
Functionally
recursive groups

Self-similar groups

Version 2.3.6

21/04/2016

Laurent Bartholdi

Groups generated by automata or satisfying functional recursions

Laurent Bartholdi Email: laurent.bartholdi@gmail.com
Homepage: http://www.uni-math.gwdg.de/laurent/

Address: Mathematisches Institut
Bunsenstraße 3-5
D-37073 Göttingen
Germany

mailto:// laurent.bartholdi@gmail.com
http://www.uni-math.gwdg.de/laurent/

Functionally recursive groups 2

Abstract
This document describes the package FR, which implements in GAP the basic objects of Mealy machines and
functional recursions; and handles groups that they generate.

Groups defined by a recursive action on a rooted tree can be defined in GAP via their recursion. Various
algorithms are implemented to manipulate these groups and their elements.

For comments or questions on FR please contact the author; this package is still under development.

Copyright
© 2006-2012 by Laurent Bartholdi

Acknowledgements
Part of this work is/was supported by the "Swiss National Fund for Scientific Research" and the "German
Science Foundation".

Colophon
This project started in the mid-1990s, when, as a PhD student I did many calculations with groups generated by
automata, and realized the similarities between all calculations; it quickly became clear that these calculations
could be done much better by a computer than by a human.

The first routines I wrote constructed finite representations of the groups considered, so as to get insight
from fast calculations within GAP. The results then had to be proved correct within the infinite group under
consideration, and this often involved guessing appropriate words in the infinite group with a given image in
the finite quotient.

Around 2000, I had developed quite a few routines, which I assembled in a GAP package, that dealt
directly with infinite groups. This package was primitive at its core, but was extended with various routines as
they became useful.

I decided in late 2005 to start a new package from scratch, that would encorporate as much functionality as
possible in a uniform manner; that would handle semigroups as well as groups; that could be easily extended;
and with a complete, understandable documentation. I hope I am not too far from these objectives.

Contents

1 Licensing 5

2 FR package 6
2.1 A brief mathematical introduction . 6
2.2 An example session . 7

3 Functionally recursive machines 11
3.1 Types of machines . 11
3.2 Products of machines . 12
3.3 Creators for FRMachines . 12
3.4 Attributes for FRMachines . 16
3.5 Operations for FRMachines . 18

4 Functionally recursive elements 24
4.1 Creators for FRElements . 24
4.2 Operations and Attributes for FRElements . 29

5 Mealy machines and elements 37
5.1 Creators for MealyMachines and MealyElements 38
5.2 Operations and Attributes for MealyMachines and MealyElements 41

6 Linear machines and elements 53
6.1 Methods and operations for LinearFRMachines and LinearFRElements 53

7 Self-similar groups, monoids and semigroups 62
7.1 Creators for FR semigroups . 62
7.2 Operations for FR semigroups . 71
7.3 Properties for infinite groups . 84

8 Algebras 87
8.1 Creators for FR algebras . 87
8.2 Operations for FR algebras . 89

9 Examples 91
9.1 Examples of groups . 91
9.2 Examples of semigroups . 103
9.3 Examples of algebras . 104

3

Functionally recursive groups 4

9.4 Bacher’s determinant identities . 106
9.5 VH groups . 110

10 FR implementation details 113
10.1 The family of FR objects . 113
10.2 Filters for FRObjects . 114
10.3 Some of the algorithms implemented . 117

11 Miscellanea 122
11.1 Generic operations . 122
11.2 Periodic lists . 122
11.3 Word growth . 124
11.4 Finding short relations . 127
11.5 Braid groups . 128
11.6 Dirichlet series . 129
11.7 Projective representations . 130
11.8 Miscellanea . 130
11.9 User settings . 134

References 139

Chapter 1

Licensing

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program, in
the file COPYING. If not, see http://www.gnu.org/licenses/.

5

http://www.gnu.org/licenses/

Chapter 2

FR package

2.1 A brief mathematical introduction

This chapter assumes that you have no familiarity with groups generated by automata. If you do, and
wish to see their usage within GAP through a sample session, please skip to Section 2.2. For a more
thourough introduction on self-similar groups see [BGN03] or [BGŠ03].

We shall here be interested in groups G defined by their action on a regular rooted tree. Let X be a
finite set; and let X∗ denote the set of words (free monoid) over X . Then X∗ naturally has the structure
of a regular rooted tree: the root is the empty word, and vertex v ∈ X∗ is connected to vertex vx for all
choices of x ∈ X . Each vertex except the root therefore has #X +1 neighbours.

Let W denote the automorphism group of the graph X∗. Given a ∈W , we may restrict its action to
X ⊂ X∗, and obtain a permutation πa on X , called the activity of a. We may also obtain, for all x ∈ X ,
a tree automorphism ax ∈W , called the state of a at x, by the formula

(v)ax = w if (xv)a = xπaw.

The data (ax,πa) determine uniquely the automorphism a, and any choice of ax and πa defines a tree
isometry. We therefore have a group isomorphism

φ : W →W oSym(X),

called the Wreath recursion. The image of φ is the permutational wreath product W X oSym(X).
The state ax should be interpreted as the restriction of the action of a on the subtree xX∗; the

automorphism a is defined by acting first on each of the subtrees of the form xX∗ by its respective
state, and then permuting these subtrees according to πa. The wreath recursion can be iterated on the
states of a, to define states av for any v ∈ X∗.

The automorphism a ∈W may be represented by a graph, as follows. There is one vertex for each
state av of a, labeled πav ; and for each x ∈ X there is one edge from state av to state avx, labeled x. This
graph is nothing but a quotient of the regular rooted tree X∗, where vertices v and w are identified if
av = aw. Again, this graph, with a choice of initial vertex, determines uniquely the automorphism a.

This graph may be conveniently encoded in what is called a Moore machine: it consists of a set
Q, the vertex set of the graph; an alphabet, X ; a ‘transition’ function φ : Q×X → Q, where φ(q,x) is
the endpoint of the edge starting at q and labeled x; and a labeling π of X by the symmetric group on
X . We will use the equivalent Mealy machines, given by a ‘transition’ function φ : Q×X → X ×Q,
encoding both φ and π together.

6

Functionally recursive groups 7

Of particular interest are finite-state automorphisms: these are automorphisms whose Mealy ma-
chine has finitely many states. The product and inverse of finite-state automorphisms is again finite-
state.

A subgroup G ≤W is self-similar if Gφ ⊂ G o Sym(X). This is equivalent to asking, for every
a ∈ G, that all of its states ax also belong to G.

The following important properties have also been considered. A subgroup G ≤ W is level-
transitive if its action is transitive on all the G-subsets Xn. It is weakly branched if it is level-transitive,
and for every v ∈ X∗ there is a non-trivial av ∈ G that fixes X∗ \ vX∗. It is branched if furthermore for
each n ∈ N the group generated by all such av for all v of length n has finite index in G.

A self-similar finitely generated group G ≤W is contracting if there are constants K,n ∈ N and
λ < 1 such that |av| ≤ λ |a|+K for all a ∈ G and v ∈ Xn; here |a| denotes the minimal number of
generators needed to express a. It then follows that there exists a finite set N ⊂ G such that for all
a ∈ G, all but finitely many of the states of a belong to N. The minimal such N is called the nucleus
of G. Since the states of elements of the nucleus are again in the nucleus, we see that the nucleus
is naturally a Mealy machine. By considering all elements of W obtained from this Mealy machine
by choosing all possible initial states, we obtain a generating set for G made of all states of a single
machine; this is the group generated by the machine.

In this package, we are mainly interested in self-similar groups of finite-state automorphisms. The
reason is historical: Aleshin [Ale83], and later Grigorchuk [Gri80] and Gupta and Sidki [GS83] con-
structed peculiar examples of groups using self-similar finite-state automorphisms. All these groups
can be defined by drawing a small machine (at most five vertices) and considering the group that they
generate.

We assumed for simplicity that the elements a were invertible. Actually, in the definition of Mealy
machines it makes sense to accept arbitrary maps, and not necessarily bijections of X as a label at each
vertex. One may in this way define peculiar semigroups.

2.2 An example session

This is a brief introduction describing some of the simpler features of the FR package. It assumes
you have some familiarity with the theory of groups defined by automata; if not, a brief mathematical
introduction may be found in Section 2.1. We show here and comment a typical use of the package.

The package is installed by unpacking the archive in the pkg/ directory of your GAP installation.
It can also be placed in a local directory, which must be added to the load-path by invoking gap with
the -l option.

Example
gap> LoadPackage("fr");
--
Loading FR 0.857142p5 (Functionally recursive and automata groups)
by Laurent Bartholdi (http://www.uni-math.gwdg.de/laurent)
--
true

Many FR groups are predefined by FR, see Chapter 9. We consider here the Basilica group, consid-
ered in [GŻ02] and [BV05].

We may start by defining a group: it has two generators a and b, satisfying the specified recursions.
Example

gap> B := FRGroup("a=<1,b>(1,2)","b=<1,a>",IsFRMealyElement);
<self-similar group over [1 .. 2] with 2 generators>

Functionally recursive groups 8

gap> AssignGeneratorVariables(B);
#I Assigned the global variables [a, b]

We have just created the group B = 〈a,b〉.
Note that this group is predefined as BasilicaGroup. We now compute the decompositions of

the generators:
Example

gap> DecompositionOfFRElement(a); DecompositionOfFRElement(b);
[[<2|identity ...>, <2|b>], [2, 1]]
[[<2|identity ...>, <2|a>], [1, 2]]

Elements are described as words in the generators; they are printed as <2|a>, where the 2 reminds of
the degree of the tree on which a acts.

The optional argument IsFRElement (10.2.11) tells FR to store elements in this way. This
representation is always possible, but it is usually inefficient for calculations. The argument
IsMealyElement (10.2.4) forces FR to use a more efficient representation, which in some cases may
take an infinite time to set up. With no extra argument, FR does what it thinks is best. The advan-
tages of both representations are sometimes obtained by the argument IsFRMealyElement (10.2.12),
which stores both representations.

Elements act on sequences over {1,2}. The action is computed in the standard manner:
Example

gap> 1^a; [1]^a; [1,1]^a;
2
[2]
[2, 1]

Periodic sequences are also implemented in FR; they are constructed by giving the period and prepe-
riod. The period is printed by preceding it with a "/":

Example
gap> v := PeriodicList([1],[2]);
[1, / 2]
gap> v^a; v^(a^2);
[/ 2]
[/ 1, 2]
gap> last{[1..10]};
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

Most computations are much more efficient if B’s elements are converted to Mealy representation,
Example

gap> Bm := Image(IsomorphismMealyGroup(B));
<recursive group over [1 .. 2] with 2 generators>
gap> a := Bm.1; b := Bm.2;
<Mealy element on alphabet [1, 2] with 3 states>
<Mealy element on alphabet [1, 2] with 3 states>

This could have been done automatically by specifying IsMealyElement as last argument in the call
to FRGroup.

The group B is torsion-free, and its elements are bounded automata. Although torsion-freeness is
difficult to check for FR, it can be checked on individual elements:

Functionally recursive groups 9

Example
gap> IsBoundedFRSemigroup(Bm);
true
gap> Order(a); Order(b);
infinity
infinity
gap> g := PseudoRandom(B);; Length(InitialState(g));
4679
gap> Order(g); time;
infinity
2599

The group B is weakly branched; more precisely, the derived subgroup B′ contains B′×B′. To
prove that, it suffices to check [a,b]×1 ∈ B′ and 1× [a,b] ∈ B′. These elements are constructed using
VertexElement (4.1.5):

Example
gap> c := Comm(a,b);
<Mealy element on alphabet [1, 2] with 9 states>
gap> K := NormalClosure(Bm,Group(c));
<self-similar group over [1 .. 2] with 3 generators>
gap> VertexElement(1,c) in K; VertexElement(1,c) in K;
true
true
gap> DecompositionOfFRElement(VertexElement(1,c))=[[c,One(Bm)],[1,2]];
true
gap> VertexElement(2,c)=Comm(b,a^2);
true

Note that we had to guess the form of the element VertexElement(2,c) above. This could have
been found out by GAP using ShortGroupWordInSet (11.4.2).

We may also check the relations [bp,(bp)ap
] = 1 and [a2p,(a2p)bp

] for p any power of 2:
Example

gap> ForAll([0..10],i->IsOne(Comm(b^(2^i),(b^(2^i))^((a^(2^i)))))); time;
true
1361

Since the group B is bounded, it is contracting. We compute its nucleus:
Example

gap> NucleusOfFRSemigroup(B);
[<2|identity ...>, <2|b>, <2|b^-1>, <2|a>, <2|a^-1>, <2|b^-1*a>, <2|a^-1*b>]

We then compute the Mealy machine with stateset this nucleus, and draw it graphically (this requires
the external programs graphviz and imagemagick):

Example
gap> N := NucleusMachine(B);
<Mealy machine on alphabet [1, 2] with 7 states>
gap> Draw(N);

We may also draw powers of the dual automaton: these are approximations to the Schreier graph of
B. However, we also construct a smaller Mealy machine with states only a and b, which give better
images:

Functionally recursive groups 10

Example
gap> Draw(DualMachine(N)^3);
gap> M := AsMealyMachine(FRMachine(a))[1];
<Mealy machine on alphabet [1, 2] with 3 states>
gap> Draw(DualMachine(M)^4);

These Schreier graphs are orbits of the group; they can be displayed as follows:
Example

gap> WordGrowth(B:point:=[1,1,1,1],draw);

More properties of B can be checked, or experimented with, on its finite quotients obtained by trun-
cating the tree on which B acts at a given length. PermGroup(B,n) constructs a permutation group
which is the natural quotient of B acting on 2n points:

Example
gap> G := PermGroup(B,7);
<permutation group with 2 generators>
gap> Size(G); LogInt(last,2);
309485009821345068724781056
88

We may "guess" the structure of the Lie algebra of B by examining the ranks of the successive quo-
tients along its Jennings series:

Example
gap> J := JenningsLieAlgebra(G); time;
<Lie algebra of dimension 88 over GF(2)>
18035
gap> List([1..15],i->Dimension(Grading(J).hom_components(i)));
[2, 3, 1, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]

The "4" in position 8 of that list should really be a "5"; computations on finite quotients of B usually
give lower bounds for invariants of B. In that case, we guess that the ranks behave like a "ruler"
function, i.e. that the rank of the homogeneous component of degree i is 2+ν2(i) if i is a power of 2
and is 1+ν2(i) otherwise; here ν2(i) is the number of times 2 divides i.

Chapter 3

Functionally recursive machines

At the core of this package are functionally recursive machines. The internals of specific machines
will be described later, but each machine M has an associated alphabet X , a set of states Q, and a
transition function φ : Q×X→ X×Q. An element, as we will see in Section 4, is given by a machine
and an initial state q ∈ Q.

The element (M,q) defines a transformation on the set X∗ of strings (finite or infinite) over the
alphabet X , as follows: the empty string is always fixed. Given a string x1x2 . . .xn with n≥ 0, compute
φ(q,x1) = (y1,r); then compute the action of (M,r) on the string x2 . . .xn, and call the result y2 . . .yn.
Then the action of (M,q) on x1x2 . . .xn yields y1y2 . . .yn.

This can be understood more formally as follows. The transition function φ induces a map φ n :
Q× Xn → Xn ×Q, defined by successively applying φ to move the Q from the left to the right.
Similarly, φ can be extended to a map Qm×Xn→ Xn×Qm.

We see that the action on finite strings preserves their length, and also preserves prefixes: if (M,q)
maps x1 . . .xn to y1 . . .ym, then necessarily m = n; and if k < n then T maps x1 . . .xk to y1 . . .yk.

The strings over the alphabet X can be naturally organised into a rooted tree. The root represents
the empty string, and the strings x1 . . .xn and x1 . . .xn+1 are connected by an edge, for all xi ∈ X .

3.1 Types of machines

Machines must be accessible to computation; therefore it is reasonable to assume that their alphabet
X is finite.

If the stateset Q is also finite, the machine is called a Mealy machine, and its transition function φ

can be stored as a table.
More general machines are obtained if one allows the stateset Q to be a free

group/semigroup/monoid generated by a finite set S, and the transition function φ to be specified
on S×X . Its values are then extended naturally by composition.

Machines store their transitions (second coordinate of φ), and their output, (first coordinate of φ)
in a matrix indexed by state and letter. In particular, PermList(output[state]) gives the action on
the first level.

Because of the way GAP handles permutations and transformations, a permutation is never
equal to a transformation, even though both can answer true to IsOne. Therefore, FR stores
the output as a list, which can be then accessed (e.g. in commands such as ActivityPerm and
ActivityTransformation either as a permutation or as a transformation. The command Activity
itself will return a permutation if possible, and otherwise a transformation.

11

Functionally recursive groups 12

3.2 Products of machines

Machines can be combined in different manners. If two machines act on the same alphabet, then
their sum and product are defined as machines acting again on the same alphabet; the statesets are the
free products (which is also their sum, in the category of semigroups) of the respective statesets. The
sum or product of machines has a stateset of highest possible category, i.e. is a group unless some
argument is a monoid, and a monoid unless some argument is a semigroup. The transition and output
functions are the union of the respective functions of their arguments.

If a non-empty collection of machines have same stateset, then their tensor sum and tensor product
are machines again with same stateset; the alphabets on which the machines act are the disjoint union,
respectively cartesian product, of the arguments’ alphabets. The transition and output functions are
again the union or composition of the respective functions of their arguments.

The direct sum and direct product of a collection of machines are always defined. Its stateset is
generated by the union of the arguments’ statesets, as for a sum or a product; its alphabet is the disjoint
union, respectively cartesian product of its arguments’ alphabets, as for a tensor sum or product. The
transition and output functions are again the union of the respective functions of their arguments.

3.3 Creators for FRMachines

3.3.1 FRMachineNC (family,free,listlist,list)

. FRMachineNC(fam, free, transitions, outputs) (operation)

Returns: A new FR machine.
This function constructs a new FR machine, belonging to family fam . It has stateset the free

group/semigroup/monoid free , and transitions described by states and outputs .
transitions is a list of lists; transitions [s][x] is a word in free , which is the state reached

by the machine when started in state s and fed input x .
outputs is also a list of lists; outputs [s][x] is the output produced by the machine is in state s

and inputs x .
Example

gap> f := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> m := FRMachineNC(FRMFamily([1,2]),f,[[One(f),f.1],[One(f),f.2^-1]],

[[2,1],[1,2]]);
<FR machine with alphabet [1, 2] on Group([f1, f2])>

3.3.2 FRMachine ([list,]list,list)

. FRMachine([names,]transitions, outputs) (operation)

. FRMachine(free, transitions, outputs) (operation)

Returns: A new FR machine.
This function constructs a new FR machine. It has stateset a free group/semigroup/monoid, and

structure described by transitions and outputs .
If there is an argument free , it is the free group/monoid/semigroup to be used as stateset. Oth-

erwise, the stateset will be guessed from the transitions and outputs ; it will be a free group if
all states are invertible, and a monoid otherwise. names is then an optional list, with at position s a
string naming generator s of the stateset. If names contains too few entries, they are completed by
the names __1,__2,... .

Functionally recursive groups 13

transitions is a list of lists; transitions[s][x] is either an associative word, or a list of
integers describing the state reached by the machine when started in state s and fed input x . Positive
integers indicate a generator index, negative integers its inverse, the empty list in the identity state,
and lists of length greater than one indicate a product of states. If an entry is an FR element, then its
machine is incorporated into the newly constructed one.

outputs is a list; at position s it contains a permutation, a transformation, or a list of integers
(the images of a transformation), describing the activity of state s . If all states are invertible, the
outputs are all converted to permutations, while if there is a non-invertible state then the outputs are
all converted to transformations.

Example
gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);
<FR machine with alphabet [1, 2] on Group([tau, mu])>
gap> m=n;
true
gap> Display(n);

| 1 2
-----+--------+---------+
tau | <id>,2 tau,1
mu | <id>,2 mu^-1,1

-----+--------+---------+
gap> m := FRMachine([[[],[FRElement(n,1)]]],[()]);
<FR machine with alphabet [1, 2] on Group([f1, f2, f3])>
gap> Display(m);

| 1 2
----+--------+---------+
f1 | <id>,1 f2,2
f2 | <id>,2 f2,1
f3 | <id>,2 f1^-1,1

----+--------+---------+
gap> f := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> p := FRMachine(f,[[One(f),f.1],[One(f),f.2^-1],[(1,2),(1,2)]);
<FR machine with alphabet [1, 2] on Group([f1, f2])>
gap> n=p;
true

3.3.3 UnderlyingFRMachine

. UnderlyingFRMachine(obj) (attribute)

Returns: An FR machine underlying obj .
FR elements, FR groups etc. often have an underlying FR machine, which is returned by this

command.
Example

gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b])>
gap> a := FRElement(m,1); b := FRElement(m,2);
<2|a>
<2|b>
gap> UnderlyingFRMachine(a)=m;
true

Functionally recursive groups 14

3.3.4 AsGroupFRMachine

. AsGroupFRMachine(m) (attribute)

. AsMonoidFRMachine(m) (attribute)

. AsSemigroupFRMachine(m) (attribute)

Returns: An FR machine isomorphic to m , on a free group/monoid/semigroup.
This function constructs, from the FR machine m , an isomorphic FR machine n with a free

group/monoid/semigroup as stateset. The attribute Correspondence(n) is a mapping (homomor-
phism or list) from the stateset of m to the stateset of n.

m can be an arbitrary FR machine, or can be an free group/monoid/semigroup endomorphism. It
is then converted to an FR machine on a 1-letter alphabet.

