent", prime)
The formation ofp-nilpotent groups fop = prime,

v

3»

5»

6»

7»

Formation("PiGroups", primes)
The formation ofr-groups forrr = the sefprimes,

Formation("PLengthOne", prime)
The formation of groups gf-length 1 forp = prime.

IsFormation(F) C
NameOfFormation(F) A
ResidualFunctionOfFormation(F) A

IsFormation returnstrue if and only if F is aGAP formation.NameOfFormation returns the name of a formation
andResidualFunctionOfFormation returns the residual function of a formation.

ScreenOfFormation(F) A

If F is locally defined by some screen &f(p)s, thenHasScreen0OfFormation(F) is true, Screen0fForma-
tion(F) isafunction of two variablegroup andprime, andScreen0fFormation(F) (G, p) returnsGt(®
if pis in the support oF and gives the empty list otherwise.

Support0fFormation(F) A

The attributeSupport0fFormation is optional. It may be bound 8etSupport0fFormation. If Support0fFor-
mation is not bound, then the support of the formation is taken tdbesét of all primes. In case the supporEdé a
finite set of primes, theBupport0fFormation(F) is a list of those primes, arithsSupport0fFormation(F

) returns true. In case the supportfofs an infinite set but not the set of all primes, then the usémeed to make
sure, perhaps witBhangedSupport or SetSupportOfFormation, that all primes dividing the orders of relevant
groups are considered.

ChangedSupport(F, primes) (0]

This function may be used to change the support of a formatienF be a formation angrimes a list of primes.
ThenChangedSupport returns a formation with a new name whose support is thesettion of the support df
andprimes.

IsIntegrated(F) P

The local definition is calledhtegrated in case.# (p) is contained in# for each primep. The optional property
IsIntegrated makes sense only flasScreenOfFormation(F) is true. Notice that some of the functions
described below will require that all of the attributéssScreen0fFormation(F), HasIsIntegrated(F)
andIsIntegrated(F) aretrue. If unbound, this property can be bound witbtIsIntegrated, butit is up to
the user to determine whether such a setting is approp8atgion “format:formation examples” contains an example
of such usage.

Integrated(F) 0]

A local definition of a formation may always be replaced bym@tegrated one without changing the formation itself,
though the meaning of7-central may change. L& be a locally definedAP formation with namename. If F is
already integrated, themtegrated (F) yieldsF itself. Otherwise, it yields a formatiamameInt that is abstractly
the same ab but has integrated local definition.

F1 = F2
F1 < F2

Two GAP formationsF1 andF2 are considered to be equal in case they have the same nameafLinal ordering
on strings gives an ordering on formations. This orderinggsful for organizing key-dependent lists but has no
mathematical significance.

9»

10»

8 Chapter 2. Formationsin GAP

Intersection(F1, F2) (@]

The intersection of tw@AP formationsF1 andF2 is again a formationintersection produces the new formation
(namelAndname?), which has attribut®esidualFunctionOfFormation if either F1 or F2 does, ha¥Screen
whenever both formations ha¥8creen, and is integrated if both are.

ProductOfFormations(F1, F2) (@]

The product of two formationS1 andF2 is the formatior such that a finite grou@ is a member oF if and only if
GF?isin F1. (Notice that the product d¥1 by F2 is not necessarily equal to the producF@by F1, and unles&1is
normal subgroup-closed the product need not contain ahasibns of a group i1 by a group inF2.) The function
ProductOfFormations(F1, F2) yields the productnamelByname2) of the two formations. The product has
the attributeResidualFunctionOfFormation and has the attributecreen0fFormation whenever both1 and
F2 have this entry or whenever bailasScreen0fFormation(F2) andnot HasSupportOfFormation(F1)
aretrue. In these cases the propeltyIntegrated will be inherited if possible.

1»

2»

a»

6»

Residual Functions

ResidualWrtFormation(G, F) (@]

Let G be a finite solvable group arfela formation. TherResidualWrtFormation returns the--residual subgroup
of G.

The following special cases have their own functions.