Example
gap> s := FreeSemigroup(1);;
gap> sm := FRMachine(s,[[GeneratorsOfSemigroup(s)[1],

GeneratorsOfSemigroup(s)[1]^2]],[(1,2)]);
<FR machine with alphabet [1, 2] on Semigroup([s1])>
gap> m := FreeMonoid(1);;
gap> mm := FRMachine(m,[[One(m),GeneratorsOfMonoid(m)[1]^2]],[(1,2)]);
<FR machine with alphabet [1, 2] on Monoid([m1], ...)>
gap> g := FreeGroup(1);;
gap> gm := FRMachine(g,[[One(g),GeneratorsOfGroup(g)[1]^-2]],[(1,2)]);
<FR machine with alphabet [1, 2] on Group([f1])>
gap> AsGroupFRMachine(sm); Display(last);
<FR machine with alphabet [1, 2] on Group([f1])>

| 1 2
----+------+--------+
f1 | f1,2 f1^2,1

----+------+--------+
gap> Correspondence(last);
MappingByFunction(<free semigroup on the generators
[s1]>, <free group on the generators [f1]>, function(w) ... end)
gap> AsGroupFRMachine(mm); Display(last);
<FR machine with alphabet [1, 2] on Group([f1])>

| 1 2
----+--------+--------+
f1 | <id>,2 f1^2,1

----+--------+--------+
gap> AsGroupFRMachine(gm); Display(last);
<FR machine with alphabet [1, 2] on Group([f1])>

| 1 2
----+--------+---------+
f1 | <id>,2 f1^-2,1

----+--------+---------+
gap> AsMonoidFRMachine(sm); Display(last);
<FR machine with alphabet [1, 2] on Monoid([m1], ...)>

| 1 2
----+------+--------+
m1 | m1,2 m1^2,1
----+------+--------+

gap> AsMonoidFRMachine(mm); Display(last);
<FR machine with alphabet [1, 2] on Monoid([m1], ...)>

| 1 2

Functionally recursive groups 15

----+--------+--------+
m1 | <id>,2 m1^2,1

----+--------+--------+
gap> AsMonoidFRMachine(gm); Display(last);
<FR machine with alphabet [1, 2] on Monoid([m1, m2], ...)>

| 1 2
----+--------+--------+
m1 | <id>,2 m2^2,1
m2 | m1^2,2 <id>,1

----+--------+--------+
gap> AsSemigroupFRMachine(sm); Display(last);
<FR machine with alphabet [1, 2] on Semigroup([s1])>

| 1 2
----+------+--------+
s1 | s1,2 s1^2,1

----+------+--------+
gap> AsSemigroupFRMachine(mm); Display(last);
<FR machine with alphabet [1, 2] on Semigroup([s1, s2])>

| 1 2
----+------+--------+
s1 | s2,2 s1^2,1
s2 | s2,1 s2,2

----+------+--------+
gap> AsSemigroupFRMachine(gm); Display(last);
<FR machine with alphabet [1, 2] on Semigroup([s1, s2, s3])>

| 1 2
----+--------+--------+
s1 | s3,2 s2^2,1
s2 | s1^2,2 s3,1
s3 | s3,1 s3,2

----+--------+--------+
gap>
gap> Display(GuptaSidkiMachines(3));

| 1 2 3
---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 a,1
c | a,3 a,1 a,2
d | b,1 c,2 d,3

---+-----+-----+-----+
gap> AsGroupFRMachine(GuptaSidkiMachines(3));
<FR machine with alphabet [1 .. 3] on Group([f1, f2])>
gap> Display(last);

| 1 2 3
----+--------+---------+--------+
f1 | <id>,2 <id>,3 <id>,1
f2 | f1,1 f1^-1,2 f2,3

----+--------+---------+--------+
gap> Correspondence(last);
[<identity ...>, f1, f1^-1, f2]
gap> AsGroupFRMachine(GroupHomomorphism(g,g,[g.1],[g.1^3]));
<FR machine with alphabet [1] on Group([f1])>
gap> Display(last);

Functionally recursive groups 16

G | 1
----+--------+
f1 | f1^3,1

----+--------+

3.3.5 AsGroupFRMachine (endomorphism)

. AsGroupFRMachine(f) (attribute)

. AsMonoidFRMachine(f) (attribute)

. AsSemigroupFRMachine(f) (attribute)

Returns: An FR machine.
This function creates an FR machine on a 1-letter alphabet, that represents the endomorphism f .

It is specially useful when combined with products of machines; indeed the usual product of machines
corresponds to composition of endomorphisms.

Example
gap> f := FreeGroup(2);;
gap> h := GroupHomomorphismByImages(f,f,[f.1,f.2],[f.2,f.1*f.2]);
[f1, f2] -> [f2, f1*f2]
gap> m := AsGroupFRMachine(h);
<FR machine with alphabet [1] on Group([f1, f2])>
gap> mm := TensorProduct(m,m);
<FR machine with alphabet [1] on Group([f1, f2])>
gap> Display(mm);
G | 1

----+------------+
f1 | f1*f2,1
f2 | f2*f1*f2,1

----+------------+

3.4 Attributes for FRMachines

3.4.1 StateSet (FR machine)

. StateSet(m) (attribute)

Returns: The set of states associated with m .
This function returns the stateset of m . It can be either a list (if the machine is of Mealy type), or

a free group/semigroup/monoid (in all other cases).
Example

gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);
<FR machine with alphabet [1, 2] on Group([tau, mu])>
gap> StateSet(n);
<free group on the generators [tau, mu]>
gap> StateSet(AsMealyMachine(n));
[1 .. 4]

3.4.2 GeneratorsOfFRMachine

. GeneratorsOfFRMachine(m) (attribute)

Returns: The generating set of the stateset of m .

Functionally recursive groups 17

This function returns the generating set of the stateset of m . If m is a Mealy machine, it returs the
stateset.

Example
gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);
<FR machine with alphabet [1, 2] on Group([tau, mu])>
gap> GeneratorsOfFRMachine(n);
[tau, mu]

3.4.3 Output (FR machine)

. Output(m) (operation)

. Output(m, s) (operation)

. Output(m, s, x) (operation)

Returns: A transformation of m ’s alphabet.
In the first form, this function returns the output of m .
In the second form, this function returns the transformation of m ’s alphabet associated with state

s . This transformation is returned as a list of images.
s is also allowed to be a list, in which case it is interpreted as the corresponding product of states.
In the third form, the result is actually the image of x under Output(m,s).

Example
gap> n := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b])>
gap> Output(n,[1,2]);
[2,1]
gap> Output(n,Product(GeneratorsOfFRMachine(n)));
[2,1]

3.4.4 Transition (FR machine,state,input)

. Transition(m, s, i) (operation)

Returns: An element of m ’s stateset.
This function returns the state reached by m when started in state s and fed input i . This input

may be an alphabet letter or a sequence of alphabet letters.
Example

gap> n := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b])>
gap> Transition(n,[2,1],2);
a*b
gap> Transition(n,Product(GeneratorsOfFRMachine(n))^2,1);
a*b

3.4.5 Transitions (FR machine,state)

. Transitions(m, s) (operation)

Returns: A list of elements of m ’s stateset.
This function returns the states reached by m when started in state s and fed inputs from the

alphabet. The state may be expressed as a word or as a list of states.

Functionally recursive groups 18

Example
gap> n := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b])>
gap> Transitions(n,[2,1]);
[<identity ...>, a*b]
gap> Transitions(n,Product(GeneratorsOfFRMachine(n))^2);
[a*b, b*a]

3.4.6 WreathRecursion

. WreathRecursion(m) (attribute)

Returns: A function on the stateset of m .
This function returns a function on m ’s stateset. This function, on receiving state q as input,

returns a list. Its first entry is a list indexed by m ’s alphabet, with in position x the state m would be in
if it received input x when in state q . The second entry is the list of the permutation of m ’s alphabet
induced by q .

WreathRecursion(machine)(q)[1][a] is equal to Transition(machine,q,a) and
WreathRecursion(machine)(q)[2] is equal to Output(machine,q) .

Example
gap> n := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b])>
gap> WreathRecursion(n)(GeneratorsOfFRMachine(n)[1]);
[[<identity ...>, b], [2,1]]
gap> WreathRecursion(n)(GeneratorsOfFRMachine(n)[2]);
[[<identity ...>, a], [1,2]]

3.5 Operations for FRMachines

3.5.1 StructuralGroup

. StructuralGroup(m) (operation)

. StructuralMonoid(m) (operation)

. StructuralSemigroup(m) (operation)

Returns: A finitely presented group/monoid/semigroup capturing the structure of m .
This function returns a finitely presented group/monoid/semigroup, with generators the union

of the AlphabetOfFRObject (10.1.3) and GeneratorsOfFRMachine (3.4.2) of m , and relations all
qa′ = aq′ whenever φ(q,a) = (a′,q′).

Example
gap> n := FRMachine(["a","b","c"],[[[2],[3]],[[3],[2]],[[1],[1]]],[(1,2),(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b, c])>
gap> StructuralGroup(n);
<fp group on the generators [a, b, c, 1, 2]>
gap> RelatorsOfFpGroup(last);
[a*2*b^-1*1^-1, a*1*c^-1*2^-1, b*2*c^-1*1^-1,

b*1*b^-1*2^-1, c*1*a^-1*1^-1, c*2*a^-1*2^-1]
gap> SimplifiedFpGroup(last2);
<fp group on the generators [a, 1]>
gap> RelatorsOfFpGroup(last);

Functionally recursive groups 19

[1^-1*a^2*1^4*a^-2*1^-1*a*1^-2*a^-1, 1*a*1^-1*a*1^2*a^-1*1*a^-2*1^-3*a,
1^-1*a^2*1^2*a^-1*1^-1*a*1^2*a^-2*1^-2]

3.5.2 \+

. \+(m1, m2) (method)

Returns: A new FR machine, in the same family as its arguments.
This function returns a new FR machine r, with stateset generated by the union of the statesets of

its arguments. The arguments m1 and m2 must operate on the same alphabet. If the stateset of m1 is
free on n1 letters and the stateset of m2 is free on n2 letters, then the stateset of their sum is free on
n1 +n2 letters, with the first n1 identified with m1 ’s states and the next n2 with m2 ’s.

The transition and output functions are naturally extended to the sum.
The arguments may be free group, semigroup or monoid machines. The sum is in the weakest

containing category: it is a group machine if both arguments are group machines; a monoid if both
are either group of monoid machines; and a semigroup machine otherwise.

The maps from the stateset of m1 and m2 to the stateset of r can be recovered as
Correspondence(r)[1] and Correspondence(r)[2]; see Correspondence (3.5.12).

Example
gap> tau := FRMachine([[[],[1]]],[(1,2)]);
<FR machine with alphabet [1, 2] on Group([f1])>
gap> mu := FRMachine([[[],[-1]]],[(1,2)]);
<FR machine with alphabet [1, 2] on Group([f1])>
gap> sum := tau+mu;; Display(sum);

| 1 2
-----+--------+----------+
f11 | <id>,2 f11,1
f12 | <id>,2 f12^-1,1

-----+--------+----------+
gap> Correspondence(sum)[1];
[f1] -> [f11]
gap> GeneratorsOfFRMachine(tau)[1]^last;
f11

3.5.3 *

. *(machine1, machine2) (method)

Returns: A new FR machine, in the same family as its arguments.
The product of two FR machines coincides with their sum, since the natural free object mapping

to the product of the statesets is generated by the union of the statesets. See therefore \+ (3.5.2).

3.5.4 TensorSumOp (FR Machines)

. TensorSumOp(FR_machines, machine) (method)

Returns: A new FR machine on the disjoint union of the arguments’ alphabets.
The tensor sum of FR machines with same stateset is defined as the FR machine acting on the

disjoint union of the alphabets; if these alphabets are [1..n1] up to [1..nk], then the alphabet of
their sum is [1..n1+...+nk] and the transition functions are similarly concatenated.

The first argument is a list; the second argument is any element of that list, and is used only to
improve the method selection algorithm.

Functionally recursive groups 20

Example
gap> m := TensorSum(AddingMachine(2),AddingMachine(3),AddingMachine(4));
AddingMachine(2)(+)AddingMachine(3)(+)AddingMachine(4)
gap> Display(m);

| 1 2 3 4 5 6 7 8 9
---+-----+-----+-----+-----+-----+-----+-----+-----+-----+
a | a,1 a,2 a,3 a,4 a,5 a,6 a,7 a,8 a,9
b | a,2 b,1 a,4 a,5 b,3 a,7 a,8 a,9 b,6

---+-----+-----+-----+-----+-----+-----+-----+-----+-----+

3.5.5 TensorProductOp (FR Machines)

. TensorProductOp(FR, machines, machine) (method)

Returns: A new FR machine on the cartesian product of the arguments’ alphabets.
The tensor product of FR machines with same stateset is defined as the FR machine acting on the

cartesian product of the alphabets. The transition function and output function behave as if a single
letter, in the tensor product’s alphabet, were a word (read from left to right) in the machines’ alphabets.

The first argument is a list; the second argument is any element of that list, and is used only to
improve the method selection algorithm.

Example
gap> m := TensorProduct(AddingMachine(2),AddingMachine(3));
AddingMachine(2)(*)AddingMachine(3)
gap> Display(last);

| 1 2 3 4 5 6
---+-----+-----+-----+-----+-----+-----+
a | a,1 a,2 a,3 a,4 a,5 a,6
b | a,4 a,5 a,6 a,2 a,3 b,1

---+-----+-----+-----+-----+-----+-----+

3.5.6 DirectSumOp (FR Machines)

. DirectSumOp(FR, machines, machine) (method)

Returns: A new FR machine on the disjoint union of the arguments’ alphabets.
The direct sum of FR machines is defined as the FR machine with stateset generated by the disjoint

union of the statesets, acting on the disjoint union of the alphabets; if these alphabets are [1..n1] up
to [1..nk], then the alphabet of their sum is [1..n1+...+nk] and the output and transition functions
are similarly concatenated.

The first argument is a list; the second argument is any element of that list, and is used only to
improve the method selection algorithm.

Example
gap> m := DirectSum(AddingMachine(2),AddingMachine(3),AddingMachine(4));
AddingMachine(2)#AddingMachine(3)#AddingMachine(4)
gap> Display(m);

| 1 2 3 4 5 6 7 8 9
---+-----+-----+-----+-----+-----+-----+-----+-----+-----+
a | a,1 a,2 a,3 a,4 a,5 a,6 a,7 a,8 a,9
b | a,2 b,1 b,3 b,4 b,5 b,6 b,7 b,8 b,9
c | c,1 c,2 a,3 a,4 a,5 c,6 c,7 c,8 c,9
d | d,1 d,2 a,4 a,5 b,3 d,6 d,7 d,8 d,9
e | e,1 e,2 e,3 e,4 e,5 a,6 a,7 a,8 a,9

Functionally recursive groups 21

f | f,1 f,2 f,3 f,4 f,5 a,7 a,8 a,9 b,6
---+-----+-----+-----+-----+-----+-----+-----+-----+-----+

3.5.7 DirectProductOp (FR Machines)

. DirectProductOp(FR, machines, machine) (method)

Returns: A new FR machine on the cartesian product of the arguments’ alphabets.
The direct product of FR machines is defined as the FR machine with stateset generated by the

product of the statesets, acting on the product of the alphabets; if these alphabets are [1..n1] up
to [1..nk], then the alphabet of their product is [1..n1*...*nk] and the output and transition
functions act component-wise.

The first argument is a list; the second argument is any element of that list, and is used only to
improve the method selection algorithm.

Example
gap> m := DirectProduct(AddingMachine(2),AddingMachine(3));
AddingMachine(2)xAddingMachine(3)
gap> Display(last);

| 1 2 3 4 5 6
---+-----+-----+-----+-----+-----+-----+
a | a,1 a,2 a,3 a,4 a,5 a,6
b | a,2 a,3 b,1 a,5 a,6 b,4
c | a,4 a,5 a,6 c,1 c,2 c,3
d | a,5 a,6 b,4 c,2 c,3 d,1

---+-----+-----+-----+-----+-----+-----+

3.5.8 TreeWreathProduct (FR machine)

. TreeWreathProduct(m, n, x0, y0) (method)

Returns: A new FR machine on the cartesian product of the arguments’ alphabets.
The tree-wreath product of two FR machines is a machine acting on the product of its arguments’

alphabets X ,Y , in such a way that many images of the first machine’s states under conjugation by the
second commute.

It is introduced (in lesser generality, and with small variations) in [Sid05], and may be described
as follows: one takes two copies of the stateset of m , one copy of the stateset of n , and, if necessary,
an extra identity state.

The first copy of m fixes the alphabet X ×Y ; its state s̃ has transitions to the identity except s̃ at
(x0,y0) and s at (∗,y0) for any other ∗. The second copy of m is also trivial except that, on input
(x,y0), its state s goes to state s′ with output (x′,y0) whenever s originally went, on input x, to state s′

with output x′. This copy of m therefore acts only in the X direction, on the subtree (X ×{y0})∞, on
subtrees below vertices of the form (x0,y0)t(x,y0).

A state t in the copy of n maps the input (x,y) to (x,y′) and proceeds to state t ′ if y = y0, and to the
identity state otherwise, when on input y the original machine mapped state t to output t ′ and output
y′.

Example
gap> m := TreeWreathProduct(AddingMachine(2),AddingMachine(3),1,1);
AddingMachine(2)~AddingMachine(3)
gap> Display(last);

| 1 2 3 4 5 6

Functionally recursive groups 22

---+-----+-----+-----+-----+-----+-----+
a | c,2 c,3 a,1 c,5 c,6 c,4
b | c,4 c,2 c,3 b,1 c,5 c,6
c | c,1 c,2 c,3 c,4 c,5 c,6
d | d,1 c,2 c,3 b,4 c,5 c,6

---+-----+-----+-----+-----+-----+-----+

3.5.9 SubFRMachine

. SubFRMachine(machine1, machine2) (operation)

. SubFRMachine(machine1, f) (operation)

Returns: Either fail or an embedding of the states of machine2 in the states of machine1 .
In its first form, this function attempts to locate a copy of machine2 in machine1 . If is succeeds,

it returns a homomorphism from the stateset of machine2 into the stateset of machine1 ; otherwise it
returns fail.

In its second form, this function attempts to construct a machine with stateset the source of f , that
could be identified as a submachine of machine1 via f .

Example
gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);
<FR machine with alphabet [1, 2] on Group([tau, mu])>
gap> tauinv := FRMachine([[[1],[]]],[(1,2)]);
<FR machine with alphabet [1, 2] on Group([f1])>
gap> SubFRMachine(n,tauinv);
[f1] -> [tau^-1]
gap> SubFRMachine(n,last);
<FR machine with alphabet [1, 2] on Group([f1])>

3.5.10 ChangeFRMachineBasis

. ChangeFRMachineBasis(m[, l][, p]) (attribute)

Returns: An equivalent FR machine, in a new basis.
This function constructs a new group FR machine, given a group FR machine m and, optionally, a

list of states l (as elements of the free object StateSet(m)) and a permutation p , which defaults to
the identity permutation.

The new machine has the following transitions: if alphabet letter a is mapped to b by state s in m ,
leading to state t, then, in the new machine, the input letter a^p is mapped to b^p by state s, leading
to state l[a]^-1*t*l[b].

The group generated by the new machine is isomorphic to the group generated by m . This com-
mand amounts to a change of basis of the associated bimodule (see [Nek05, Section 2.2]). It amounts
to conjugation by the automorphism c=FRElement("c",[l[1]*c,...,l[n]*c],[()],1).

If the second argument is absent, this command attempts to choose a list that makes many entries
of the recursion trivial.

Example
gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);;
gap> Display(n);
G | 1 2

-----+--------+---------+
tau | <id>,2 tau,1
mu | <id>,2 mu^-1,1

Functionally recursive groups 23

-----+--------+---------+
gap> nt := ChangeFRMachineBasis(n,GeneratorsOfFRMachine(n){[1,1]});;
gap> Display(nt);
G | 1 2

-----+--------+--------------------+
tau | <id>,2 tau,1
mu | <id>,2 tau^-1*mu^-1*tau,1

-----+--------+--------------------+

3.5.11 Minimized (FR machine)

. Minimized(m) (operation)

Returns: A minimized machine equivalent to m .
This function attempts to construct a machine equivalent to m , but with a stateset of smaller rank.

Identical generators are collapsed to a single generator of the stateset; if m is a group or monoid
machine then trivial generators are removed; if m is a group machine then mutually inverse generators
are grouped. This function sets as Correspondence(result) a mapping between the stateset of m
and the stateset of the result; see Correspondence (3.5.12).

Example
gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);;
gap> m := FRMachine(["tauinv"],[[[1],[]]],[(1,2)]);;
gap> sum := n+m+n;
<FR machine with alphabet [1, 2] on Group([tau1, mu1, tauinv1, tau2, mu2])>
gap> min := Minimized(sum);
<FR machine with alphabet [1, 2] on Group([tau1, mu1])>
gap> Correspondence(min);
[tau1, mu1, tauinv1, tau2, mu2] -> [tau1, mu1, tau1^-1, tau1, mu1]

3.5.12 Correspondence (FR machine)

. Correspondence(m) (attribute)

Returns: A mapping between statesets of FR machines.
If a machine m was created as a minimized group/monoid/semigroup machine, then

Correspondence(m) is a mapping between the stateset of the original machine and the stateset of m .
See Minimized (3.5.11) for an example.

If m was created as a minimized Mealy machine, then Correspondence(m) is a list identifying,
for each state of the original machine, a state of the new machine. If the original state is inaccessible,
the corresponding list entry is unbound. See Minimized (5.2.2) for an example.

If m was created using AsGroupFRMachine (3.3.4), AsMonoidFRMachine (3.3.4),
AsSemigroupFRMachine (3.3.4), or AsMealyMachine (5.2.18), then Correspondence(m) is
a list or a homomorphism identifying for each generator of the original machine a generator, or word
in the generators, of the new machine. It is a list if either the original or the final machine is a Mealy
machine, and a homomorphism in other cases.

If m was created as a sum of two machines, then m has a mapping Correspondence(m)[i]
between the stateset of machine i=1,2 and its own stateset. See \+ (3.5.2) for an example.

Chapter 4

Functionally recursive elements

A functionally recursive element is given by a functionally recursive machine and an initial state q.
Many functions for FR machines, which accept a state as an argument, apply to FR elements. In that
case, no state is passed to the function.

The main function of FR elements is to serve as group/monoid/semigroup elements: they can be
multiplied and divided, and they act naturally on sequences. They can also be tested for equality, and
can be sorted.

FR elements are stored as free group/monoid/semigroup words. They are printed as <n|w>, where
n is the degree of their alphabet.

Equality of FR elements is tested as follows. Given FR elements (m,q) and (m,r), we set up a
"rewriting system" for m, which records a purported set of relations among states of m. We start by
an empty rewriting system, and we always ensure that the rewriting system is reduced and shortlex-
reducing. Then, to compare q and r, we first compare their activities. If they differ, the elements
are distinct. Otherwise, we reduce q and r using the rewriting system. If the resulting words are
graphically equal, then they are equal. Otherwise, we add the rule q→ r or r→ q to the rewriting
system, and proceed recursively to compare coordinatewise the states of these reduced words. As a
bonus, we keep the rewriting system to speed up future comparisons.

Efficient comparison requires lookup in sorted lists, aka "Sets". Given two FR elements x and y,
we declare that x < y if, for the shortlex-first sequence l such that Output(Transition(x,l)) and
Output(Transition(y,l)) differ, the former is less than the latter (compared as lists). In fact, a
single internal function compares x and y and returns −1,0,1 depending on whether x < y or x = y
or x > y. It traverses, in breadth first fashion, the alphabet sequences, and stops either when provably
x = y or if different outputs appear.

4.1 Creators for FRElements

4.1.1 FRElementNC (family,free,listlist,list,assocword)

. FRElementNC(fam, free, transitions, outputs, init) (operation)

Returns: A new FR element.
This function constructs a new FR element, belonging to family fam . It has stateset the free

group/semigroup/monoid free , and transitions described by states and outputs , and initial states
init .

24

Functionally recursive groups 25

transitions is a list of lists; transitions [s][x] is a word in free , which is the state reached
by the machine when started in state s and fed input x .

outputs is a list of lists; outputs [s][x] is a output letter of the machine when it receives input
x in state s .

init is a word in free .
Example

gap> f := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> e := FRElementNC(FREFamily([1,2]),f,[[One(f),f.1],[One(f),f.2^-1]],

[[2,1],[2,1]],f.1);
<2|f1>

4.1.2 FRElement ([list,]list,list,list)

. FRElement([names,]transitions, outputs, init) (operation)

. FRElement(free, transitions, outputs, init) (operation)

Returns: A new FR element.
This function constructs a new FR element. It has stateset a free group/semigroup/monoid, struc-

ture described by transitions and outputs , and initial state init . If the stateset is not passed as
argument free , then it is determined by transitions and outputs ; it is a free group if all states
are invertible, and a free monoid otherwise. In that case, names is an optional list; at position s it
contains a string describing generator s .

transitions is a list of lists; transitions[s][x] is either an associative word, or a list of
integers or FR elements describing the state reached by the machine when started in state s and fed
input x . Positive integers indicate a generator, negative integers its inverse, the empty list in the
identity state, and lists of length greater than one indicate a product of states. If an entry is an FR
element, then its machine is incorporated into the newly constructed element.

outputs is a list; at position s it contains a permutation, a transformation, or a list of images,
describing the activity of state s .

init is either an associative word, an integer, or a list of integers describing the inital state of the
machine.

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);
<2|tau>
gap> tau1 := FRElement(["tau1","tau"],[[[],[2]],[[],[2]]],[(),(1,2)],1);
<2|tau1>
gap> (tau/tau1)^2;
<2|tau1*tau2^-1*tau1*tau2^-1>
gap> IsOne(last);
true

Example
gap> f := FreeGroup("tau","tau1");
<free group on the generators [tau, tau1]>
gap> tau := FRElement(f,[[One(f),f.1],[One(f),f.1]],[(1,2),()],f.1);
<2|tau>
gap> tau1 := FRElement(f,[[One(f),f.1],[One(f),f.1]],[(1,2),()],f.2);
<2|tau1>
gap> (tau/tau1)^2;
<2|tau1*tau2^-1*tau1*tau2^-1>

Functionally recursive groups 26

gap> IsOne(last);
true
gap> tauX := FRElement(f,[[One(f),f.1],[One(f),f.1]],[(1,2),()],1);;
gap> tauY := FRElement(f,[[One(f),f.1],[One(f),f.1]],[(1,2),()],f.1);;
gap> Size(Set([tau,tauX,tauY]));
1

4.1.3 FRElement (machine/element,list)

. FRElement(m, q) (operation)

Returns: A new FR element.
This function constructs a new FR element. If m is an FR machine, it creates the element (m,q)

whose FRMachine is m and whose initial state is q .
If m is an FR element, this command creates an FR element with the same FR machine as m , and

with initial state q .
Example

gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1 .. 2] on Group([a, b])>
gap> a := FRElement(m,1); b := FRElement(m,2);
<2|a>
<2|b>
gap> Comm(b,b^a);
<2|b^-1*a^-1*b^-1*a*b*a^-1*b*a>
gap> IsOne(last);
true
gap> last2=FRElement(m,[-2,-1,-2,1,2,-1,2,1]);
true

4.1.4 ComposeElement (elementcoll,perm)

. ComposeElement(l, p) (operation)

Returns: A new FR element.
This function constructs a new FR element. l is a list of FR elements, and p is

a permutation, transformation or list. In that last case, the resulting element g satisfies
DecompositionOfFRElement(g)=[l,p].

If all arguments are Mealy elements, the result is a Mealy element. Otherwise, it is a Monoid-
FRElement.

Example
gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);;
gap> a := FRElement(m,1); b := FRElement(m,2);
<2|a>
<2|b>
gap> ComposeElement([b^0,b],(1,2));
<2|f1>
gap> last=a;
true
gap> DecompositionOfFRElement(last2);
[[<2|identity ...>, <2|f5>], [2, 1]]

Functionally recursive groups 27

4.1.5 VertexElement

. VertexElement(v, e) (operation)

Returns: A new FR element.
This function constructs a new FR element. v is either an integer or a list of integers, and repre-

sents a vertex. e is an FR element. The resulting element acts on the subtree below vertex v as e acts
on the whole tree, and fixes all other subtrees.

Example
gap> e := FRElement([[[],[]]],[(1,2)],[1]);
<2|f1>
gap> f := VertexElement(1,e);;
gap> g := VertexElement(2,f);;
gap> g = VertexElement([2,1],e);
true
gap> 1^e;
2
gap> [1,1]^f;
[1, 2]
gap> [2,1,1]^g;
[2, 1, 2]

4.1.6 DiagonalElement

. DiagonalElement(n, e) (operation)

Returns: A new FR element.
This function constructs a new FR element. n is either an integer or a list of integers, representing

a sequence of operations to be performed on e starting from the last.
DiagonalElement(n,e) is an element with trivial output, and with e(−1)i binomial(n,i) in coordinate

i+1 of the alphabet, assumed to be of the form [1..d].
In particular, DiagonalElement(0,e) is the same as VertexElement(1,e);

DiagonalElement(1,e) is the commutator of VertexElement(1,e) with any cycle mapping 1 to
2; and DiagonalElement(-1,e) has a transition to e at all inputs.

Example
gap> e := FRElement([[[],[],[1]]],[(1,2,3)],[1]);
<3|f1>
gap> Display(e);

| 1 2 3
----+--------+--------+------+
f1 | <id>,2 <id>,3 f1,1

----+--------+--------+------+
Initial state: f1
gap> Display(DiagonalElement(0,e));

| 1 2 3
----+--------+--------+--------+
f1 | f2,1 <id>,2 <id>,3
f2 | <id>,2 <id>,3 f2,1

----+--------+--------+--------+
Initial state: f1
gap> Display(DiagonalElement(1,e));

| 1 2 3
----+--------+---------+--------+

Functionally recursive groups 28

f1 | f2,1 f2^-1,2 <id>,3
f2 | <id>,2 <id>,3 f2,1

----+--------+---------+--------+
Initial state: f1
gap> Display(DiagonalElement(2,e));

| 1 2 3
----+--------+---------+------+
f1 | f2,1 f2^-2,2 f2,3
f2 | <id>,2 <id>,3 f2,1

----+--------+---------+------+
Initial state: f1
gap> Display(DiagonalElement(-1,e));

| 1 2 3
----+--------+--------+------+
f1 | f2,1 f2,2 f2,3
f2 | <id>,2 <id>,3 f2,1

----+--------+--------+------+
Initial state: f1
gap> DiagonalElement(-1,e)=DiagonalElement(2,e);
true
gap> Display(DiagonalElement([0,-1],e));
G | 1 2 3

----+--------+--------+--------+
f1 | f2,1 <id>,2 <id>,3
f2 | f3,1 f3,2 f3,3
f3 | <id>,2 <id>,3 f3,1

----+--------+--------+--------+
Initial state: f1
gap> Display(DiagonalElement([-1,0],e));
G | 1 2 3

----+--------+--------+--------+
f1 | f2,1 f2,2 f2,3
f2 | f3,1 <id>,2 <id>,3
f3 | <id>,2 <id>,3 f3,1

----+--------+--------+--------+
Initial state: f1

4.1.7 AsGroupFRElement

. AsGroupFRElement(e) (operation)

. AsMonoidFRElement(e) (operation)

. AsSemigroupFRElement(e) (operation)

Returns: An FR element isomorphic to m , with a free group/monoid/semigroup as stateset.
This function constructs, from the FR element e , an isomorphic FR element f with a free

group/monoid/semigroup as stateset. e may be a Mealy, group, monoid or semigroup FR element.
Example

gap> e := AsGroupFRElement(FRElement(GuptaSidkiMachines(3),4));
<3|f1>
gap> Display(e);
G | 1 2 3

----+--------+---------+--------+
f1 | f2,1 f2^-1,2 f1,3

Functionally recursive groups 29

f2 | <id>,2 <id>,3 <id>,1
----+--------+---------+--------+
Initial state: f1
gap> e=FRElement(GuptaSidkiMachines(3),4);
#I \=: converting second argument to FR element
true

Example
gap> e := AsMonoidFRElement(FRElement(GuptaSidkiMachines(3),4));
<3|m1>
gap> Display(e);
M | 1 2 3

----+--------+--------+--------+
m1 | m2,1 m3,2 m1,3
m2 | <id>,2 <id>,3 <id>,1
m3 | <id>,3 <id>,1 <id>,2

----+--------+--------+--------+
Initial state: m1
gap> e=FRElement(GuptaSidkiMachines(3),4);
#I \=: converting second argument to FR element
true

Example
gap> e := AsSemigroupFRElement(FRElement(GuptaSidkiMachines(3),4));
<3|s1>
gap> Display(e);
S | 1 2 3

----+------+------+------+
s1 | s2,1 s3,2 s1,3
s2 | s4,2 s4,3 s4,1
s3 | s4,3 s4,1 s4,2
s4 | s4,1 s4,2 s4,3

----+------+------+------+
Initial state: s1
gap> e=FRElement(GuptaSidkiMachines(3),4);
#I \=: converting second argument to FR element
true

4.2 Operations and Attributes for FRElements

4.2.1 Output (FR element)

. Output(e) (operation)

Returns: A transformation of e ’s alphabet.
This function returns the transformation of e ’s alphabet, i.e. the action on strings of length 1 over

the alphabet. This transformation is a permutation if machine is a group machine, and a transforma-
tion otherwise.

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> Output(tau);
(1,2)
zap := FRElement(["zap"],[[[],[1]]],[[1,1]],[1]);;

Functionally recursive groups 30

gap> Output(zap);
<1,1>

4.2.2 Activity

. Activity(e[, l]) (operation)

. ActivityInt(e[, l]) (operation)

. ActivityTransformation(e[, l]) (operation)

. ActivityPerm(e[, l]) (operation)

Returns: The transformation induced by e on the l th level of the tree.
This function returns the transformation induced by e on the l th level of the tree, i.e. on the

strings of length l over e ’s alphabet.
This set of strings is identified with the set L = {1, . . . ,dl} of integers, where the alphabet of e has

d letters. Changes of the first letter of a string induce changes of a multiple of dl−1 on the position in
L, while changes of the last letter of a string induce changes of 1 on the position in L.

In its first form, this command returns a permutation (for group elements) or a Transformation
(Reference: Transformations) (for other elements). In the second form, it returns the unique integer
i such that the transformation e acts on [1..Length(AlphabetOfFRObject(e))^n] as adding i
in base Length(alphabet(e)), or fail if no such i exists. In the third form, it returns a GAP
transformation. In the fourth form, it returns a permutation, or fail if e is not invertible.

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> Output(tau); PermList(last)=Activity(tau);
[2, 1]
true
gap> Activity(tau,2); ActivityInt(tau,2);
(1,3,2,4)
1
gap> Activity(tau,3); ActivityInt(tau,3);
(1,5,3,7,2,6,4,8)
1
gap> zap := FRElement(["zap"],[[[1],[]]],[[1,1]],[1]);
<2|zap>
gap> Output(zap);
[1, 1]
gap> Activity(zap,3);
<1,1,1,2,1,2,3,4>

4.2.3 Transition (FR element,input)

. Transition(e, i) (operation)

Returns: An element of machine ’s stateset.
This function returns the state reached by e when fed input i . This input may be an alphabet

letter or a sequence of alphabet letters.
Example

gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> Transition(tau,2);
tau
gap> Transition(tau,[2,2]);

Functionally recursive groups 31

tau
gap> Transition(tau^2,[2,2]);
tau

4.2.4 Transitions (FR element)

. Transitions(e) (operation)

Returns: A list of elements of machine ’s stateset.
This function returns the states reached by e when fed the alphabet as input.

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> Transitions(tau);
[<identity ...>, tau]
gap> Transition(tau^2);
[tau, tau]

4.2.5 Portrait

. Portrait(e, l) (operation)

. PortraitPerm(e, l) (operation)

. PortraitTransformation(e, l) (operation)

. PortraitInt(e, l) (operation)

Returns: A nested list describing the action of e .
This function returns a sequence of l + 1 lists; the ith list in the sequence is an i-1 -fold nested

list. The entry at position (x1, . . . ,xi) is the transformation of the alphabet induced by e under vertex
x1 . . .xi.

The difference between the commands is the following: Portrait returns transformations,
PortraitPerm returns permutations, and and PortraitInt returns integers, the power of the cy-
cle x 7→ x+1 that represents the transformation, as for the function ActivityInt (4.2.2).

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> Portrait(tau,0);
[<2,1>]
gap> Portrait(tau,3);
[<2,1>, [<>, <2,1>], [[<>, <>], [<>, <2,1>]],

[[[<>, <>], [<>, <>]], [[<>, <>], [<>, <2,1>]]]]
gap> PortraitPerm(tau,0);
[(1,2)]
gap> PortraitInt(tau,0);
[1]
gap> PortraitInt(tau,3);
[1 , [0 , 1],

[[0 , 0], [0 , 1]],
[[[0 , 0], [0 , 0]], [[0 , 0], [0 , 1]]]]

4.2.6 DecompositionOfFRElement

. DecompositionOfFRElement(e[, n]) (operation)

Returns: A list describing the action and transitions of e .

Functionally recursive groups 32

This function returns a list. The second coordinate is the action of e on its alphabet, see Output
(4.2.1). The first coordinate is a list, containing in position i the FR element inducing the action of e
on strings starting with i.

If a second argument n is supplied, the decomposition is iterated n times.
This FR element has same underlying machine as e , and initial state given by Transition (4.2.3).

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> DecompositionOfFRElement(tau);
[[<2|identity ...>, <2|tau>], [2, 1]]

4.2.7 StateSet (FR element)

. StateSet(e) (operation)

Returns: The set of states associated with e .
This function returns the stateset of e . If e is of Mealy type, this is the list of all states reached by

e .
If e is of group/semigroup/monoid type, then this is the stateset of the underlying FR machine,

and not the minimal set of states of e , which is computed with States (4.2.9).
Example

gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> StateSet(tau);
<free group on the generators [tau]>

4.2.8 State

. State(e, v) (operation)

Returns: An FR element describing the action of e at vertex v .
This function returns the FR element with same underlying machine as e , acting on the binary

tree as e acts on the subtree below v .
v is either an integer or a list. This function returns an FR element, but otherwise is essentially a

call to Transition (4.2.3).
Example

gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> State(tau,2);
<2|tau>
gap> State(tau,[2,2]);
<2|tau>
gap> State(tau^2,[2,2]);
<2|tau>

4.2.9 States

. States(e) (operation)

Returns: A list of FR elements describing the action of e on all subtrees.
This function calls repeatedly State (4.2.8) to compute all the states of e ; it returns the smallest

list of FRElements that is closed under the function State (4.2.8).
e may be either an FR element, or a list of FR elements. In the latter case, it amounts to computing

the list of all states of all elements of the list e .

Functionally recursive groups 33

The ordering of the list is as follows. First come e , or all elements of e . Then come the states
reached by e in one transition, ordered by the alphabet letter leading to them; then come those reached
in two transitions, ordered lexicographically by the transition; etc.

Note that this function is not guaranteed to terminate. There is currently no mechanism that detects
whether an FR element is finite state, so in fact this function terminates if and only if e is finite-state.

Example
gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);;
gap> a := FRElement(m,1);; b := FRElement(m,2);;
gap> States(a);
[<2|a>, <2|identity ...>, <2|b>]
gap> States(b);
[<2|b>, <2|identity ...>, <2|a>]
gap> States(a^2);
[<2|a^2>, <2|b>, <2|identity ...>, <2|a>]

4.2.10 FixedStates

. FixedStates(e) (operation)

Returns: A list of FR elements describing the action of e at fixed vertices.
This function calls repeatedly State (4.2.8) to compute all the states of e at non-trivial fixed

vertices.
e may be either an FR element, or a list of FR elements. In the latter case, it amounts to computing

the list of all states of all elements of the list e .
The ordering of the list is as follows. First come e , or all elements of e . Then come the states

reached by e in one transition, ordered by the alphabet letter leading to them; then come those reached
in two transitions, ordered lexicographically by the transition; etc.

Note that this function is not guaranteed to terminate, if e is not finite-state.
Example

gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);;
gap> a := FRElement(m,1);; b := FRElement(m,2);;
gap> FixedStates(a);
[]
gap> FixedStates(b);
[<2|identity ...>, <2|a>]
gap> FixedStates(a^2);
[<2|b>, <2|identity ...>, <2|a>]

4.2.11 LimitStates

. LimitStates(e) (operation)

Returns: A set of FR element describing the recurring actions of e on all subtrees.
This function computes the States (4.2.9) S of e , and then repeatedly removes elements that are

not recurrent, i.e. that do not appear as states of elements of S on subtrees distinct from the entire tree;
and then converts the result to a set.

As for States (4.2.9), e may be either an FR element, or a list of FR elements.
Note that this function is not guaranteed to terminate. It currently terminates if and only if States

(4.2.9) terminates.

Functionally recursive groups 34

Example
gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);;
gap> a := FRElement(m,1);; b := FRElement(m,2);;
gap> LimitStates(a);
[<2|identity ...>, <2|b>, <2|a>]
gap> LimitStates(a^2);
[<2|identity ...>, <2|b>, <2|a>]

4.2.12 IsFiniteStateFRElement

. IsFiniteStateFRElement(e) (property)

. IsFiniteStateFRMachine(e) (property)

Returns: true if e is a finite-state element.
This function tests whether e is a finite-state element.
When applied to a Mealy element, it returns true.

Example
gap> m := GuptaSidkiMachines(3);; Display(m);

| 1 2 3
---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 a,1
c | a,3 a,1 a,2
d | b,1 c,2 d,3

---+-----+-----+-----+
gap> Filtered(StateSet(m),i->IsFiniteStateFRElement(FRElement(m,i)));
[1, 2, 3, 4]
gap> IsFiniteStateFRMachine(m);
true

4.2.13 NucleusOfFRMachine

. NucleusOfFRMachine(m) (operation)

. Nucleus(m) (operation)

Returns: The nucleus of the machine m .
This function computes the nucleus of the machine m . It is the minimal set N of states such that,

for every word s in the states of m , all states of s of at large enough depth belong to .
It may also be characterized as the minimal set N of states that contains the limit states of m and is

such that the limit states of N*m belong to N.
The elements of the nucleus form the stateset of a Mealy machine; this machine is created by

NucleusMachine (5.2.27).
This command is not guaranteed to terminate; though it will, if the semigroup generated by m is

contracting. If the minimal such N is infinite, this command either returns K or runs forever.
Example

gap> m := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);;
gap> NucleusOfFRMachine(m);
[<2|identity ...>, <2|b>, <2|a>]
gap> m := FRMachine(["a","b"],[[[],[1]],[[1],[2]]],[(1,2),()]);;
gap> NucleusOfFRMachine(m);
fail

Functionally recursive groups 35

4.2.14 InitialState

. InitialState(e) (operation)

Returns: The initial state of an FR element.
This function returns the initial state of an FR element. It is an element of the stateset of the

underlying FR machine of e .
Example

gap> n := FRElement(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)],[1,2]);
<2|tau*mu>
gap> InitialState(n);
tau*mu
gap> last in StateSet(n);
true

4.2.15 \^ (POW)

. \^(e, v) (method)

Returns: The image of a vertex v under e .
This function accepts an FR element and a vertex v , which is either an integer or a list. It returns

the image of v under the transformation e , in the same format (integer/list) as v .
The list v can be a periodic list (see PeriodicList (11.2.2)). In that case, the result is again a

periodic list. The computation will succeed only if the states along the period are again periodic.
Example

gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> 1^tau;
2
gap> [1,1]^tau;
[2, 1]
gap> [2,2,2]^tau;
[1, 1, 1]
gap List([0..5],i->PeriodicList([],[2])^(tau^i));
[[/ 2], [/ 1], [2, / 1], [1, 2, / 1], [2, 2, / 1],

[1, 1, 2, / 1]]

4.2.16 * (PROD)

. *(m, n) (method)

Returns: The product of the two FR elements m and n .
This function returns a new FR element, which is the product of the FR elements m and n .
In case m and n have the same underlying machine, this is the machine of the result. In case the

machine of n embeds in the machine of m (see SubFRMachine (3.5.9)), the machine of the product is
the machine of m . In case the machine of m embeds in the machine of n , the machine of the product
is the machine of n . Otherwise the machine of the product is the product of the machines of m and n
(See * (3.5.3)).