NilpotentResidual(G) A
This is the last term of the descending central serigs. of

PResidual(G, p) (@]
This is the smallest normal subgroup®fvhose index is a power of the prinpe

PiResidual (G, primes) (0]
This is the smallest normal subgroup®fvhose index is divisible only by primes in the liatimes.
CoprimeResidual (G, primes) (0]
This is the smallest normal subgroup®fvhose index is divisible only by prime®t in the listprimes.
ElementaryAbelianProductResidual(G) A

This is the smallest normal subgroup®fvhose factor group is a direct product of groups of prime prde

FNormalizers

Let.# be an integrated locally defined formation, andGdbe a finite solvable group with Sylow complement basis
> := {9 | pdivides|G|}. Let 1T be the set of prime divisors of the order Gfthat are in the support off and

v the remaining prime divisors of the order Gf Then the.#-normalizer of G with respect tax is defined to be
Ngev ST N NperNa(G7 P N S). The special case (p) = {1} for all p defines the formation of nilpotent groups,
whose.#-normalizers are theystem normalizersof G. The .#-normalizers of a groufs for a given.# are all
conjugate. They cove# -central chief factors and avoi# -hypereccentric ones.

FNormalizerWrtFormation(G, F) (@]
SystemNormalizer(G) A

If Fis a locally defined integrated formation @AP andG is a finite solvable group, then the functiBlormal-
izerWrtFormation returns arF-normalizer ofG. The functionSystemNormalizer yields a system normalizer of
G.

The underlying algorithm here requir€égo have a special pcgs (see section 46 inGiAd> reference manual), so the
algorithm'’s first step is to compute such a pcgs@oif one is not known. The complement baZisssociated with
this pcgs is then used to compute faormalizer ofG with respect ta. This process means that in the case of a
finite solvable grouis that does not have a special pcgs, the first cafefrmalizerWrtFormation (or similarly of
FormationCoveringGroup) will take longer than subsequent calls, since it will irddtthe computation of a special
pcgs.

TheFNormalizerWrtFormation algorithm next computes gf-system forG, a complicated record that includes a
pcgs corresponding to a normal serieScoivhose factors are eith&-central orF-hypereccentric. A subset of this
pcgs then exhibits thE-normalizer ofG determined byz. The listComputedFNormalizerWrtFormations(G)
stores théd--normalizers ofG that have been found for various formatidhs

TheFNormalizerWrtFormationfunction can be used to study the subgroups of a single dgoap illustrated in an
example in Section “format:other applications”. In thasedt is sufficient to have a functidtreen0fFormation
that returns a normal subgroup@fon each call.

v

2»

Covering Subgroups

Let 2 be a collection of groups closed under taking homomorphagies. An2 -covering subgroupof a groupG
is a subgrouj satisfying

(C) E e 2, andEV = U wheneveE < U < GwithU/V € 2.

It follows from the definition that ari?”-covering subgrouf of G is also.Z -covering in every subgroug of G that
containsk, and an easy argument shows thas an.Z -projector of every suchJ, i.e., E satisfies

(P) EK/K is an.Z"-maximal subgroup of) /K wheneveK is normal inU.

Gaschiitz showed that i is a locally defined formation, then every finite solvableugrdvas an -covering sub-
group. Indeed, locally defined formations are the only fdarames with this property. For such formations tt¥e-
projectors and?-covering subgroups of a solvable group coincide and foriingles conjugacy class of subgroups.
(See [DH] for details.)

CoveringSubgroupl(G, F) 0]
CoveringSubgroup2(G, F) 0]
CoveringSubgroupWrtFormation(G, F) O

If Fis a locally defined integrated formation @AP and if G is a finite solvable group, then the commatwrer-
ingSubgroup1(G, F) returns arF-covering subgroup db. The functionCoveringSubgroup2 uses a different
algorithm to compute#-covering subgroups. The user may choose either functigpeliments with large groups
suggest thaCoveringSubgroupl is somewhat fasteCoveringSubgroupWrtFormation checks first to see if ei-
ther of these two functions has already computeB-aovering subgroup db and, if not, it callsFCoveringGroup1
to compute one.