Example
gap> tau := FRElement(["tau"],[[[],[1]]],[(1,2)],[1]);;
gap> tau*tau; tau^2;
<2|tau^2>
<2|tau^2>

Functionally recursive groups 36

gap> [2,2,2]^(tau^2);
[2, 1, 1]

4.2.17 \[\] (ELMLIST)

. \[\](m, i) (method)

. \{\}(m, l) (method)

Returns: A [list of] FR element[s] with initial state i .
These are respectively synonyms for FRElement(m,i) and List(l,s->FRElement(m,s)). The

argument m must be an FR machine, i must be a positive integer, and l must be a list.

Chapter 5

Mealy machines and elements

Mealy machines form a special class of FR machines. They have as stateset a finite set, as opposed
to a free group/monoid/semigroup. All commands available for FR machines are also available for
Mealy machines, but the latter have added functionality.

There are currently two types of Mealy machines; one has as stateset an interval of integers of
the form [1..m] and as alphabet a set of integers; the other has an arbitrary domain as stateset and
alphabet. Almost no functionality is implemented for the latter type, but there is a function converting
it to the former type (see AsMealyMachine (5.2.18)).

The internal representation of a Mealy machine of the first kind is quite different from that of FR
machines. The alphabet is assumed to be an interval [1..n], and the stateset is assumed to be an
interval [1..m]. The transitions are stored as a m× n matrix, and the outputs are stored in a list of
length m, consisting of permutations or transformations.

Mealy machines have additional properties, in particular they can act on periodic sequences (see
PeriodicList (11.2.2)). For example, the periodic sequence PeriodicList([1],[1,2]) describes
the infinite ray [1,1,2,1,2,..] in the tree. In principle, Mealy machines could act on sequences
accepted by an automaton, although this is not yet implemented.

Mealy elements are Mealy machines with an initial state. For efficiency reasons, Mealy elements
are always minimized, and their states are ordered in a canonical top-down, left-to-right order of
traversal of the tree. In particular, their initial state is always 1. In this implementation, multiplication
of Mealy elements is slower than multiplication of group FR elements, while comparison of Mealy
elements is faster than comparison of group FR elements. In practise, it is better to work with Mealy
elements as often as possible.

Products of Mealy machines behave in the same way as products of general FR machines, see 3.2.
The only difference is that now the sum and products of statesets are distinct; the sum of statesets
being their disjoint union, and their product being their cartesian product.

Sometimes one would like to know how a Mealy element was obtained as a word in Mealy ele-
ments. This is possible within the representation IsFRMealyElement (10.2.12), which combines the
representations IsMealyElement (10.2.4) and IsFRElement (10.2.11). On top of usual FR elements,
they have an attribute UnderlyingMealyMachine, which is used for faster comparison of elements,
and computation of the action.

Therefore, if L is a list of FR elements, the call List(L,UnderlyingElement);; will set these
attributes, and all calculations made with elements of L will use and propagate the attributes. FR-
Mealy elements are displayed in the form <d|w|n>, where d is the degree of the alphabet, w is a word
in the stateset, and n is the number of states of the underlying Mealy element.

37

Functionally recursive groups 38

5.1 Creators for MealyMachines and MealyElements

5.1.1 MealyMachine ([list,]listlist,list)

. MealyMachine([alphabet,]transitions, output) (operation)

. MealyElement([alphabet,]transitions, output, init) (operation)

Returns: A new Mealy machine/element.
This function constructs a new Mealy machine or element, of integer type.
transitions is a list of lists; transitions[s][x] is an integer, which is the state reached by

the machine when started in state s and fed input x .
output is a list; at position s it contains a permutation, a transformation describing the activity

of state s , or a list describing the images of the transformation.
alphabet is an optional domain given as first argument; When present, it is assumed to be a

finite domain, mapped bijectively to [1..n] by its enumerator. The indices "[s]" above are then
understood with respect to this enumeration.

init is an integer describing the initial state the newly created Mealy element should be in.
Example

gap> b := MealyMachine([[3,2],[3,1],[3,3]],[(1,2),(),()]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> Display(b);

| 1 2
---+-----+-----+
a | c,2 b,1
b | c,1 a,2
c | c,1 c,2

---+-----+-----+
gap> n := MealyMachine(Domain([11,12]),[[3,2],[3,1],[3,3]],[(1,2),(),()]);
<Mealy machine on alphabet [11, 12] with states [1 .. 3]>
gap> Display(n);

| 11 12
---+------+------+
a | c,12 b,11
b | c,11 a,12
c | c,11 c,12

---+------+------+

Example
gap> tau := MealyElement([[2,1],[2,2]],[(1,2),()],1);
<Mealy machine on alphabet [1, 2] with 2 states, initial state 1>
gap> Display(tau);

| 1 2
---+-----+-----+
a | b,2 a,1
b | b,1 b,2

---+-----+-----+
Initial state: a
gap> [1,1]^tau; [[1]]^tau; [[2]]^tau;
[2, 1]
[2, [1]]
[[1]]

Functionally recursive groups 39

5.1.2 MealyMachine (domain,domain,function,function)

. MealyMachine(stateset, alphabet, transitions, output) (operation)

. MealyElement(stateset, alphabet, transitions, output, init) (operation)

Returns: A new Mealy machine/element.
This function constructs a new Mealy machine or element, of domain type.
stateset and alphabet are domains; they are not necessarily finite.
transitions is a function; it takes as arguments a state and an alphabet letter, and returns a state.
output is either a function, accepting as arguments a state and a letter, and returning a letter.
init is an element of stateset describing the initial state the newly created Mealy element

should be in.
Example

gap> g := Group((1,2));; n := MealyMachine(g,g,*,*);
<Mealy machine on alphabet [(), (1,2)] with states Group([(1,2)])>
gap> [(1,2),()]^FRElement(n,());
[(1,2), (1,2)]
gap> a := MealyElement(g,g,*,*,());
<Mealy machine on alphabet [(), (1,2)] with states Group(
[(1,2)]), initial state ()>
gap> [(1,2),()]^a;
[(1,2), (1,2)]

5.1.3 MealyMachineNC (family,listlist,list)

. MealyMachineNC(fam, transitions, output) (operation)

. MealyElementNC(fam, transitions, output, init) (operation)

Returns: A new Mealy machine/element.
This function constructs a new Mealy machine or element, of integer type. No tests are performed

to check that the arguments contain values within bounds, or even of the right type (beyond the simple
checking performed by GAP’s method selection algorithms). In particular, Mealy elements are always
assumed to be minimized, but these functions leave this task to the user.

fam is the family to which the newly created Mealy machine will belong.
transitions is a list of lists; transitions[s][x] is an integer, which is the state reached by

the machine when started in state s and fed input x .
output is a list; at position s it contains a permutation or a transformation describing the activity

of state s .
init is an integer describing the initial state the newly created Mealy element should be in.

Example
gap> taum := MealyMachine([[2,1],[2,2]],[(1,2),()]);
<Mealy machine on alphabet [1, 2] with 2 states>
gap> tauminv := MealyMachineNC(FamilyObj(taum),[[1,2],[2,2]],[(1,2),()]);
<Mealy machine on alphabet [1, 2] with 2 states>
gap> tau := MealyElement([[2,1],[2,2]],[(1,2),()],1);
<Mealy machine on alphabet [1, 2] with 2 states, initial state 1>
gap> tauinv := MealyElementNC(FamilyObj(n),[[1,2],[2,2]],[(1,2),()],1);
<Mealy machine on alphabet [1, 2] with 2 states, initial state 1>
gap> tau=FRElement(taum,1); tauinv=FRElement(tauminv,1);
true
true

Functionally recursive groups 40

gap> IsOne(tau*tauinv);
true

5.1.4 AllMealyMachines

. AllMealyMachines(m, n[, filters]) (function)

Returns: A list of all Mealy machines with specified properties.
This function constructs all Mealy machines with alphabet [1..m], stateset [1..n] and specified

properties.
These properties are specified as additional arguments. They can include IsInvertible

(10.2.15), IsReversible (5.2.4), IsBireversible (5.2.7), and IsMinimized (5.2.5) to specify that
the machines should have that property.

A group/monoid/semigroup p may also be passed as argument; this specifies the allowable ver-
tex transformations of the machines. The property IsTransitive requires that the state-closed
group/monoid/semigroup of the machine act transitively on its alphabet, and IsSurjective requires
that its VertexTransformationsFRMachine (5.2.15) be precisely equal to p.

The argument EquivalenceClasses returns one isomorphism class of Mealy machine, under the
permutations of the stateset and alphabet.

The argument InverseClasses returns one isomorphism class of Mealy machine under inversion
of the stateset.

The following example constructs the two Mealy machines AleshinMachine (9.1.15) and
BabyAleshinMachine (9.1.16):

Example
gap> l := AllMealyMachines(2,3,IsBireversible,IsSurjective,EquivalenceClasses);;
gap> Length(l);
20
gap> Filtered(l,x->VertexTransformationsFRMachine(DualMachine(x))=SymmetricGroup(3)
> and Size(StateSet(Minimized(x)))=3);
[<Mealy machine on alphabet [1, 2] with 3 states>,

<Mealy machine on alphabet [1, 2] with 3 states>]
gap> Display(last[1]);

| 1 2
---+-----+-----+
a | a,1 b,2
b | c,2 c,1
c | b,1 a,2

---+-----+-----+
gap> Display(last[2]);

| 1 2
---+-----+-----+
a | a,2 b,1
b | c,1 c,2
c | b,2 a,1

---+-----+-----+

Functionally recursive groups 41

5.2 Operations and Attributes for MealyMachines and MealyElements

5.2.1 Draw

. Draw(m[, filename]) (operation)

This function creates a graph description of the Mealy machine/element m . If a second argument
filename is present, the graph is saved, in dot format, under that filename; otherwise it is converted
to Postscript using the program dot from the graphviz package, and is displayed in a separate X
window using the program display or rsvg-view. This works on UNIX systems.

It is assumed, but not checked, that graphviz and display/rsvg-view are properly installed on the
system. The option usesvg requests the use of rsvg-view; by default, display is used.

A circle is displayed for every state of m , and there is an edge for every transition in m . It has label
of the form x/y, where x is the input symbol and y is the corresponding output. Edges are coloured
according to the input symbol, in the order "red", "blue", "green", "gray", "yellow", "cyan", "orange",
"purple". If m has an initial state, it is indicated as a doubly circled state.

If m is a FR machine, Draw first attempts to convert it to a Mealy machine (see AsMealyMachine
(5.2.18)).

The optional value "detach" detaches the drawing subprocess after it is started, in the syntax
Draw(M:detach).

It is assumed that graphviz and display/rsvg-view are properly installed on the system. The
option usesvg requests the use of rsvg-view; by default, display is used.

For example, the command Draw(NucleusMachine(BasilicaGroup)); produces (in a new

window) the following picture:

5.2.2 Minimized (Mealy machine)

. Minimized(m) (operation)

Returns: A minimized machine equivalent to m .
This function contructs the minimized Mealy machine r corresponding to m , by identifying iso-

morphic states; and, if m is initial, by removing inaccessible states.
If m is initial, the minimized automaton is such that its states are numbered first by distance to the

initial state, and then lexicographically by input letter. (in particular, the initial state is 1). This makes
comparison of minimized automata efficient.

Furthermore, Correspondence(r) is a list describing, for each (accessible) state of m , its corre-
sponding state in r; see Correspondence (3.5.12).

Example
gap> GrigorchukMachine := MealyMachine([[2,3],[4,4],[2,5],[4,4],[4,1]],

[(),(1,2),(),(),()]);
<Mealy machine on alphabet [1, 2] with 5 states>
gap> g2 := GrigorchukMachine^2;

Functionally recursive groups 42

<Mealy machine on alphabet [1, 2] with 25 states>
gap> Minimized(g2);
<Mealy machine on alphabet [1, 2] with 11 states, minimized>
gap> Correspondence(last);
[2, 1, 4, 11, 9, 1, 2, 5, 7, 6, 4, 3, 2, 9, 11, 11, 10, 9, 2, 4, 9, 8, 11, 4, 2]
gap> e := FRElement(g2,11);
<Mealy element on alphabet [1, 2] with 25 states, initial state 11>
gap> Minimized(e);
<Mealy element on alphabet [1, 2] with 5 states, initial state 1, minimized>
gap> Correspondence(last);
[3, 2, 1, 4, 5, 2, 3,,,, 1,, 3, 5, 4, 4,, 5, 3, 1, 5,, 4, 1, 3]

5.2.3 DualMachine

. DualMachine(m) (operation)

Returns: The dual Mealy machine of m .
This function constructs the dual machine of m , i.e. the machine with stateset the alphabet of m ,

with alphabet the stateset of m , and similarly with transitions and output switched.
Example

gap> b := MealyMachine([[3,2],[3,1],[3,3]],[(1,2),(),()]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> d := DualMachine(b)^4);
<Mealy machine on alphabet [1, 2, 3] with 16 states>
gap> Draw(d); # action on 2^4 points
gap> DualMachine(d);
<Mealy machine on alphabet [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
] with 3 states>

gap> Output(last,1)=Activity(FRElement(b,1),4);
true

5.2.4 IsReversible

. IsReversible(m) (property)

Returns: true if m is a reversible Mealy machine.
This function tests whether m is reversible, i.e. whether the DualMachine (5.2.3) of m is invertible.

See [MNS00] for more details.
Example

gap> IsReversible(MealyMachine([[1,2],[2,2]],[(1,2),()]));
false
gap> IsReversible(MealyMachine([[1,2],[2,1]],[(),(1,2)]));

5.2.5 IsMinimized

. IsMinimized(m) (property)

Returns: true if m is a minimized Mealy machine.
This function tests whether m is minimized, i.e. whether nono of its states can be removed or

coalesced. All Mealy elements are automatically minimized.
Example

gap> AllMealyMachines(2, 2, IsBireversible,EquivalenceClasses);
[<Mealy machine on alphabet [1, 2] with 2 states>,

Functionally recursive groups 43

<Mealy machine on alphabet [1, 2] with 2 states>,
<Mealy machine on alphabet [1, 2] with 2 states>,
<Mealy machine on alphabet [1, 2] with 2 states>,
<Mealy machine on alphabet [1, 2] with 2 states>,
<Mealy machine on alphabet [1, 2] with 2 states>,
<Mealy machine on alphabet [1, 2] with 2 states>,
<Mealy machine on alphabet [1, 2] with 2 states>]

gap> List(last,IsMinimized);
[false, true, false, false, false, false, true, false]

5.2.6 AlphabetInvolution

. AlphabetInvolution(m) (attribute)

Returns: A list giving, for each alphabet letter, its inverse.
If m is a bireversible machine, it may happen that the stateset of the dual of m (see DualMachine

(5.2.3)) is closed under taking inverses. If this happens, then this list records the mapping from an
alphabet letter of m to its inverse.

Example
gap> m := GammaPQMachine(3,5);; AlphabetOfFRObject(m);
[1 .. 6]
gap> IsBireversible(m); AlphabetInvolution(GammaPQMachine(3,5));
true
[6, 5, 4, 3, 2, 1]

5.2.7 IsBireversible

. IsBireversible(m) (property)

Returns: true if m is a bireversible Mealy machine.
This function tests whether m is bireversible, i.e. whether all eight machines obtained from m

using DualMachine (5.2.3) and Inverse are well-defined. See [MNS00] for more details.
Example

gap> IsBireversible(MealyMachine([[1,2],[2,1]],[(),(1,2)]));
false
gap> IsBireversible(MealyMachine([[1,1],[2,2]],[(),(1,2)]));
true

5.2.8 StateGrowth

. StateGrowth(m[, x]) (operation)

Returns: The state growth of the Mealy machine or element m .
This function computes, as a rational function, the power series in x whose coefficient of degree

n is the number of non-trivial states at level n of the tree.
If x is absent, it is assumed to be Indeterminate(Rationals).
If m is a Mealy machine, this function is computed with respect to all possible starting states. If m

is a Mealy element, this function is computed with respect to the initial state of m .
Example

gap> b := MealyMachine([[3,2],[3,1],[3,3]],[(1,2),(),()]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> StateGrowth(b,Indeterminate(Rationals));

Functionally recursive groups 44

(2)/(-x_1+1)
gap> StateGrowth(FRElement(b,1),Indeterminate(Rationals));
(1)/(-x_1+1)

5.2.9 Degree (FR element)

. Degree(m) (operation)

. DegreeOfFRMachine(m) (operation)

. DegreeOfFRElement(m) (operation)

Returns: The growth degree of the Mealy machine or element m .
This function computes the order of the pole at x = 1 of StateGrowth(m,x), in case its denomi-

nator is a product of cyclotomics; and returns infinity otherwise.
This attribute of Mealy machines was studied inter alia in [Sid00].

Example
gap> m := MealyMachine([[2,1],[3,2],[3,3]],[(),(1,2),()]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> StateGrowth(m,Indeterminate(Rationals));
(-x_1+2)/(x_1^2-2*x_1+1)
gap> List(StateSet(m),i->Degree(FRElement(m,i)));
[2, 1, -1]
gap> a := MealyMachine(Group((1,2)),Group((1,2)),*,*);
<Mealy machine on alphabet [(), (1,2)] with states Group([(1,2)])>
gap> Degree(a);
infinity

5.2.10 IsFinitaryFRElement

. IsFinitaryFRElement(e) (property)

. IsFinitaryFRMachine(e) (property)

Returns: true if e is a finitary element.
This function tests whether e is a finitary element. These are by definition the elements of growth

degree at most 0.
When applied to a Mealy machine, it returns true if all states of e are finitary.

Example
gap> m := GuptaSidkiMachines(3);; Display(m);

| 1 2 3
---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 a,1
c | a,3 a,1 a,2
d | b,1 c,2 d,3

---+-----+-----+-----+
gap> Filtered(StateSet(m),i->IsFinitaryFRElement(FRElement(m,i)));
[1, 2, 3]
gap> IsFinitaryFRElement(m);
false

Functionally recursive groups 45

5.2.11 Depth (FR element)

. Depth(m) (attribute)

. DepthOfFRMachine(m) (attribute)

. DepthOfFRElement(m) (attribute)

Returns: The depth of the finitary Mealy machine or element m .
This function computes the maximal level at which the m has an non-trivial state. In particular the

identity has depth 0, and FR elements acting only at the root vertex have depth 1. The value infinity
is returned if m is not finitary (see IsFinitaryFRElement (5.2.10)).

Example
gap> m := MealyMachine([[2,1],[3,3],[4,4],[4,4]],[(),(),(1,2),()]);
<Mealy machine on alphabet [1, 2] with 4 states>
gap> DepthOfFRMachine(m);
infinity
gap> List(StateSet(m),i->DepthOfFRElement(FRElement(m,i)));
[infinity, 2, 1, 0]

5.2.12 IsBoundedFRElement

. IsBoundedFRElement(e) (property)

. IsBoundedFRMachine(e) (property)

Returns: true if e is a finitary element.
This function tests whether e is a bounded element. These are by definition the elements of growth

degree at most 1.
When applied to a Mealy machine, it returns true if all states of e are bounded.

Example
gap> m := GuptaSidkiMachines(3);; Display(m);

| 1 2 3
---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 a,1
c | a,3 a,1 a,2
d | b,1 c,2 d,3

---+-----+-----+-----+
gap> Filtered(StateSet(m),i->IsBoundedFRElement(FRElement(m,i)));
[1, 2, 3, 4]
gap> IsBoundedFRMachine(m);
true

5.2.13 IsPolynomialGrowthFRElement

. IsPolynomialGrowthFRElement(e) (property)

. IsPolynomialGrowthFRMachine(e) (property)

Returns: true if e is an element of polynomial growth.
This function tests whether e is a polynomial element. These are by definition the elements of

polynomial growth degree.
When applied to a Mealy machine, it returns true if all states of e are of polynomial growth.

Example
gap> m := GuptaSidkiMachines(3);; Display(m);

| 1 2 3

Functionally recursive groups 46

---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 a,1
c | a,3 a,1 a,2
d | b,1 c,2 d,3

---+-----+-----+-----+
gap> Filtered(StateSet(m),i->IsPolynomialGrowthFRElement(FRElement(m,i)));
[1, 2, 3, 4]
gap> IsPolynomialGrowthFRMachine(m);
true

5.2.14 Signatures

. Signatures(e) (operation)

Returns: A list describing the product of the activities on each level.
This function computes the product of the activities of e on each level, and returns a periodic list

describing it (see PeriodicList (11.2.2)).
The entries pi are permutations, and their values are meaningful only when projected in the

abelianization of VertexTransformationsFRElement(e).
Example

gap> Signatures(GrigorchukGroup.1);
[(1,2), / ()]
gap> Signatures(GrigorchukGroup.2);
[/ (), (1,2), (1,2)]
gap> last[50];
(1,2)
gap> Signatures(AddingMachine(3)[2]);
[/ (1,2,3)]

5.2.15 VertexTransformationsFRMachine

. VertexTransformationsFRMachine(m) (operation)

. VertexTransformationsFRElement(e) (operation)

Returns: The group/monoid generated by all vertex transformations of states of m .
The first function computes the finite permutation group / transformation monoid generated by all

outputs of states of m .
The second command is a short-hand for VertexTransformationsFRMachine(UnderlyingFRMachine(e)).

Example
gap> m := MealyMachine([[1,3,2],[3,2,1],[2,1,3]],[(2,3),(1,3),(1,2)]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> VertexTransformationsFRMachine(m);
Group([(2,3), (1,3), (1,2)])

5.2.16 FixedRay (FR element)

. FixedRay(e) (operation)

Returns: The lexicographically first ray fixed by e .
This function computes the lexicographically first infinite sequence that is fixed by the FR element

e , and returns it as a periodic list (see PeriodicList (11.2.2)). It returns fail if no such ray exists.

Functionally recursive groups 47

Example
gap> m := MealyMachine([[1,3,2],[3,2,1],[2,1,3]],[(2,3),(1,3),(1,2)]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> FixedRay(FRElement(m,1));
[/ 1]
gap> last^FRElement(m,1);
[/ 1]
gap> FixedRay(FRElement(m,[1,2]));
fail

5.2.17 IsLevelTransitive (FR element)

. IsLevelTransitive(e) (property)

Returns: true if e acts transitively on each level of the tree.
This function tests whether e acts transitively on each level of the tree. It is implemented only if

VertexTransformationsFRElement(e) is abelian.
This function is used as a simple test to detect whether an element has infinite order: if e has a

fixed vertex v such that the State(e,v) is level-transitive, then e has infinite order.
Example

gap> m := AddingMachine(3);; Display(m);
| 1 2 3

---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 b,1

---+-----+-----+-----+
Initial state: b
gap> IsLevelTransitive(m);
true
gap> IsLevelTransitive(Product(UnderlyingFRMachine(GrigorchukOverGroup){[2..5]}));
true

5.2.18 AsMealyMachine (FR machine)

. AsMealyMachine(m) (attribute)

Returns: A Mealy machine isomorphic to m .
This function constructs a Mealy machine r, which is as close as possible to the FR machine m .

Furthermore, Correspondence(r) is a list identifying, for every generator of the stateset of m , a
corresponding state in the new Mealy machine; see Correspondence (3.5.12).

m may be a group/monoid/semigroup FR machine, or a Mealy machine; in which case the result
is returned unchanged.

In particular, FRElement(m,s) and FRElement(AsMealyMachine(m),s) return the same tree
automorphism, for any FR machine m and any state s.

This function is not guaranteed to return; if m does not have finite states, then it will loop forever.
Example

gap> n := FRMachine(["tau","mu"],[[[],[1]],[[],[-2]]],[(1,2),(1,2)]);
<FR machine with alphabet [1 .. 2] on Group([tau, mu])>
gap> Display(n);

| 1 2
-----+--------+---------+
tau | <id>,2 tau,1

Functionally recursive groups 48

mu | <id>,2 mu^-1,1
-----+--------+---------+
gap> AsMealyMachine(n);
<Mealy machine on alphabet [1, 2] with 4 states>
gap> Display(last);

| 1 2
---+-----+-----+
a | c,2 a,1
b | c,2 d,1
c | c,1 c,2
d | b,2 c,1

---+-----+-----+
gap> Correspondence(last);
[1, 2]

5.2.19 AsMealyMachine (List)

. AsMealyMachine(l) (attribute)

Returns: A Mealy machine constructed out of the FR elements in l .
This function constructs a Mealy machine r, with states l (which must be a state-closed set).

Its outputs are the outputs of its elements, and its transitions are the transitions of its elements; in
particular, FRElement(r,i) is equal to l[i] as an FR element.

Correspondence(r) records the argument l .
This function returns fail if l is not state-closed.

Example
gap> mu := FRElement([[[],[-1]]],[(1,2)],[1]);
<2|f1>
gap>
gap> States(mu);
[<2|f1>, <2|identity ...>, <2|f1^-1>]
gap> AsMealyMachine(last);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> Display(last);

| 1 2
---+-----+-----+
a | b,2 c,1
b | b,1 b,2
c | a,2 b,1

---+-----+-----+

5.2.20 AsMealyElement

. AsMealyElement(m) (attribute)

Returns: A Mealy element isomorphic to m .
This function constructs a Mealy element, which induces the same tree automorphism as the FR

element m .
m may be a group/monoid/semigroup FR element, or a Mealy element; in which case the result is

returned unchanged.
This function is not guaranteed to return; if m does not have finite states, then it will loop forever.

Functionally recursive groups 49

Example
gap> mu := FRElement([[[],[-1]]],[(1,2)],[1]);
<2|f1>
gap> AsMealyElement(mu);
<Mealy machine on alphabet [1, 2] with 3 states, initial state 1>
gap> [[2,1]]^last;
[[1, 2]]
gap> [2,1,2,1]^mu;
[1, 2, 1, 2]

5.2.21 AsIntMealyMachine

. AsIntMealyMachine(m) (attribute)

. AsIntMealyElement(m) (attribute)

Returns: A Mealy machine in integer format, isomorphic to m .
This function constructs a Mealy machine r, which has similar behaviour as m while having

stateset [1..n] for some natural n. Most FR commands operate efficiently only on Mealy machines
of this type.

This function is not guaranteed to return; if m does not have finite states, then it will loop forever.
Example

gap> g := Group((1,2));; n := MealyMachine(g,g,*,*);
<Mealy machine on alphabet [(), (1,2)] with states Group([(1,2)])>
gap> Display(n);

| () (1,2)
-------+-------------+-------------+

() | (),() (1,2),(1,2)
(1,2) | (1,2),(1,2) (),()

-------+-------------+-------------+
gap> AsIntMealyMachine(n);
<Mealy machine on alphabet [1, 2] with 2 states>
gap> Display(last);

| 1 2
---+-----+-----+
a | a,1 b,2
b | b,2 a,1

---+-----+-----+
gap> Correspondence(last);
[1, 2]

5.2.22 TopElement

. TopElement(p[, n]) (attribute)

Returns: A Mealy machine in integer format, acting on the first symbol of sequences.
This function constructs a Mealy machine r, which acts as p on the first letter of sequences and

fixes the other letters. The argument n is the size of the alphabet of r; if it is ommitted, then it is
assumed to be the degree of the transformation p , or the largest moved point of the permutation or
trans p .

Example
gap> a := TopElement((1,2));
<Mealy element on alphabet [1, 2] with 2 states>

Functionally recursive groups 50

gap> last=GrigorchukGroup.1;
true
gap> a := TopElement((1,2),3);
<Mealy element on alphabet [1, 2, 3] with 2 states>
gap> last in GuptaSidkiGroup;
false

5.2.23 ConfinalityClasses

. ConfinalityClasses(e) (attribute)

. IsWeaklyFinitaryFRElement(e) (attribute)

Returns: A list describing the non-trivial confinality classes of e .
If e is a bounded element (see IsBoundedFRElement (5.2.12)), there are finitely many infinite se-

quences that have confinality class larger that one; i.e. ultimately periodic sequences that are mapped
by e to a sequence with different period. This function returns a list of equivalence classes of periodic
lists, see PeriodicList (11.2.2), which are related under e .

By definition, an element is weakly finitary if it has no non-singleton confinality classes.
Example

gap> g := FRGroup("t=<,,t>(2,3)","u=<u,,>(1,2)","v=<u,t,>");;
gap> ConfinalityClasses(g.1);
[{PeriodicList([],[2])}]
gap> List(GeneratorsOfGroup(g),x->Elements(ConfinalityClasses(x)[1]));
[[[/ 2], [/ 3]],

[[/ 1], [/ 2]],
[[/ 1], [/ 2], [/ 3]]]

gap> IsWeaklyFinitaryFRElement(BinaryAddingElement);
false
gap> IsWeaklyFinitaryFRElement(GuptaSidkiGroup.2);
true

5.2.24 Germs

. Germs(e) (attribute)

. NormOfBoundedFRElement(e) (attribute)

Returns: The germs of the bounded element e .
The germs of a bounded element are the finitely many ultimately periodic sequences on which the

state of e does not vanish. This function returns the germs of e , as a list of pairs; the first entry is a
ray described as a periodic sequence of integers (see PeriodicList (11.2.2)), and the second entry
is the periodic sequence of states that appear along that ray.

The norm of a bounded element is the length of its list of germs.
Example

gap> Germs(BinaryAddingElement);
[[[/ 2], [/ 1]]]
gap> Germs(GrigorchukGroup.1);
[]
gap> Germs(GrigorchukGroup.2);
[[[/ 2], [/ 1, 3, 5]]]
gap> Display(GrigorchukGroup.2);

| 1 2
---+-----+-----+

Functionally recursive groups 51

a | b,1 c,2
b | d,2 d,1
c | b,1 e,2
d | d,1 d,2
e | d,1 a,2

---+-----+-----+
Initial state: a

5.2.25 HasOpenSetConditionFRElement

. HasOpenSetConditionFRElement(e) (property)

Returns: true if e has the open set condition.
An FR element e has the open set condition if for every infinite ray in the tree which is fixed by

e , there is an open set around that ray which is also fixed by e . This function tests for e to have the
open set condition. It currently is implemented only for bounded elements.

Example
gap> HasOpenSetConditionFRElement(GrigorchukGroup.1);
true
gap> HasOpenSetConditionFRElement(GrigorchukGroup.2);
false

5.2.26 LimitFRMachine

. LimitFRMachine(m) (attribute)

Returns: The submachine of m on all recurrent states.
This command creates a new Mealy machine, with stateset the limit states of m .

Example
gap> m := MealyMachine([[2,2,3],[2,3,3],[3,3,3]],[(),(),(1,2,3)]);
<Mealy machine on alphabet [1 .. 3] with 3 states>
gap> Display(m);

| 1 2 3
---+-----+-----+-----+
a | b,1 b,2 c,3
b | b,1 c,2 c,3
c | c,2 c,3 c,1

---+-----+-----+-----+
gap> LimitStates(m);
[<Mealy element on alphabet [1 .. 3] with 2 states>,

<Mealy element on alphabet [1 .. 3] with 1 state>]
gap> LimitFRMachine(m);
<Mealy machine on alphabet [1 .. 3] with 2 states>
gap> Display(last);

| 1 2 3
---+-----+-----+-----+
a | a,1 b,2 b,3
b | b,2 b,3 b,1

---+-----+-----+-----+

Functionally recursive groups 52

5.2.27 NucleusMachine (FR machine)

. NucleusMachine(m) (attribute)

Returns: The nucleus of m .
This command creates a new Mealy machine n, with stateset the nucleus (see

NucleusOfFRMachine (4.2.13)) of m .
This nucleus machine is characterized as the smallest machine n such that

Minimized(LimitFRMachine(m*n)) is isomorphic to n. It is also isomorphic to the
NucleusMachine (7.2.20) of the state closure of the SCSemigroup (7.1.3) of m .

Note that the ordering of the states in the resulting machine is not necessarily the same as in m ;
however, if m and n are isomorphic, then this command returns m .

Example
gap> m := MealyMachine([[2,1,1],[2,2,2]],[(1,2,3),()]);
<Mealy machine on alphabet [1, 2, 3] with 2 states>
gap> Display(m);

| 1 2 3
---+-----+-----+-----+
a | b,2 a,3 a,1
b | b,1 b,2 b,3

---+-----+-----+-----+
gap> NucleusMachine(m);
<Mealy machine on alphabet [1, 2, 3] with 3 states>
gap> Display(last);

| 1 2 3
---+-----+-----+-----+
a | a,1 a,2 a,3
b | c,3 b,1 c,2
c | a,2 c,3 c,1

---+-----+-----+-----+

5.2.28 GuessMealyElement

. GuessMealyElement(p, d, n) (operation)

Returns: A Mealy element that probably has the same activity as p .
This function receives a permutation or transformation p , a degree d and a level n , and attempts

to find a Mealy element on the alphabet [1..d] whose activity on level n is p .
This function returns fail if it thinks that the given level is not large enough to make a reasonable

guess. In all cases, the function is not guaranteed to return the correct Mealy machine.
Example

gap> GuessMealyElement(Activity(GrigorchukGroup.2,6),2,6);
<Mealy element on alphabet [1, 2] with 5 states>
gap> last=GrigorchukGroup.2;
true
gap> GuessMealyElement(Activity(GrigorchukGroup.2,5),2,5);
fail
gap> ComposeElement([GrigorchukGroup.2,One(GrigorchukGroup)],());
<Mealy element on alphabet [1, 2] with 6 states>
gap> last=GuessMealyElement(Activity(GrigorchukGroup.2,6),2,7);
true

Chapter 6

Linear machines and elements

Linear machines are a special class of FR machines, in which the stateset Q and the alphabet X are
vector spaces over a field k, and the transition map φ : Q⊗X → X ⊗Q is a linear map; furthermore,
there is a functional π : Q→ k called the output.

As before, a choice of initial state q ∈ Q induces a linear map q : T (X)→ T (X), where T (X) =⊕
X⊗n is the tensor algebra generated by X . This map is defined as follows: given x = x1⊗ . . .⊗xn ∈

T (X), rewrite q⊗ x as a sum of expressions of the form y⊗ r with y ∈ T (X) and r ∈ Q; then q, by
definition, maps x to the sum of the π(r)y.

There are two sorts of linear machines: vector machines, for which the state space is a finite-
dimensional vector space over a field; and algebra machines, for which the state space is a free
algebra in a finite set of variables.

In a vector machine, the transition and output maps are stored as a matrix and a vector respectively.
Minimization algorithms are implemented, as for Mealy machines.

In an algebra machine, the transition and output maps are stored as words in the algebra. These
machines are natural extensions of group/monoid/semigroup machines.

Linear elements are given by a linear machine and an initial state. They can be added and multi-
plied, and act on the tensor algebra of the alphabet, admitting natural representations as matrices.

6.1 Methods and operations for LinearFRMachines and
LinearFRElements

6.1.1 VectorMachine

. VectorMachine(domain, transitions, output) (operation)

. VectorElement(domain, transitions, output, init) (operation)

. VectorMachineNC(fam, transitions, output) (operation)

. VectorElementNC(fam, transitions, output, init, category) (operation)

Returns: A new vector machine/element.
This function constructs a new linear machine or element, of vector type.
transitions is a matrix of matrices; for a,b indices of basis vectors of the alphabet,

transitions[a][b] is a square matrix indexed by the stateset, which is the transition to be effected
on the stateset upon the output a→ b.

The optional last argument category specifies a category (IsAssociativeElement (Reference:
IsAssociativeElement), IsJacobianElement (Reference: IsJacobianElement),...) to which the

53

Functionally recursive groups 54

new element should belong.
output and init are vectors in the stateset.
In the "NC" version, no tests are performed to check that the arguments contain values within

bounds, or even of the right type (beyond the simple checking performed by GAP’s method selection
algorithms). The first argument should be the family of the resulting object. These "NC" methods are
mainly used internally by the package.

Example
gap> M := VectorMachine(Rationals,[[[[1]],[[2]]],[[[3]],[[4]]]],[1]);
<Linear machine on alphabet Rationals^2 with 1-dimensional stateset>
gap> Display(M);
Rationals | 1 | 2 |

-----------+---+---+
1 | 1 | 2 |

-----------+---+---+
2 | 3 | 4 |

-----------+---+---+
Output: 1
gap> A := VectorElement(Rationals,[[[[1]],[[2]]],[[[3]],[[4]]]],[1],[1]);
<Linear element on alphabet Rationals^2 with 1-dimensional stateset>
gap> Display(Activity(A,2));
[[1, 2, 2, 4],

[3, 4, 6, 8],
[3, 6, 4, 8],
[9, 12, 12, 16]]

gap> DecompositionOfFRElement(A);
[[<Linear element on alphabet Rationals^2 with 1-dimensional stateset>,

<Linear element on alphabet Rationals^2 with 1-dimensional stateset>],
[<Linear element on alphabet Rationals^2 with 1-dimensional stateset>,

<Linear element on alphabet Rationals^2 with 1-dimensional stateset>]]
gap> last=[[A,2*A],[3*A,4*A]];
true

6.1.2 AssociativeObject

. AssociativeObject(x) (operation)

Returns: An associative object related to x .
If x belongs to a family that admits a non-associative and an associative product, and the product of

x is non-associative, this function returns the object corresponding to x , but with associative product.
A typical example is that x is a derivation of a vector space. The product of derivations is a◦b−

b ◦ a, and is not associative; but derivations are endomorphisms of the vector space, and as such can
be composed associatively.

Example
gap> A := VectorElement(Rationals,[[[[0]],[[1]]],[[[1]],[[0]]]],[1],[1],IsJacobianElement);
<Linear element on alphabet Rationals^2 with 1-dimensional stateset->
gap> A^2;
<Zero linear element on alphabet Rationals^2->
gap> AssociativeObject(A)^2;
<Identity linear element on alphabet Rationals^2>

Functionally recursive groups 55

6.1.3 AlgebraMachine

. AlgebraMachine([domain,]ring, transitions, output) (operation)

. AlgebraElement([domain,]ring, transitions, output, init) (operation)

. AlgebraMachineNC(fam, ring, transitions, output) (operation)

. AlgebraElementNC(fam, ring, transitions, output, init) (operation)

Returns: A new algebra machine/element.
This function constructs a new linear machine or element, of algebra type.
ring is a free associative algebra, optionally with one. domain is the vector space on which

the alphabet is defined. If absent, this argument defaults to the LeftActingDomain (Reference:
LeftActingDomain) of ring .

transitions is a list of matrices; for each generator number i of ring , the matrix
transitions[i], with entries in ring , describes the decomposition of generator i as a matrix.

output is a vector over domain , and init is a vector over ring .
In the "NC" version, no tests are performed to check that the arguments contain values within

bounds, or even of the right type (beyond the simple checking performed by GAP’s method selection
algorithms). The first argument should be the family of the resulting object. These "NC" methods are
mainly used internally by the package.

Example
gap> F := FreeAssociativeAlgebraWithOne(Rationals,1);;
gap> A := AlgebraMachine(F,[[[F.1,F.1^2+F.1],[One(F),Zero(F)]]],[1]);
<Linear machine on alphabet Rationals^2 with generators [(1)*x.1]>
gap> Display(A);
Rationals | 1 | 2 |

-----------+-----------+-----------+
1 | x.1 | x.1+x.1^2 |

-----------+-----------+-----------+
2 | 1 | 0 |

-----------+-----------+-----------+
Output: 1
gap> M := AlgebraElement(F,[[[F.1,F.1^2+F.1],[One(F),Zero(F)]]],[1],F.1);
<Rationals^2|(1)*x.1>
gap> Display(Activity(M,2));
[[1, 2, 4, 4],

[1, 0, 2, 2],
[1, 0, 0, 0],
[0, 1, 0, 0]]

6.1.4 Transition (Linear machine)

. Transition(m, s, a, b) (operation)

Returns: An element of m ’s stateset.
This function returns the state reached by m when started in state s and performing output a→ b.

Example
gap> M := AsVectorMachine(Rationals,FRMachine(GuptaSidkiGroup.2));
<Linear machine on alphabet Rationals^3 with 4-dimensional stateset>
gap> Transition(M,[1,0,0,0],[1,0,0],[1,0,0]);
[0, 1, 0, 0]
gap> Transition(M,[1,0,0,0],[0,1,0],[0,1,0]);
[0, 0, 1, 0]

Functionally recursive groups 56

gap> Transition(M,[1,0,0,0],[0,0,1],[0,0,1]);
[1, 0, 0, 0]
gap> A := AsVectorElement(Rationals,GuptaSidkiGroup.2);
<Linear element on alphabet Rationals^3 with 4-dimensional stateset>
gap> Transition(A,[1,0,0],[1,0,0]);
[0, 1, 0, 0]

6.1.5 Transitions

. Transitions(m, s, a) (operation)

Returns: An vector of elements of m ’s stateset.
This function returns the state reached by m when started in state s and receiving input a . The

output is a vector, indexed by the alphabet’s basis, of output states.
Example

gap> M := AsVectorMachine(Rationals,FRMachine(GuptaSidkiGroup.2));
<Linear machine on alphabet Rationals^3 with 4-dimensional stateset>
gap> Transitions(M,[1,0,0,0],[1,0,0]);
[[0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
gap> A := AsVectorElement(Rationals,GuptaSidkiGroup.2);
<Linear element on alphabet Rationals^3 with 4-dimensional stateset>
gap> Transitions(A,[1,0,0]);
[[0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

6.1.6 NestedMatrixState

. NestedMatrixState(e, i, j) (operation)

. NestedMatrixCoefficient(e, i, j) (operation)

Returns: A coefficent of an iterated decomposition of e .
The first form returns the entry at position (i, j) of e ’s decomposition. Both of i,j are lists. The

second form returns the output of the state.
In particular, e=NestedMatrixState(e,[],[]), and

Activity(e,1)[i][j]=NestedMatrixCoefficient(e,[i],[j]), and
DecompositionOfFRElement(e,1)[i][j]=NestedMatrixState(e,[i],[j]).