Nilpotent-covering subgroups are also caligarter subgroups.
CarterSubgroup(G) A

The comman@arterSubgroup(G) is equivalentt€overingSubgroupWrtFormation(G, Formation("Nilpo-Jj
tent")).

All of these functions call upor¥-normalizer algorithms as subroutines.

Formation Examples

The following is aGAP session that illustrates the various functions in the pgek#é/e have chosen to work with the
symmetric grougs: and the special linear grough.(2, 3) as examples, because it is easy to print and read the results
of computations for these groups, and the answers can b&eathby inspection. However, bofy andS.(2, 3) are
extremely small examples for the algorithm$&E@RMAT. In [EW] we describe effective application of the algorithm

to groups of composition length as much as 61, for which themdations take a few seconds to complete. The file
grp contains some of these groups and other groups readaBlarRsnput.

gap> LoadPackage("format");;

A primitive banner appears.
First we defines; as a permutation group and compute some subgroups of it.

gap> G := SymmetricGroup(4);

Sym([1 ..41)

gap> SystemNormalizer(G); CarterSubgroup(G);
Group([(3,4) 1)

Group([(3,4), (1,3)(2,4), (1,2)(3,4) 1)

Now we take the formation of supersolvable groups from tremgdes and look at it.

gap> sup := Formation("Supersolvable");

formation of Supersolvable groups

gap> KnownAttributes0f0bject (sup); KnownPropertiesOfObject (sup);
["NameOfFormation", "ScreenOfFormation"]

["IsIntegrated"]

We can look at the screen fenp.

gap> Screen0fFormation(sup);

<Operation "AbelianExponentResidual">

gap> ScreenOfFormation(sup) (G,2); ScreenOfFormation(sup) (G,3);
Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) 1D

Group([(2,4,3), (1,4)(2,3), (1,3)(2,4) 1)

We get the residuals far of the formations of abelian groups of exponentld — 1) and of exponent 2 (=3 1).
Notice thatsup does not yet have a residual function. Let's compute somgrsulps ofG corresponding t@up.

gap> ResidualWrtFormation(G, sup);

Group([(1,2)(3,4), (1,4)(2,3) 1)

gap> KnownAttributesOf0bject (sup);

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

The residual function fogup was required and created.

13

gap> FNormalizerWrtFormation(G, sup);

Group([(3,4), (2,4,3) 1)

gap> CoveringSubgroupWrtFormation(G, sup);

Group([(3,4), (2,4,3) 1)

gap> KnownAttributes0f0Object(G);

["Size", "OneImmutable", "SmallestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses", "TrivialSubmagmaWithOne",
"MultiplicativeNeutralElement", "DerivedSubgroup", "IsomorphismPcGroup",
"IsomorphismSpecialPcGroup", "PcgsElementaryAbelianSeries", "Pcgs",
"GeneralizedPcgs", "StabChainOptions", "ComputedResidualWrtFormations",
"ComputedAbelianExponentResiduals", "ComputedFNormalizerWrtFormations",
"ComputedCoveringSubgroupls", "ComputedCoveringSubgroup2s",
"SystemNormalizer", "CarterSubgroup"]

The AbelianExponentResiduals were computed in connection with the local definitiorsap. (AbelianExpo-
nentResidual (G, n) returns the smallest normal subgrougsafhose factor group is abelian of exponent dividing
n-1.) Here are some of the other records.

gap> ComputedResidualWrtFormations(G) ;

[formation of Supersolvable groups , Group([(1,2)(3,4), (1,4)(2,3) 1) 1]

gap> ComputedFNormalizerWrtFormations(G) ;

[formation of Nilpotent groups , Group([(3,4) 1),
formation of Supersolvable groups , Group([(3,4), (2,4,3) 1) 1]

gap> ComputedCoveringSubgroup2s(G) ;

L1

gap> ComputedCoveringSubgroupls(G);

[formation of Nilpotent groups , Group([(3,4), (1,3)(2,4), (1,2)(3,4 1),
formation of Supersolvable groups , Group([(3,4), (2,4,3) 1) 1]