Example
gap> A := AsVectorElement(Rationals,GuptaSidkiGroup.2);;
gap> A=NestedMatrixState(A,[3,3],[3,3]);
true
gap> IsOne(NestedMatrixState(A,[3,3,3,3,1,1],[3,3,3,3,1,2]));
true
gap> List([1..3],i->List([1..3],j->NestedMatrixCoefficient(A,[i],[j])))=Activity(A,1);
true

6.1.7 ActivitySparse

. ActivitySparse(m, i) (operation)

Returns: A sparse matrix.
Activity(m,i) returns an ni × ni matrix describing the action on the i-fold tensor power of

the alphabet. This matrix can also be returned as a sparse matrix, and this is performed by this
command. A sparse matrix is described as a list of expressions of the form [[i,j],c], representing

Functionally recursive groups 57

the elementary matrix with entry c at position (i, j). The activity matrix is then the sum of these
elementary matrices.

Example
gap> A := AsVectorElement(Rationals,GuptaSidkiGroup.2);;
gap> Display(Activity(A,2));
[[0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1]]

gap> ActivitySparse(A,2);
[[[1, 2], 1], [[2, 3], 1], [[3, 1], 1], [[4, 6], 1],
[[5, 4], 1], [[6, 5], 1], [[7, 7], 1], [[8, 8], 1],
[[9, 9], 1]]

6.1.8 Activities

. Activities(m, i) (operation)

Returns: Activities of m on the first i levels.
Activity(m,i) returns an ni× ni matrix describing the action on the i-fold tensor power of the

alphabet. This command returns List([0..i-1],j->Activity(m,j)).
Example

gap> A := AsVectorElement(Rationals,GrigorchukGroup.2);;
gap> Activities(A,3);
[[[1]],

[[1, 0], [0, 1]],
[[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]]

6.1.9 IsConvergent

. IsConvergent(e) (property)

Returns: Whether the linear element e is convergent.
A linear element is convergent if its state at position (1,1) is equal to itself.

Example
gap> n := 3;;
gap> shift := VectorElement(CyclotomicField(n), [[[[1,0],[0,0]],

[[0,0],[0,1]]],[[[0,1],[0,0]],[[1,0],[0,0]]]],[1,E(n)],[1,0]);
<Linear element on alphabet CF(3)^2 with 2-dimensional stateset>
gap> IsConvergent(shift);
true
gap> Display(Activity(shift,2));
[[1, 0, 0, 0],

[E(3), 1, 0, 0],
[0, E(3), 1, 0],
[0, 0, E(3), 1]]

gap> Display(Activity(shift,3));
[[1, 0, 0, 0, 0, 0, 0, 0],

Functionally recursive groups 58

[E(3), 1, 0, 0, 0, 0, 0, 0],
[0, E(3), 1, 0, 0, 0, 0, 0],
[0, 0, E(3), 1, 0, 0, 0, 0],
[0, 0, 0, E(3), 1, 0, 0, 0],
[0, 0, 0, 0, E(3), 1, 0, 0],
[0, 0, 0, 0, 0, E(3), 1, 0],
[0, 0, 0, 0, 0, 0, E(3), 1]]

6.1.10 TransposedFRElement

. TransposedFRElement(e) (operation)

. IsSymmetricFRElement(e) (property)

. IsAntisymmetricFRElement(e) (property)

. IsLowerTriangularFRElement(e) (property)

. IsUpperTriangularFRElement(e) (property)

. IsDiagonalFRElement(e) (property)

Returns: The elementary matrix operation/property.
Since linear FR elements may be interpreted as infinite matrices, it makes sense to transpose them,

test whether they’re symmetric, antisymmetric, diagonal, or triangular.
Example

gap> n := 3;;
gap> shift := VectorElement(CyclotomicField(n), [[[[1,0],[0,0]],

[[0,0],[0,1]]],[[[0,1],[0,0]],[[1,0],[0,0]]]],[1,E(n)],[1,0]);
<Linear element on alphabet CF(3)^2 with 2-dimensional stateset>
gap> Display(Activity(shift,2));
[[1, 0, 0, 0],

[E(3), 1, 0, 0],
[0, E(3), 1, 0],
[0, 0, E(3), 1]]

gap> Display(Activity(TransposedFRElement(shift),2));
[[1, E(3), 0, 0],

[0, 1, E(3), 0],
[0, 0, 1, E(3)],
[0, 0, 0, 1]]

gap> IsSymmetricFRElement(shift);
false
gap> IsSymmetricFRElement(shift+TransposedFRElement(shift));
true
gap> IsLowerTriangularFRElement(shift);
true
gap> IsUpperTriangularFRElement(shift);
false

6.1.11 LDUDecompositionFRElement

. LDUDecompositionFRElement(e) (operation)

Returns: A factorization e = LDU .
Given a linear element e , this command attempts to find a decomposition of the form

e = LDU , where L is lower triangular, D is diagonal, and U is upper triangular (see
IsLowerTriangularFRElement (6.1.10) etc.).

Functionally recursive groups 59

The result is returned thas a list with entries L,D,U . Note that it is not guaranteed to succeed. For
more examples, see Section 9.4.

Example
gap> List([0..7],s->List([0..7],t->E(4)^ValuationInt(Binomial(s+t,s),2)));;
gap> A := GuessVectorElement(last);
<Linear element on alphabet GaussianRationals^2 with 2-dimensional stateset>
gap> LDU := LDUDecompositionFRElement(A);
[<Linear element on alphabet GaussianRationals^2 with 4-dimensional stateset>,

<Linear element on alphabet GaussianRationals^2 with 3-dimensional stateset>,
<Linear element on alphabet GaussianRationals^2 with 4-dimensional stateset>]

gap> IsLowerTriangularFRElement(LDU[1]); IsDiagonalFRElement(LDU[2]);
true
true
gap> TransposedFRElement(LDU[1])=LDU[3];
true
gap> Product(LDU)=A;
true

6.1.12 GuessVectorElement

. GuessVectorElement(m) (function)

Returns: A vector element that acts like m .
The arguments to this function include a matrix or list of matrices, and an optional ring. The return

value is a vector element, over the ring if it was specified, that acts like the sequence of matrices.
If a single matrix is specified, then it is assumed to represent a convergent element (see

IsConvergent (6.1.9)).
This function returns fail if it believes that it does not have enough information to make a rea-

sonable guess.
Example

gap> n := 3;;
gap> shift := VectorElement(CyclotomicField(n), [[[[1,0],[0,0]],

[[0,0],[0,1]]],[[[0,1],[0,0]],,[[1,0],[0,0]]]],[1,E(n)],[1,0]);;
<Linear element on alphabet CF(3)^2 with 2-dimensional stateset>
gap> GuessVectorElement(Activity(shift,3)); last=shift;
<Linear element on alphabet CF(3)^2 with 2-dimensional stateset>
true
gap> GuessVectorElement(Inverse(Activity(shift,4)));
fail
gap> GuessVectorElement(Inverse(Activity(shift,5)));
<Linear element on alphabet CF(3)^2 with 4-dimensional stateset>
gap> IsOne(last*shift);
true

6.1.13 AsLinearMachine

. AsLinearMachine(r, m) (operation)

. AsLinearElement(r, m) (operation)

Returns: The linear machine/element associated with m .
This command accepts a domain and an ordinary machine/element, and constructs the correspond-

ing linear machine/element, defined by extending linearly the action on [1..d] to an action on rd .

Functionally recursive groups 60

If m is a Mealy machine/element, the result is a vector machine/element. If m is
a group/monoid/semigroup machine/element, the result is an algebra machine/element. To
obtain explicitly a vector or algebra machine/element, see AsVectorMachine (6.1.14) and
AsAlgebraMachine (6.1.15).

Example
gap> Display(I4Machine);

| 1 2
---+-----+-----+
a | c,2 c,1
b | a,1 b,1
c | c,1 c,2

---+-----+-----+
gap> A := AsLinearMachine(Rationals,I4Machine);
<Linear machine on alphabet Rationals^2 with 3-dimensional stateset>
Correspondence(A);
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> Display(A);
Rationals | 1 | 2 |

-----------+-------+-------+
1 | 0 0 0 | 0 0 1 |

| 1 0 0 | 0 0 0 |
| 0 0 1 | 0 0 0 |

-----------+-------+-------+
2 | 0 0 1 | 0 0 0 |

| 0 1 0 | 0 0 0 |
| 0 0 0 | 0 0 1 |

-----------+-------+-------+
Output: 1 1 1
gap> B := AsLinearMachine(Rationals,AsMonoidFRMachine(I4Machine));
<Linear machine on alphabet Rationals^2 with generators [(1)*m1, (1)*m2]>
gap> Correspondence(B);
MappingByFunction(<free monoid on the generators [m1, m2]>,
<algebra-with-one over Rationals, with 2 generators>, function(w) ... end)
gap> Display(B);
Rationals | 1 | 2 |

-----------+----+----+
1 | 0 | 1 |

| m1 | 0 |
-----------+----+----+

2 | 1 | 0 |
| m2 | 0 |

-----------+----+----+
Output: 1 1
gap> AsLinearElement(Rationals,I4Monoid.1)*AsLinearElement(Rationals,I4Monoid.2);
<Linear element on alphabet Rationals^2 with 4-dimensional stateset>
gap> last=AsLinearElement(Rationals,I4Monoid.1*I4Monoid.2);
true

6.1.14 AsVectorMachine

. AsVectorMachine(r, m) (operation)

. AsVectorElement(r, m) (operation)

Functionally recursive groups 61

Returns: The vector machine/element associated with m .
This command accepts a domain and an ordinary machine/element, and constructs the corre-

sponding linear machine/element, defined by extending linearly the action on [1..d] to an action on
rd . For this command to succeed, the machine/element m must be finite state. For examples see
AsLinearMachine (6.1.13).

6.1.15 AsAlgebraMachine

. AsAlgebraMachine(r, m) (operation)

. AsAlgebraElement(r, m) (operation)

Returns: The algebra machine/element associated with m .
This command accepts a domain and an ordinary machine/element, and constructs the correspond-

ing linear machine/element, defined by extending linearly the action on [1..d] to an action on rd . For
examples see AsLinearMachine (6.1.13).

6.1.16 AsVectorMachine (Linear machine)

. AsVectorMachine(m) (operation)

. AsVectorElement(m) (operation)

Returns: The machine/element m in vector form.
This command accepts a linear machine, and converts it to vector form. This command is not

guaranteed to terminate.
Example

gap> A := AsLinearElement(Rationals,I4Monoid.1);
<Linear element on alphabet Rationals^2 with 2-dimensional stateset>
gap> B := AsAlgebraElement(A);
<Rationals^2|(1)*x.1>
gap> C := AsVectorElement(B);
gap> A=B; B=C;
true
true

6.1.17 AsAlgebraMachine (Linear machine)

. AsAlgebraMachine(m) (operation)

. AsAlgebraElement(m) (operation)

Returns: The machine/element m in algebra form.
This command accepts a linear machine, and converts it to algebra form.

Example
gap> A := AsLinearElement(Rationals,I4Monoid.1);
<Linear element on alphabet Rationals^2 with 2-dimensional stateset>
gap> AsAlgebraElement(A)=AsAlgebraElement(Rationals,I4Monoid.1);
true
gap> A=AsAlgebraElement(A);
true

Chapter 7

Self-similar groups, monoids and
semigroups

Self-similar groups, monoids and semigroups (below FR semigroups) are simply groups, monoids and
semigroups whose elements are FR machines. They naturally act on the alphabet of their elements,
and on sequences over that alphabet.

Most non-trivial calculations in FR groups are performed as follows: GAP searches through words
of short length in the generating set of a FR group to find a solution to a group-theoretic question, and
at the same time searches through the finite quotients to prove the inexistence of a solution. Often
the calculation ends with the answer fail, which means that no definite answer, neither positive nor
negative, could be found; however, the cases where the calculation actually terminates have been most
useful.

The maximal length of words to consider in the search is controlled by the variable
FR_SEARCH.radius (initially 10), and the maximal depth of the tree in which to search is controlled
by the variable FR_SEARCH.depth (initially 6). These limits can be modified in any function call
using GAP’s options mechanism, e.g. in Index(G,H:FRdepth:=5,FRradius:=5).

7.1 Creators for FR semigroups

The most straightforward creation method for FR groups is Group(), applied with FR elements as
arguments. There are shortcuts to this somewhat tedious method:

7.1.1 FRGroup

. FRGroup({definition, }) (operation)

. FRMonoid({definition, }) (operation)

. FRSemigroup({definition, }) (operation)

Returns: A new self-similar group/monoid/semigroup.
This function constructs a new FR group/monoid/semigroup, generated by group FR elements. It

receives as argument any number of strings, each of which represents a generator of the object to be
constructed.

Each definition is of the form "name=projtrans", where each of proj and trans is optional.
proj is of the form <w1,...,wd>, where each wi is a (possibly empty) word in the names or is

62

Functionally recursive groups 63

1. trans is either a permutation in disjoint cycle notation, or a list, representing the images of a
permutation.

The last argument may be one of the filters IsMealyElement, IsFRMealyElement or
IsFRElement. By default, if each of the states of generators is a generator or 1, the elements of
the created object will be Mealy elements; otherwise, they will be FR elements. Specifying such a fil-
ter requires them to be in the appropriate category; e.g., FRGroup("a=(1,2)",IsFRMealyElement)
asks for the resulting group to be generated by FR-Mealy elements. The generators must of course be
finite-state. Example

gap> FRGroup("a=(1,2)","b=(1,2,3,4,5)"); Size(last);
<self-similar group over [1 .. 5] with 2 generators>
120
gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> AssignGeneratorVariables(Dinfinity);
#I Assigned the global variables [a, b]
gap> Order(a); Order(b); Order(a*b);
2
2
infinity
gap> ZZ := FRGroup("t=<,t>[2,1]");
<self-similar group over [1 .. 2] with 1 generator>
tau := FRElement([[[b,1],[1]]],[()],[1]);
<2|f3>
gap> IsSubgroup(Dinfinity,ZZ);
false
gap> IsSubgroup(Dinfinity^tau,ZZ);
true
gap> Index(Dinfinity^tau,ZZ);
2

Example
gap> i4 := FRMonoid("s=(1,2)","f=<s,f>[1,1]");
<self-similar monoid over [1 .. 2] with 2 generators>
gap> f := GeneratorsOfMonoid(i4){[1,2]};;
gap> for i in [1..10] do Add(f,f[i]*f[i+1]); od;
gap> f[1]^2=One(m);
true
gap> f[2]^3=f[2];
true
gap> f[11]*f[10]^2=f[1]*Product(f{[5,7..11]})*f[10];
true
gap> f[12]*f[11]^2=f[2]*Product(f{[6,8..12]})*f[11];
true

Example
gap> i2 := FRSemigroup("f0=<f0,f0>(1,2)","f1=<f1,f0>[2,2]");
<self-similar semigroup over [1 .. 2] with 2 generators>
gap> AssignGeneratorVariables(i2);
#I Assigned the global variables ["f0", "f1"]
gap> f0^2=One(i2);
true
gap> ForAll([0..10],p->(f0*f1)^p*(f1*f0)^p*f1=f1^2*(f0*f1)^p*(f1*f0)^p*f1);
true

Functionally recursive groups 64

7.1.2 NewSemigroupFRMachine

. NewSemigroupFRMachine(...) (attribute)

. NewMonoidFRMachine(...) (attribute)

. NewGroupFRMachine(...) (attribute)

Returns: A new FR machine, based on string descriptions.
This command constructs a new FR machine, in a format similar to FRGroup (7.1.1); namely,

the arguments are strings of the form "gen=<word-1,...,word-d>perm"; each word-i is a word in the
generators; and perm is a transformation, either written in disjoint cycle or in images notation.

Except in the semigroup case, word-i is allowed to be the empty string; and the "<...>" may be
skipped altogether. In the group or IMG case, each word-i may also contain inverses.

The following example constructs the "universal Grigorchuk machine".
Example

gap> m := NewGroupFRMachine("a=(1,2)(3,4)(5,6)","b=<a,b,a,b,,b>",
"c=<a,c,,c,a,c>","d=<,d,a,d,a,d>");

gap> <FR machine with alphabet [1, 2, 3, 4, 5, 6] on Group([a, b, c, d])>

7.1.3 SCGroup

. SCGroup(m) (operation)

. SCGroupNC(m) (operation)

. SCMonoid(m) (operation)

. SCMonoidNC(m) (operation)

. SCSemigroup(m) (operation)

. SCSemigroupNC(m) (operation)

Returns: The state-closed group/monoid/semigroup generated by the machine m .
This function constructs a new FR group/monoid/semigroup g, generated by all the states of the

FR machine m . There is a bijective correspondence between GeneratorsOfFRMachine(m) and the
generators of g, which is accessible via Correspondence(g) (See Correspondence (7.1.4)); it is
a homomorphism from the stateset of m to g, or a list indicating for each state of m a corresponding
generator index in the generators of g (with negatives for inverses, and 0 for identity).

In the non-NC forms, redundant (equal, trivial or mutually inverse) states are removed from the
generating set of g.

Example
gap> b := MealyMachine([[3,2],[3,1],[3,3]],[(1,2),(),()]);; g := SCGroupNC(b);
<self-similar group over [1 .. 2] with 3 generators>
gap> Size(g);
infinity
gap> IsOne(Comm(g.2,g.2^g.1));
true

Example
gap> i4machine := MealyMachine([[3,3],[1,2],[3,3]],[(1,2),[1,1],()]);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> IsInvertible(i4machine);
false
gap> i4 := SCMonoidNC(i4machine);
<self-similar monoid over [1 .. 2] with 3 generators>
gap> f := GeneratorsOfMonoid(i4){[1,2]};;
gap> for i in [1..10] do Add(f,f[i]*f[i+1]); od;

Functionally recursive groups 65

gap> f[1]^2=One(m);
true
gap> f[2]^3=f[2];
true
gap> f[11]*f[10]^2=f[1]*Product(f{[5,7..11]})*f[10];
true
gap> f[12]*f[11]^2=f[2]*Product(f{[6,8..12]})*f[11];
true

Example
gap> i2machine := MealyMachine([[1,1],[2,1]],[(1,2),[2,2]]);
<Mealy machine on alphabet [1, 2] with 2 states>
gap> i2 := SCSemigroupNC(i2machine);
<self-similar semigroup over [1 .. 2] with 2 generators>
gap> f0 := GeneratorsOfSemigroup(i2)[1];; f1 := GeneratorsOfSemigroup(i2)[2];;
gap> f0^2=One(i2);
true
gap> ForAll([0..10],p->(f0*f1)^p*(f1*f0)^p*f1=f1^2*(f0*f1)^p*(f1*f0)^p*f1);
true

7.1.4 Correspondence (FR semigroup)

. Correspondence(g) (attribute)

Returns: A correspondence between the generators of the underlying FR machine of g and g .
If g was created as the state closure of an FR machine m, this attribute records the correspondence

between m and g .
If m is a group/monoid/semigroup/algebra FR machine, then Correspondence(g) is a homomor-

phism from the stateset of m to g .
If m is a Mealy or vector machine, then Correspondence(g) is a list, with in position i the index

in the generating set of g of state number i. This index is 0 if there is no corresponding generator
because the state is trivial, and is negative if there is no corresponding generator because the inverse
of state number i is a generator.

See SCGroupNC (7.1.3), SCGroup (7.1.3), SCMonoidNC (7.1.3), SCMonoid (7.1.3),
SCSemigroupNC (7.1.3), SCSemigroup (7.1.3), SCAlgebraNC (8.1.2), SCAlgebra (8.1.2),
SCAlgebraWithOneNC (8.1.2), and SCAlgebraWithOne (8.1.2) for examples.

7.1.5 FullSCGroup

. FullSCGroup(...) (function)

. FullSCMonoid(...) (function)

. FullSCSemigroup(...) (function)

Returns: A maximal state-closed group/monoid/semigroup on the alphabet a .
This function constructs a new FR group, monoid or semigroup, which contains all transforma-

tions with given properties of the tree with given alphabet.
The arguments can be, in any order: a semigroup, specifying which vertex actions are allowed;

a set or domain, specifying the alphabet of the tree; an integer, specifying the maximal depth
of elements; and a filter among IsFinitaryFRElement (5.2.10), IsBoundedFRElement (5.2.12),
IsPolynomialGrowthFRElement (5.2.13) and IsFiniteStateFRElement (4.2.12).

Functionally recursive groups 66

This object serves as a container for all FR elements with alphabet a . Random elements can
be drawn from it; they are Mealy elements with a random number of states, and with the required
properties.

Example
gap> g := FullSCGroup([1..3]);
FullSCGroup([1 .. 3]);
gap> IsSubgroup(g,GuptaSidkiGroup);
true
gap> g := FullSCGroup([1..3],Group((1,2,3)));
FullSCGroup([1 .. 3], Group([(1,2,3)]))
gap> IsSubgroup(g,GuptaSidkiGroup);
true
gap> IsSubgroup(g,GrigorchukGroup);
false
gap> Random(g);
<Mealy element on alphabet [1, 2, 3] with 2 states, initial state 1>
gap> Size(FullSCGroup([1,2],3));
128
gap> g := FullSCMonoid([1..2]);
FullSCMonoid([1 .. 2])
gap> IsSubset(g,AsTransformation(FullSCGroup([1..2])));
true
gap> IsSubset(g,AsTransformation(GrigorchukGroup));
true
gap> g := FullSCSemigroup([1..3]);
FullSCSemigroup([1 .. 3])
gap> h := FullSCSemigroup([1..3],Semigroup(Transformation([1,1,1])));
FullSCSemigroup([1 .. 3], Semigroup([[1, 1, 1]]))
gap> Size(h);
1
gap> IsSubset(g,h);
true
gap> g=FullSCMonoid([1..3]);
true

7.1.6 FRMachineFRGroup

. FRMachineFRGroup(g) (operation)

. FRMachineFRMonoid(g) (operation)

. FRMachineFRSemigroup(g) (operation)

. MealyMachineFRGroup(g) (operation)

. MealyMachineFRMonoid(g) (operation)

. MealyMachineFRSemigroup(g) (operation)

Returns: A machine describing all generators of g .
This function constructs a new group/monoid/semigroup/Mealy FR machine, with (at least) one

generator per generator of g . This is done by adding all machines of all generators of g , and mini-
mizing.

In particular, if g is state-closed, then SCGroup(FRMachineFRGroup(g)) gives a group isomor-
phic to g , and similarly for monoids and semigroups.

Example
gap> FRMachineFRGroup(GuptaSidkiGroup);

Functionally recursive groups 67

<FR machine with alphabet [1 .. 3] on Group([f11, f12])>
gap> Display(last);
G | 1 2 3

-----+--------+----------+--------+
f11 | <id>,2 <id>,3 <id>,1
f12 | f11,1 f11^-1,2 f12,3

-----+--------+----------+--------+

Example
gap> FRMachineFRMonoid(I4Monoid);
<FR machine with alphabet [1 .. 2] on Monoid([m11, m12], ...)>
gap> Display(last);
M | 1 2

-----+--------+--------+
m11 | <id>,2 <id>,1
m12 | m11,1 m12,1

-----+--------+--------+

Example
gap> FRMachineFRSemigroup(I2Monoid);
<FR machine with alphabet [1 .. 2] on Semigroup([s11, s12, s1])>
gap> Display(last);
S | 1 2

-----+-------+-------+
s11 | s11,1 s11,2
s12 | s12,2 s12,1
s1 | s1,2 s12,2

-----+-------+-------+

7.1.7 IsomorphismFRGroup

. IsomorphismFRGroup(g) (operation)

. IsomorphismFRMonoid(g) (operation)

. IsomorphismFRSemigroup(g) (operation)

Returns: An isomorphism towards a group/monoid/semigroup on a single FR machine.
This function constructs a new FR group/monoid/semigroup, such that all elements of the resulting

object have the same underlying group/monoid/semigroup FR machine.
Example

gap> phi := IsomorphismFRGroup(GuptaSidkiGroup);
[<Mealy element on alphabet [1, 2, 3] with 2 states, initial state 1>,

<Mealy element on alphabet [1, 2, 3] with 4 states, initial state 1>] ->
[<3|identity ...>, <3|f1>, <3|f1^-1>, <3|f2>]
gap> Display(GuptaSidkiGroup.2);

| 1 2 3
---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 a,1
c | a,3 a,1 a,2
d | b,1 c,2 d,3

---+-----+-----+-----+
Initial state: d
gap> Display(GuptaSidkiGroup.2^phi);

| 1 2 3

Functionally recursive groups 68

----+--------+---------+--------+
f1 | <id>,2 <id>,3 <id>,1
f2 | f1,1 f1^-1,2 f2,3

----+--------+---------+--------+
Initial state: f2

Example
gap> phi := IsomorphismFRSemigroup(I2Monoid);
MappingByFunction(I2, <self-similar semigroup over [1 .. 2] with
3 generators>, <Operation "AsSemigroupFRElement">)
gap> Display(GeneratorsOfSemigroup(I2Monoid)[3]);

| 1 2
---+-----+-----+
a | a,2 b,2
b | b,2 b,1

---+-----+-----+
Initial state: a
gap> Display(GeneratorsOfSemigroup(I2Monoid)[3]^phi);
S | 1 2

----+------+------+
s1 | s1,2 s2,2
s2 | s2,2 s2,1

----+------+------+
Initial state: s1

Example
gap> phi := IsomorphismFRMonoid(I4Monoid);
MappingByFunction(I4, <self-similar monoid over [1 .. 2] with
2 generators>, <Operation "AsMonoidFRElement">)
gap> Display(GeneratorsOfMonoid(I4Monoid)[1]);

| 1 2
---+-----+-----+
a | b,2 b,1
b | b,1 b,2

---+-----+-----+
Initial state: a
gap> Display(GeneratorsOfMonoid(I4Monoid)[1]^phi);
M | 1 2

----+--------+--------+
m1 | <id>,2 <id>,1

----+--------+--------+
Initial state: m1

7.1.8 IsomorphismMealyGroup

. IsomorphismMealyGroup(g) (operation)

. IsomorphismMealyMonoid(g) (operation)

. IsomorphismMealySemigroup(g) (operation)

Returns: An isomorphism towards a group/monoid/semigroup all of whose elements are Mealy
machines.

This function constructs a new FR group/monoid/semigroup, such that all elements of the resulting
object are Mealy machines.

Functionally recursive groups 69

Example
gap> G := FRGroup("a=(1,2)","b=<a,b>","c=<c,b>");
<self-similar group over [1 .. 2] with 3 generators>
gap> phi := IsomorphismMealyGroup(G);
[<2|a>, <2|b>, <2|c>] ->
[<Mealy element on alphabet [1, 2] with 2 states, initial state 1>,

<Mealy element on alphabet [1, 2] with 3 states, initial state 1>,
<Mealy element on alphabet [1, 2] with 4 states, initial state 1>]

gap> Display(G.3);
| 1 2

---+--------+--------+
a | <id>,2 <id>,1
b | a,1 b,2
c | c,1 b,2

---+--------+--------+
Initial state: c
gap> Display(G.3^phi);

| 1 2
---+-----+-----+
a | a,1 b,2
b | c,1 b,2
c | d,2 d,1
d | d,1 d,2

---+-----+-----+
Initial state: a

7.1.9 FRGroupByVirtualEndomorphism

. FRGroupByVirtualEndomorphism(hom[, transversal]) (operation)

Returns: A new self-similar group.
This function constructs a new FR group P, generated by group FR elements. Its first argument is

a virtual endomorphism of a group G, i.e. a homomorphism from a subgroup H to G. The constructed
FR group acts on a tree with alphabet a transversal of H in G (represented as [1..d]), and is a ho-
momorphic image of G. The stabilizer of the first-level vertex corresponding to the trivial coset is the
image of H. This function is loosely speaking an inverse of VirtualEndomorphism (7.2.29).

The optional second argument is a transversal of H in G, either of type IsRightTransversal or a
list.

Furthermore, an option "MealyElement" can be passed to the function, as
FRGroupByVirtualEndomorphism(f:MealyElement), to require the resulting group to be
generated by Mealy elements and not FR elements. The call will succeed, of course, only if the
representation of G is finite-state.

The resulting FR group has an attribute Correspondence(P) that records a homomorphism from
G to P.

The example below constructs the binary adding machine, and a non-standard representation of it.
Example

gap> G := FreeGroup(1);
<free group on the generators [f1]>
gap> f := GroupHomomorphismByImages(Group(G.1^2),G,[G.1^2],[G.1]);
[f1^2] -> [f1]
gap> H := FRGroupByVirtualEndomorphism(f);

Functionally recursive groups 70

<self-similar group over [1 .. 2] with 1 generator>
gap> Display(H.1);

| 1 2
----+--------+------+
x1 | <id>,2 x1,1

----+--------+------+
Initial state: x1
gap> Correspondence(H);
[f1] -> [<2|x1>]
gap> H := FRGroupByVirtualEndomorphism(f,[G.1^0,G.1^3]);;
gap> Display(H.1);

| 1 2
----+---------+--------+
x1 | x1^-1,2 x1^2,1

----+---------+--------+
Initial state: x1
gap> H := FRGroupByVirtualEndomorphism(f:MealyElement);
<self-similar group over [1 .. 2] with 1 generator>
gap> Display(H.1);

| 1 2
---+-----+-----+
a | b,2 a,1
b | b,1 b,2

---+-----+-----+
Initial state: a

7.1.10 TreeWreathProduct (FR group)

. TreeWreathProduct(g, h, x0, y0) (operation)

Returns: The tree-wreath product of groups g,h .
The tree-wreath product of two FR groups is a group generated by a copy of g and of h , in such a

way that many conjugates of g commute.
More formally, assume without loss of generality that all generators of g are states of a machine

m, and that all generators of h are states of a machine n. Then the tree-wreath product is generated by
the images of generators of g,h in TreeWreathProduct(m,n,x0,y0).

For the operation on FR machines see TreeWreathProduct (3.5.8)). It is described (with small
variations, and in lesser generality) in [Sid05]. For example, in

Example
gap> w := TreeWreathProduct(AddingGroup(2),AddingGroup(2),1,1);
<recursive group over [1 .. 4] with 2 generators>
gap> a := w.1; b := w.2;
<Mealy element on alphabet [1 .. 4] with 3 states>
<Mealy element on alphabet [1 .. 4] with 2 states>
gap> Order(a); Order(b);
infinity
infinity
gap> ForAll([-100..100],i->IsOne(Comm(a,a^(b^i))));
true

the group w is the wreath product Z oZ.

Functionally recursive groups 71

7.1.11 WeaklyBranchedEmbedding

. WeaklyBranchedEmbedding(g) (operation)

Returns: A embedding of g in a weakly branched group.
This function constructs a new FR group, on alphabet the square of the alphabet of g . It is gener-

ated by the canonical copy of g and by the tree-wreath product of g with an adding machine on the
same alphabet as g (see TreeWreathProduct (7.1.10)). The function returns a group homomorphism
into this new FR group.

The main result of [SW03] is that the resulting group h is weakly branched. More precisely, h′

contains |X |2 copies of itself. gap> f := WeaklyBranchedEmbedding(BabyAleshinGroup);;
gap> Range(f); <recursive group over [1 .. 4] with 8 generators> constructs a
finitely generated branched group containing a free subgroup.

7.2 Operations for FR semigroups

7.2.1 PermGroup

. PermGroup(g, l) (operation)

. EpimorphismPermGroup(g, l) (operation)

Returns: [An epimorphism to] the permutation group of g ’s action on level l .
The first function returns a permutation group on dl points, where d is the size of g ’s alphabet. It

has as many generators as g , and represents the action of g on the l th layer of the tree.
The second function returns a homomorphism from g to this permutation group.

Example
gap> g := FRGroup("a=(1,2)","b=<a,>"); Size(g);
<self-similar group over [1 .. 2] with 2 generators>
8
gap> PermGroup(g,2);
Group([(1,3)(2,4), (1,2)])
gap> PermGroup(g,3);
Group([(1,5)(2,6)(3,7)(4,8), (1,3)(2,4)])
gap> List([1..6],i->LogInt(Size(PermGroup(GrigorchukGroup,i)),2));
[1, 3, 7, 12, 22, 42]
gap> g := FRGroup("t=<,t>(1,2)"); Size(g);
<self-similar group over [1 .. 2] with 1 generator>
infinity
gap> pi := EpimorphismPermGroup(g,5);
MappingByFunction(<self-similar group over [1 .. 2] with 1 generator,
of size infinity>, Group([(1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31,
2,18,10,26,6,22,14,30,4,20,12,28,8,24,16,32)]), function(w) ... end)
gap> Order(g.1);
infinity
gap> Order(g.1^pi);
32

7.2.2 PcGroup

. PcGroup(g, l) (operation)

. EpimorphismPcGroup(g, l) (operation)

Returns: [An epimorphism to] the pc group of g ’s action on level l .

Functionally recursive groups 72

The first function returns a polycyclic group representing the action of g on the l th layer of the
tree. It converts the permutation group PermGroup(g,l) to a Pc group, in which computations are
often faster.

The second function returns a homomorphism from g to this pc group.
Example

gap> g := PcGroup(GrigorchukGroup,7); time;
<pc group with 5 generators>
3370
gap> NormalClosure(g,Group(g.3)); time;
<pc group with 79 generators>
240
gap> g := PermGroup(GrigorchukGroup,7); time;
<permutation group with 5 generators>
3
gap> NormalClosure(g,Group(g.3)); time;
<permutation group with 5 generators>
5344
gap> g := FRGroup("t=<,t>(1,2)"); Size(g);
<self-similar group over [1 .. 2] with 1 generator>
infinity
gap> pi := EpimorphismPcGroup(g,5);
MappingByFunction(<self-similar group over [1 .. 2] with
1 generator, of size infinity>, Group([f1, f2, f3, f4, f5]), function(w) ... end)
gap> Order(g.1);
infinity
gap> Order(g.1^pi);
32

7.2.3 TransformationMonoid

. TransformationMonoid(g, l) (operation)

. EpimorphismTransformationMonoid(g, l) (operation)

Returns: [An epimorphism to] the transformation monoid of g ’s action on level l .
The first function returns a transformation monoid on dl points, where d is the size of g ’s alphabet.

It has as many generators as g , and represents the action of g on the l th layer of the tree.
The second function returns a homomorphism from g to this transformation monoid.

Example
gap> i4 := SCMonoid(MealyMachine([[3,3],[1,2],[3,3]],[(1,2),[1,1],()]));
<self-similar monoid over [1 .. 2] with 3 generators>
gap> g := TransformationMonoid(i4,6);
<monoid with 3 generators>
gap> List([1..6],i->Size(TransformationMonoid(i4,i)));
[4, 14, 50, 170, 570, 1882]
gap> Collected(List(g,RankOfTransformation));
[[1, 64], [2, 1280], [4, 384], [8, 112], [16, 32], [32, 8], [64, 2]]
gap> pi := EpimorphismTransformationMonoid(i4,9);
MappingByFunction(<self-similar monoid over [1 .. 2] with 3 generators>,
<monoid with 3 generators>, function(w) ... end)
gap> f := GeneratorsOfMonoid(i4){[1,2]};;
gap> for i in [1..10] do Add(f,f[i]*f[i+1]); od;
gap> Product(f{[3,5,7,9,11]})=f[11]*f[10];

Functionally recursive groups 73

false
gap> Product(f{[3,5,7,9,11]})^pi=(f[11]*f[10])^pi;
true

7.2.4 TransformationSemigroup

. TransformationSemigroup(g, l) (operation)

. EpimorphismTransformationSemigroup(g, l) (operation)

Returns: [An epimorphism to] the transformation semigroup of g ’s action on level l .
The first function returns a transformation semigroup on dl points, where d is the size of g ’s

alphabet. It has as many generators as g , and represents the action of g on the l th layer of the tree.
The second function returns a homomorphism from g to this transformation semigroup.

Example
gap> i2 := SCSemigroup(MealyMachine([[1,1],[2,1]],[(1,2),[2,2]]));
<self-similar semigroup over [1 .. 2] with 2 generators>
gap> g := TransformationSemigroup(i2,6);
<semigroup with 2 generators>
gap> List([1..6],i->Size(TransformationSemigroup(i2,i)));
[4, 14, 42, 114, 290, 706]
gap> Collected(List(g,RankOfTransformation));
[[1, 64], [2, 384], [4, 160], [8, 64], [16, 24], [32, 8], [64, 2]]
gap> f0 := GeneratorsOfSemigroup(i2)[1];; f1 := GeneratorsOfSemigroup(i2)[2];;
gap> pi := EpimorphismTransformationSemigroup(i2,10);
MappingByFunction(<self-similar semigroup over [1 .. 2] with
2 generators>, <semigroup with 2 generators>, function(w) ... end)
gap> (f1*(f1*f0)^10)=((f1*f0)^10);
false
gap> (f1*(f1*f0)^10)^pi=((f1*f0)^10)^pi;
true

7.2.5 EpimorphismGermGroup

. EpimorphismGermGroup(g, l) (operation)

. EpimorphismGermGroup(g) (operation)

Returns: A homomorphism to a polycyclic group.
This function returns an epimorphism to a polycyclic group, encoding the action on the first l

levels of the tree and on the germs below. If l is omitted, it is assumed to be 0.
Since the elements of g are finite automata, they map periodic sequences to periodic sequences.

The action on the periods, and in the immediate vicinity of them, is called the germ action of g . This
function returns the natural homomorphism from g to the wreath product of this germ group with the
quotient of g acting on the l th layer of the tree.

The germ group, by default, is abelian. If it is finite, this function returns a homomorphism to a
Pc group; otherwise, a homomorphism to a polycyclic group.

The GrigorchukTwistedTwin (9.1.12) is, for now, the only example with a hand-coded, non-
abelian germ group.

Example
gap> EpimorphismGermGroup(GrigorchukGroup,0);
MappingByFunction(GrigorchukGroup, <pc group of size 4 with 2 generators>,

function(g) ... end)

Functionally recursive groups 74

gap> List(GeneratorsOfGroup(GrigorchukGroup),x->x^last);
[<identity> of ..., f1, f1*f2, f2]
gap> StructureDescription(Image(last2));
"C2 x C2"
gap> g := FRGroup("t=<,t>(1,2)","m=<,m^-1>(1,2)");;
gap> EpimorphismGermGroup(g,0);
MappingByFunction(<state-closed, bounded group over [1, 2] with 2

generators>, Pcp-group with orders [0, 0], function(x) ... end)
gap> EpimorphismGermGroup(g,1);; Range(last); Image(last2);
Pcp-group with orders [2, 0, 0, 0, 0]
Pcp-group with orders [2, 0, 0, 0]

7.2.6 GermData

. GermData(group) (attribute)

. GermValue(element, data) (operation)

The first command computes some data useful to determine the germ value of a group element; the
second command computes these germ values. For more information on germs, see Germs (5.2.24).

Example
gap> data := GermData(GrigorchukGroup);
rec(endo := [f1, f2] -> [f1*f2, f1], group := <pc group of size 4 with 2 generators>,

machines := [], map := [<identity> of ..., f2, f1, f1*f2, <identity> of ...],
nucleus := [<Trivial Mealy element on alphabet [1 .. 2]>, d, c, b, a],
nucleusmachine := <Mealy machine on alphabet [1 .. 2] with 5 states>)

gap> List(GeneratorsOfGroup(GrigorchukGroup),x->GermValue(x,data));
[<identity> of ..., f1*f2, f1, f2]

7.2.7 StabilizerImage

. StabilizerImage(g, v) (operation)

Returns: The group of all states at v of elements of g fixing v .
This function constructs a new FR group, consisting of all states at vertex v (which can be an

integer or a list) of the stabilizer of v in g .
The result is g itself precisely if g is recurrent (see IsRecurrentFRSemigroup (7.2.11)).

Example
gap> G := FRGroup("t=<,t>(1,2)","u=<,u^-1>(1,2)","b=<u,t>");
<self-similar group over [1 .. 2] with 3 generators>
gap> Stabilizer(G,1);
<self-similar group over [1 .. 2] with 5 generators>
gap> GeneratorsOfGroup(last);
[<2|u*t^-1>, <2|b>, <2|t^2>, <2|t*u>, <2|t*b*t^-1>]
gap> StabilizerImage(G,1);
<self-similar group over [1 .. 2] with 5 generators>
gap> GeneratorsOfGroup(last);
[<2|identity ...>, <2|u>, <2|t>, <2|u^-1>, <2|t>]

Functionally recursive groups 75

7.2.8 LevelStabilizer

. LevelStabilizer(g, n) (operation)

Returns: The fixator of the n th level of the tree.
This function constructs the normal subgroup of g that fixes the n th level of the tree.

Example
gap> G := FRGroup("t=<,t>(1,2)","a=(1,2)");
<self-similar group over [1 .. 2] with 2 generators>
gap> LevelStabilizer(G,2);
<self-similar group over [1 .. 2] with 9 generators>
gap> Index(G,last);
8
gap> IsNormal(G,last2);
true

7.2.9 IsStateClosed

. IsStateClosed(g) (property)

Returns: true if all states of elements of g belong to g .
This function tests whether g is a state-closed group, i.e. a group such that all states of all elements

of g belong to g .
The smallest state-closed group containing g is computed with StateClosure (7.2.10).

Example
gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> AssignGeneratorVariables(Dinfinity);
#I Assigned the global variables [a, b]
gap> IsStateClosed(Group(a));

IsStateClosed(Group(b));
IsStateClosed(Dinfinity);

true
false
true

7.2.10 StateClosure

. StateClosure(g) (operation)

Returns: The smallest state-closed group containing g .
This function computes the smallest group containing all states of all elements of g , i.e. the

smallest group containing g and for which IsStateClosed (7.2.9) returns true.
Example

gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> AssignGeneratorVariables(Dinfinity);
#I Assigned the global variables [a, b]
gap> StateStateClosure(Group(a))=Dinfinity; StateClosure(Group(b))=Dinfinity;
false
true

Functionally recursive groups 76

7.2.11 IsRecurrentFRSemigroup

. IsRecurrentFRSemigroup(g) (property)

Returns: true if g is a recurrent group.
This function returns true if g is a recurrent group, i.e. if, for every vertex v, all elements of g

appear as states at v of elements fixing v.
Example

gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> AssignGeneratorVariables(Dinfinity);
#I Assigned the global variables [a, b]
gap> IsRecurrentFRSemigroup(Group(a)); IsRecurrentFRSemigroup(Group(b));
false
false
gap> IsRecurrentFRSemigroup(Dinfinity);
true

7.2.12 IsLevelTransitive (FR group)

. IsLevelTransitive(g) (property)

Returns: true if g is a level-transitive group.
This function returns true if g is a level-transitive group, i.e. if the action of g is transitive at

every level of the tree on which it acts.
Example

gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> AssignGeneratorVariables(Dinfinity);
#I Assigned the global variables [a, b]
gap> IsLevelTransitive(Group(a)); IsLevelTransitive(Group(b));

IsLevelTransitive(Dinfinity);
false
false
true

7.2.13 IsInfinitelyTransitive

. IsInfinitelyTransitive(g) (property)

. IsLevelTransitiveOnPatterns(g) (property)

Returns: true if g is infinitely transitive.
This function returns true if g is an infinitely transitive group. This means that g is the state-

closed group of a bireversible Mealy machine (see IsBireversible (5.2.7)), and that the action of
the set of reduced words of any given length over the alphabet (where "reduced" means no successive
letters related by the involution) is transitive.