The call byCoveringSubgroupWrtFormation was toCoveringSubgroupl, NnotCoveringSubgroup?2.
We could also have started with a pc group or a nice enoughxgaiaup.

gap> s4 := SmallGroup(IdGroup(G));
<pc group of size 24 with 4 generators>

This isS; again. The answers just look different now.

gap> SystemNormalizer(s4); CarterSubgroup(s4);
Group([f1 1)
Group([f1, f4, £3xf4 1)

Similarly, we haveSL (2, 3) and an isomorphic pc group.
gap> sl := SpeciallinearGroup(2,3);
SL(2,3)

gap> h := SmallGroup(IdGroup(sl));
<pc group of size 24 with 4 generators>

We get the following subgroups.

gap> CarterSubgroup(sl); Size(last);

<group of 2x2 matrices in characteristic 3>
6

gap> SystemNormalizer(h); CarterSubgroup(h);
Group([f1, f4 1)

Group([f1, f4 1)

Now let’'s make new formations from old.

14 Chapter 6. Formation Examples

gap> ab := Formation("Abelian");

formation of Abelian groups

gap> KnownPropertiesOfObject(ab); KnownAttributesO0fObject (ab);

L]

["NameOfFormation", "ResidualFunctionOfFormation"]

gap> nil2 := Formation("PNilpotent",2);

formation of 2Nilpotent groups

gap> KnownPropertiesOfObject(nil2); KnownAttributesOfObject(nil2);

["IsIntegrated"]

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

Compute the product and check some attributes.

gap> form := ProductOfFormations(ab, nil2);
formation of (AbelianBy2Nilpotent) groups

gap> KnownAttributes0fObject (form) ;

["NameOfFormation", "ResidualFunctionOfFormation"]

Now the product in the other order, whichlocally defined.

gap> form2 := ProductOfFormations(nil2, ab);

formation of (2NilpotentByAbelian) groups

gap> KnownAttributes0fObject (form2) ;

["NameOfFormation", "ScreenOfFormation", "ResidualFunctionOfFormation"]

We check the results ah which is still ;.

gap> ResidualWrtFormation(G, form); ResidualWrtFormation(G, form2);
Group (())

Group([(1,3)(2,4), (1,2)(3,4) 1D

gap> KnownProperties0fObject (form2);

[1]

Although form2 is not integrated, we can make an integrated formation tgrsl from form2 only in its local
definition, i.e., whose residual subgroups are the sameoas forf orm2.

gap> Integrated(form2);
formation of (2NilpotentByAbelian)Int groups

FNormalizerWrtFormation andCoveringSubgroupWrtFormation both require integrated formations, so they
silently replacef orm2 by this last formation without, however, changifigrm?2.

gap> FNormalizerWrtFormation(G, form2); CoveringSubgroupWrtFormation(G, form2);

Group([(3,4), (2,4,3) 1)

Group([(3,4), (2,4,3) 1)

gap> KnownPropertiesOfObject (form2) ;

L]

gap> ComputedCoveringSubgroupls(G);

[formation of (2NilpotentByAbelian)Int groups , Group([(3,4), (2,4,3) 1),
formation of Nilpotent groups , Group([(3,4), (1,3)(2,4), (1,2)(3,4) 1),
formation of Supersolvable groups , Group([(3,4), (2,4,3) 1)]

gap> ComputedResidualWrtFormations(G) ;

[formation of (2NilpotentByAbelian) groups ,

Group([(1,4)(2,3), (1,2)(3,4) 1),

formation of (AbelianBy2Nilpotent) groups , Group(()),

formation of 2Nilpotent groups , Group([(1,2)(3,4), (1,3)(2,4) 1),
formation of Abelian groups , Group([(2,4,3), (1,4)(2,3), (1,3)(2,4 1),

15

formation of Supersolvable groups , Group([(1,2)(3,4), (1,4)(2,3) 1)]

Lots of work has been going on behind the scenes.
Before we compute an intersection, we construct yet andineration.

gap> pig := Formation("PiGroups", [2,5]);

formation of (2,5)-Group groups with support [2, 5]

gap> form := Intersection(pig, nil2);

formation of ((2,5)-GroupAnd2Nilpotent) groups with support [2, 5]

gap> KnownAttributes0fObject (form) ;

["NameOfFormation", "ScreenOfFormation", "SupportOfFormation",
"ResidualFunctionOfFormation"]

Let’s cut down the support afi12 to {2, 5}.

gap> form3 := ChangedSupport(nil2, [2,5]);
formation of Changed2Nilpotent[2, 5] groups
gap> Support0fFormation(form3) ;

[2, 5]

gap> form = form3;

false

Although the formations defined prm andform3 are abstractly identicaGAP has no way to know this fact, and
so distinguishes them.

We can mix the various operations, too.

gap> ProductOfFormations(Intersection(pig, nil2), sup);

formation of (((2,5)-GroupAnd2Nilpotent)BySupersolvable) groups

gap> Intersection(pig, ProductOfFormations(nil2, sup));

formation of ((2,5)-GroupAnd(2NilpotentBySupersolvable)) groups with support
(2, 5]

Now let's define our own formation.

gap> preform := rec(name := "MyOwn",

> fScreen := function(G, p)

> return DerivedSubgroup(G);

> end);

rec(fScreen := function(G, p) ... end, name := "MyOwn")
gap> form := Formation(preform);

formation of MyOwn groups
gap> KnownAttributes0fObject (form); KnownPropertiesOfObject(form);
["NameOfFormation", "ScreenOfFormation"]

L1
In fact, the definition is integrated. Let's t&lAP so and compute some related subgroups.

gap> SetIsIntegrated(form, true);

gap> ResidualWrtFormation(G, form);
Group([(1,4)(2,3), (1,2)(3,4) 1)

gap> FNormalizerWrtFormation(G, form);
Group([(3,4), (2,4,3) 1)

gap> CoveringSubgroupl (G, form);
Group([(3,4), (2,4,3) 1)

These answers are consistent with the factiigatmn is really just the formation of abelian by nilpotent groups.

Other Applications

Up to this point our screens, i.e., normal subgroup funstibave yielded local formation residual subgroups, butthe
is no requirement that they do so. Screens for which thetsglemrmal subgroups can be arbitrary have applications
beyond formation theory. Chapter V of [CH] contains an actad a generalized normalizer theory built from them,
and Wright (JWA] and [WB]) uses them to construct internatsiens of formations that are conceptually related to
ordinary formations much as Fitting sets are related tangittlasses.

A major application of the generalized normalizers is toespap computation of complements to normal factors
(see [EW]). Suppose th& is a finite solvable group with an elementary abelian normbgsoupA for which there
exists a normal subgroup of G containingA such thalN/A is nilpotent andN, A] = A. ThenA has a complement
in G, and all complements are conjugate—indeed, they can beedias generalized -normalizers. We will show
the idea, which of course is most useful with very large geuyy usingFNormalizerWrtFormation to find a
complement to an elementary abelian normal subgroup, $rctige t& in S with N = A,.

We need to define a formatiahin GAP (not a real formation, of course, just a local version) sundt$creen0f-
Formation(F) (s4,p) returnsA, for every call. In order to calfNormalizerWrtFormation we must also set
the propertyIlsIntegratedto true.

gap> preform := rec(name := "ForComplement",

> fScreen := function(H, p)

> return Subgroup(H, GeneratorsOfGroup(H){[2,3,4]1});
> end);;

gap> form := Formation(preform);

formation of ForComplement groups

gap> SetIsIntegrated(form, true);

Now we may us&NormalizerWrtFormation with s4 to get the complement, &&. (Recall that unlesgorm al-
ready thinks it’s integrate@NormalizerWrtFormation will automatically integratef orm before running its com-
putations, which may not be the desired behavior.)

gap> comp := FNormalizerWrtFormation(s4, form); Size(comp);
Group([f1, £f2 1)
6

A user who wanted to employ th&-normalizer technique to compute very many complementiigway would
probably wish to create a ne®AP function by extracting portions of the code that computesystems.

Bibliography