Reduced words are defined as follows: if the underlying Mealy machine of g has an involution
on its alphabet (see AlphabetInvolution (5.2.6)), then reduced words are words in which two
consecutive letters are not images of each other under the involution. If no involution is defined, then
all words are considered reduced; the command then becomes synonymous to IsLevelTransitive
(7.2.12).

This notion is of fundamental importance for the study of lattices in a product of trees; it implies
under appropriate circumstances that the dual group is free.

Functionally recursive groups 77

Example
gap> IsInfinitelyTransitive(BabyAleshinGroup);
true
gap> IsLevelTransitive(BabyAleshinGroup);
true
gap> s := DualMachine(BabyAleshinMachine);
<Mealy machine on alphabet [1 .. 3] with 2 states>
gap> AlphabetInvolution(s); # set attribute
[1, 2, 3]
gap> g := SCGroup(s);
<state-closed group over [1 .. 3] with 2 generators>
gap> IsInfinitelyTransitive(g);
true
gap> IsLevelTransitive(g);
false

7.2.14 IsFinitaryFRSemigroup

. IsFinitaryFRSemigroup(g) (property)

. IsWeaklyFinitaryFRSemigroup(g) (property)

. IsBoundedFRSemigroup(g) (property)

. IsPolynomialGrowthFRSemigroup(g) (property)

. IsFiniteStateFRSemigroup(g) (property)

Returns: true if all elements of g have the required property.
This function returns true if all elements of g have the required property, as FR elements; see

IsFinitaryFRElement (5.2.10), IsWeaklyFinitaryFRElement (5.2.23), IsBoundedFRElement
(5.2.12), IsPolynomialGrowthFRElement (5.2.13) and IsFiniteStateFRElement (4.2.12).

Example
gap> G := FRGroup("a=(1,2)","b=<a,b>","c=<c,b>","d=<d,d>(1,2)");
<self-similar group over [1 .. 2] with 4 generators>
gap> L := [Group(G.1),Group(G.1,G.2),Group(G.1,G.2,G.3),G];;
gap> List(L,IsFinitaryFRSemigroup);
[true, false, false, false]
gap> List(L,IsBoundedFRSemigroup);
[true, true, false, false]
gap> List(L,IsPolynomialGrowthFRSemigroup);
[true, true, true, false]
gap> List(L,IsFiniteStateFRSemigroup);
[true, true, true, true]

7.2.15 Degree (FR semigroup)

. Degree(g) (attribute)

. DegreeOfFRSemigroup(g) (attribute)

. Depth(g) (attribute)

. DepthOfFRSemigroup(g) (attribute)

Returns: The maximal degree/depth of elements of g .
This function returns the maximal degree/depth of elements of g ; see Degree (5.2.9) and Depth

(5.2.11).

Functionally recursive groups 78

Example
gap> G := FRGroup("a=(1,2)","b=<a,b>","c=<c,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> Degree(Group(G.1)); Degree(Group(G.1,G.2)); Degree(G);
0
1
2
gap> Depth(Group(G.1)); Depth(Group(G.1,G.2)); Depth(G);
1
infinity
infinity

7.2.16 HasOpenSetConditionFRSemigroup

. HasOpenSetConditionFRSemigroup(g) (property)

Returns: true if g has the open set condition.
This function returns true if all elements of g have the open set condition, see

HasOpenSetConditionFRElement (5.2.25).
Example

gap> HasOpenSetConditionFRSemigroup(GrigorchukGroup);
false
gap> HasOpenSetConditionFRSemigroup(BinaryAddingGroup);
true

7.2.17 HasCongruenceProperty

. HasCongruenceProperty(G) (property)

Returns: true if G has the congruence property.
This function returns true if the transformation (semi)group G has the congruence property,

namely if every homomorphism G→ Q to a finite quotient factors as G→ H → Q via an action
of G on a finite set.

This command is not guaranteed to terminate.
Example

gap> HasCongruenceProperty(GrigorchukGroup);
true
gap> HasCongruenceProperty(GrigorchukTwistedTwin);
...runs forever...

7.2.18 IsContracting

. IsContracting(g) (property)

Returns: true if g is a contracting semigroup.
This function returns true if g is a contracting semigroup, i.e. if there exists a finite subset N of

g such that the LimitStates (4.2.11) of every element of g belong to N.
The minimal such N can be computed with NucleusOfFRSemigroup (7.2.19).

Example
gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> IsContracting(Dinfinity);
true

Functionally recursive groups 79

7.2.19 NucleusOfFRSemigroup

. NucleusOfFRSemigroup(g) (attribute)

. Nucleus(g) (operation)

Returns: The nucleus of the contracting semigroup g .
This function returns the nucleus of the contracting semigroup g , i.e. the smallest subset N of g

such that the LimitStates (4.2.11) of every element of g belong to N.
This function returns fail if no such N exists. Usually, it loops forever without being able to

decide whether N is finite or infinite. It succeeds precisely when IsContracting(g) succeeds.
Example

gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> NucleusOfFRSemigroup(Dinfinity);
[<2|identity ...>, <2|b>, <2|a>]

7.2.20 NucleusMachine (FR semigroup)

. NucleusMachine(g) (attribute)

Returns: The nucleus machine of the contracting semigroup g .
This function returns the nucleus of the contracting semigroup g , see NucleusOfFRSemigroup

(7.2.19), in the form of a Mealy machine.
Since all states of the nucleus are elements of the nucleus, the transition and output function

may be restricted to the nucleus, defining a Mealy machine. Finitely generated recurrent groups are
generated by their nucleus machine.

This function returns fail if no such n exists. Usually, it loops forever without being able to
decide whether n is finite or infinite. It succeeds precisely when IsContracting(g) succeeds.

Example
gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>");
<self-similar group over [1 .. 2] with 2 generators>
gap> M := NucleusMachine(Dinfinity);
<Mealy machine on alphabet [1, 2] with 3 states>
gap> Display(M);

| 1 2
---+-----+-----+
a | a,1 a,2
b | c,1 b,2
c | a,2 a,1

---+-----+-----+
gap> Dinfinity=SCGroup(M);
true

7.2.21 AdjacencyBasesWithOne

. AdjacencyBasesWithOne(g) (attribute)

. AdjacencyPoset(g) (attribute)

Returns: The bases, or the poset, of the simplicial model of g .
For these arguments, g can be either the nucleus of an FR semigroup, or that semigroup itself, in

which case its nucleus is first computed.

Functionally recursive groups 80

The first function computes those maximal (for inclusion) subsets of the nucleus that are recurrent,
namely subsets B such that Set(B,x->States(x,v))=B for a string v.

The second function then computes the poset of intersections of these bases, and returns it as a
binary relation.

For more details on these concepts, see [Nek08a].
Example

gap> n := NucleusOfFRSemigroup(BasilicaGroup);
[<Trivial Mealy element on alphabet [1 .. 2]>, b,

<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>]

gap> AdjacencyBasesWithOne(n);
[[<Trivial Mealy element on alphabet [1 .. 2]>,

<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>],

[<Trivial Mealy element on alphabet [1 .. 2]>,
<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>],

[<Trivial Mealy element on alphabet [1 .. 2]>,
<Mealy element on alphabet [1 .. 2] with 3 states>,
<Mealy element on alphabet [1 .. 2] with 3 states>]]

gap> AdjacencyPoset(n);
<general mapping: <object> -> <object> >
gap> Draw(HasseDiagramBinaryRelation(last));

This produces (in a new window) the following picture:

7.2.22 BranchingSubgroup

. BranchingSubgroup(g) (operation)

Returns: A branching subgroup of g .
This function searches for a subgroup k of g , such that k contains k×·· ·× k.
It searches for elements in larger and larger balls in g , calling FindBranchingSubgroup (7.2.23).

Example
gap> K := BranchingSubgroup(GrigorchukGroup);
<self-similar group over [1 .. 2] with 9 generators>
gap> IsBranchingSubgroup(K);
true
gap> IsBranched(GrigorchukGroup);
true
gap> Index(GrigorchukGroup,K);
16

Functionally recursive groups 81

7.2.23 FindBranchingSubgroup

. FindBranchingSubgroup(g, l, r) (operation)

Returns: A branching subgroup of g .
This function searches for a subgroup k of g , such that k contains k×·· ·× k.
The second argument l specifies the level at which branching must occur; i.e. asks to search for a

subgroup k such that g contains kdl
where d is the size of the alphabet. If l=infinity, the resulting

k will be a regularly branched subgroup.
The third argument r specifies the radius to explore in g and all branching subgroups at levels

smaller than l for elements with all level-1 states trivial except one.
Example

gap> FindBranchingSubgroup(GrigorchukGroup,1,4);
<self-similar group over [1 .. 2] with 8 generators>
gap> Index(GrigorchukGroup,last);
8
gap> FindBranchingSubgroup(GrigorchukGroup,2,4);
<self-similar group over [1 .. 2] with 6 generators>
gap> Index(GrigorchukGroup,last);
16
gap> FindBranchingSubgroup(GrigorchukGroup,3,4);
<self-similar group over [1 .. 2] with 9 generators>
gap> Index(GrigorchukGroup,last);
16

7.2.24 IsBranched (FR group)

. IsBranched(g) (property)

Returns: true if g has a finite-index branching subgroup.
This function returns true if g has a finite-index subgroup k, such that k contains k×·· ·× k.

Example
<Example><![CDATA[
gap> K := BranchingSubgroup(GrigorchukGroup);
<self-similar group over [1 .. 2] with 9 generators>
gap> IsBranchingSubgroup(K);
true
gap> IsBranched(GrigorchukGroup);
true
gap> Index(GrigorchukGroup,K);
16

7.2.25 IsBranchingSubgroup (FR semigroup)

. IsBranchingSubgroup(k) (property)

Returns: true if k is a branching subgroup.
This function returns true if k contains k×·· ·× k.

Example
gap> K := BranchingSubgroup(GrigorchukGroup);
<self-similar group over [1 .. 2] with 9 generators>
gap> IsBranchingSubgroup(K);
true

Functionally recursive groups 82

gap> IsBranched(GrigorchukGroup);
true
gap> Index(GrigorchukGroup,K);
16

7.2.26 BranchStructure

. BranchStructure(G) (attribute)

Returns: A record describing the branching of G .
This function constructs a record with fields group,quo,set,top,wreath,epi giving respec-

tively a group isomorphic to G/K, the quotient map from G to it, the alphabet of G, the group of permu-
tations of the alphabet, the wreath product of group with its top permutations, and an epimorphism
from a subgroup of wreath to group.

This information is used as essential data on the branch group, and are used to construct e.g. its
Zeta function.

7.2.27 TopVertexTransformations

. TopVertexTransformations(g) (attribute)

Returns: The transformations at the root under the action of g .
This function returns the permutation group, or the transformation group/semigroup/monoid, of

all activities of all elements under the root vertex of the tree on which g acts.
It is a synonym for PermGroup(g,1) or TransformationMonoid(g,1) or

TransformationSemigroup(g,1).
Example

gap> TopVertexTransformations(GrigorchukGroup);
Group([(), (1,2)])
gap> IsTransitive(last,AlphabetOfFRSemigroup(GrigorchukGroup));
true
gap> TopVertexTransformations(FullSCMonoid([1..3]));
<monoid with 3 generators>
gap> Size(last);
27

7.2.28 VertexTransformations (FR semigroup)

. VertexTransformations(g) (attribute)

Returns: The transformations at all vertices under the action of g .
This function returns the permutation group, or the transformation group/monoid/semigroup, of

all activities of all elements under all vertices of the tree on which g acts.
This is the smallest group/monoid/semigroup P such that g

is a subset of FullSCGroup(AlphabetOfFRSemigroup(g),P) or
FullSCMonoid(AlphabetOfFRSemigroup(g),P) or FullSCSemigroup(AlphabetOfFRSemigroup(g),P).

Example
gap> VertexTransformations(GuptaSidkiGroup);
Group([(), (1,2,3), (1,3,2)])
gap> TopVertexTransformations(Group(GuptaSidkiGroup.2));
Group(())

Functionally recursive groups 83

gap> VertexTransformations(Group(GuptaSidkiGroup.2));
Group([(), (1,2,3), (1,3,2)])

7.2.29 VirtualEndomorphism

. VirtualEndomorphism(g/m, v) (operation)

Returns: The virtual endomorphism at vertex v .
This function returns the homomorphism from Stabilizer(g,v) to g , defined by computing the

state at v . It is loosely speaking an inverse of FRGroupByVirtualEndomorphism (7.1.9).
The first argument m may also be an FR machine.

Example
gap> A := SCGroup(MealyMachine([[2,1],[2,2]],[(1,2),()]));
<self-similar group over [1 .. 2] with 1 generator>
gap> f := VirtualEndomorphism(A,1);
MappingByFunction(<self-similar group over [1 .. 2] with
1 generator>, <self-similar group over [1 .. 2] with
1 generator>, function(g) ... end)
gap> ((A.1)^2)^f=A.1;
true
gap> B := FRGroupByVirtualEndomorphism(f);
<self-similar group over [1 .. 2] with 1 generator>
gap> A=B;
true

7.2.30 EpimorphismFromFpGroup

. EpimorphismFromFpGroup(g, l) (operation)

Returns: An epimorphism from a finitely presented group to g .
For some examples of self-similar groups, a recursive presentation of the group is coded into FR,

and an approximate presentation is returned by this command, together with a map onto the group g .
The argument l roughly means the number of iterates of an endomorphism were applied to a finite
set of relators. An isomorphic group would be obtained by setting l=infinity; for that purpose, see
IsomorphismSubgroupFpGroup (7.2.31).

Preimages can be computed, with PreImagesRepresentative. They are usually reasonably
short words, though by no means guaranteed to be of minimal length.

Currently this command is implemented through an ad hoc method for BinaryKneadingGroup
(9.1.2), GrigorchukGroup (9.1.10) and GrigorchukOverGroup (9.1.11).

Example
gap> f := EpimorphismFromFpGroup(GrigorchukGroup,1);
MappingByFunction(<fp group on the generators
[a, b, c, d]>, GrigorchukGroup, function(w) ... end)
4 gap> RelatorsOfFpGroup(Source(f));
[a^2, b^2, c^2, d^2, b*c*d, a*d*a*d*a*d*a*d, a^-1*c*a*c*a^-1*c*a*c*a^-1*c*a*c*a^

-1*c*a*c, a^-1*c^-1*a*b*a^-1*c*a*b*a^-1*c^-1*a*b*a^-1*c*a*b*a^-1*c^-1*a*b*a^-1*
c*a*b*a^-1*c^-1*a*b*a^-1*c*a*b, a*d*a*c*a*c*a*d*a*c*a*c*a*d*a*c*a*c*a*d*a*c*a*c,

a^-1*c*a*c*a^-1*c*a*b*a^-1*c*a*b*a^-1*c*a*c*a^-1*c*a*b*a^-1*c*a*b*a^-1*c*a*c*a^
-1*c*a*b*a^-1*c*a*b*a^-1*c*a*c*a^-1*c*a*b*a^-1*c*a*b]

gap> PreImagesRepresentative(f,Comm(GrigorchukGroup.1,GrigorchukGroup.2));
a*c*a*d*a*d*a*c

Functionally recursive groups 84

gap> Source(f).4^f=GrigorchukGroup.4;
true

7.2.31 IsomorphismSubgroupFpGroup

. IsomorphismSubgroupFpGroup(g) (operation)

. AsSubgroupFpGroup(g) (operation)

. IsomorphismLpGroup(g) (operation)

. AsLpGroup(g) (operation)

Returns: An isomorphism to a subgroup of a finitely presented group, or an L-presented group.
For some examples of self-similar groups, a recursive presentation of the group is coded into FR,

and is returned by this command. The group g itself sits as a subgroup of a finitely presented group. To
obtain a finitely presented group approximating g , see EpimorphismFromFpGroup (7.2.30). PreIm-
ages can also be computed; it is usually better to use PreImageElm, since the word problem may not
be solvable by GAP in the f.p. group.

Currently this command is implemented through an ad hoc method for BinaryKneadingGroup
(9.1.2), GrigorchukGroup (9.1.10), GrigorchukOverGroup (9.1.11), generalized
GuptaSidkiGroups (9.1.18) and generalized FabrykowskiGuptaGroups (9.1.21).

The second form returns an isomorphism to an L-presented group (see [Bar03a] and [BEH08]. It
requires the package NQL.

Example
gap> f := IsomorphismSubgroupFpGroup(BasilicaGroup);
MappingByFunction(BasilicaGroup, Group([a^-1, a*t^-1*a^-1*t*a^-1
]), function(g) ... end, function(w) ... end)

gap> Range(f);
Group([a^-1, a*t^-1*a^-1*t*a^-1])
gap> c := Comm(BasilicaGroup.1,BasilicaGroup.2);
<Mealy element on alphabet [1, 2] with 9 states, initial state 1>
gap> c^f;
t^-2*a*t^-1*a*t*a^-2*t*a*t^-2*a*t^-1*a*t*a^-1*t*a*t^-1*a*t^-2*
a^-1*t*a*t^-1*a*t^-1*a^-1*t*a^-1*t^5*a*t^-1*a^-1*t*a^-1
gap> PreImageElm(f,last);
<Mealy element on alphabet [1, 2] with 9 states, initial state 1>
gap> last=c;
true

7.3 Properties for infinite groups

7.3.1 IsTorsionGroup

. IsTorsionGroup(g) (property)

Returns: true if g is a torsion group.
This function returns true if g is a torsion group, i.e. if every element in g has finite order; and

false if g contains an element of infinite order.
This method is quite rudimentary, and is not guaranteed to terminate. At the minimum, g should

be a group in which Order() succeeds in computing element orders; e.g. a bounded group in Mealy
machine format.

Functionally recursive groups 85

Example
gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>":IsMealyElement);
<self-similar group over [1 .. 2] with 2 generators>
gap> IsTorsionGroup(Dinfinity);
false
gap> IsTorsionGroup(GrigorchukGroup); IsTorsionGroup(GuptaSidkiGroup);
true
true
gap> IsTorsionGroup(FabrykowskiGuptaGroup);
false

7.3.2 IsTorsionFreeGroup

. IsTorsionFreeGroup(g) (property)

Returns: true if g is a torsion-free group.
This function returns true if g is a torsion-free group, i.e. if no element in g has finite order; and

false if g contains an element of finite order.
This method is quite rudimentary, and is not guaranteed to terminate. At the minimum, g should

be a group in which Order() succeeds in computing element orders; e.g. a bounded group in Mealy
machine format.

Example
gap> Dinfinity := FRGroup("a=(1,2)","b=<a,b>":IsMealyElement);
<self-similar group over [1 .. 2] with 2 generators>
gap> IsTorsionFreeGroup(Dinfinity);
false
gap> IsTorsionFreeGroup(BasilicaGroup);
true

7.3.3 IsAmenableGroup

. IsAmenableGroup(g) (property)

Returns: true if g is an amenable group.
Amenable groups, introduced by von Neumann [vN29], are those groups that admit a finitely

additive, translation-invariant measure.
Example

gap> IsAmenableGroup(FreeGroup(2));
false
gap> IsAmenableGroup(BasilicaGroup);
true

7.3.4 IsVirtuallySimpleGroup

. IsVirtuallySimpleGroup(g) (property)

. LambdaElementVHGroup(g) (attribute)

Returns: true if g admits a finite-index simple subgroup.
This function attempts to prove that the VH group g admits a finite-index simple subgroup.
It is based on the following test: let D be a direction (vertical or horizontal) such that the corre-

sponding action is infinitely transitive (see IsInfinitelyTransitive (7.2.13)). If the correspond-
ing subgroup of g contains a non-trivial element λ that acts trivially in the corresponding action, then

Functionally recursive groups 86

every normal subgroup contains λ . It then remains to check that the normal closure of λ has finite
index. This element λ is then stored as the attribute LambdaElementVHGroup(g).

The current implementation is based on results in [BM00a] and [BM00b], and does not work for
the Rattaggi examples (see RattaggiGroup (9.1.24)).

7.3.5 IsResiduallyFinite

. IsResiduallyFinite(obj) (property)

Returns: true if obj is residually finite.
An object is residually finite if it can be approximated arbitrarily well by finite quotients; i.e. if

for every g 6= h ∈ X there exists a finite quotient π : X → Q such that gπ 6= hπ .
Example

gap> IsResiduallyFinite(FreeGroup(2));
true
gap> IsResiduallyFinite(BasilicaGroup);
true

7.3.6 IsSQUniversal

. IsSQUniversal(obj) (property)

Returns: true if obj is SQ-universal.
An object obj is SQ-universal if every countable object of the same category as obj is a subobject

of a quotient of obj .
Example

gap> IsSQUniversal(FreeGroup(2));
true

7.3.7 IsJustInfinite

. IsJustInfinite(obj) (property)

Returns: true if obj is just-infinite.
An object obj is just-infinite if obj is infinite, but every quotient of obj is finite.

Example
gap> IsJustInfinite(FreeGroup(2));
false
gap> IsJustInfinite(FreeGroup(1));
true
gap> IsJustInfinite(GrigorchukGroup); time
true
8284

Chapter 8

Algebras

Self-similar algebras and algebras with one (below FR algebras) are simply algebras [with one] whose
elements are linear FR machines. They naturally act on the alphabet of their elements, which is a
vector space.

Elements may be added, subtracted and multiplied. They can be vector or algebra linear elements;
the vector elements are in general preferable, for efficiency reasons.

Finite-dimensional approximations of self-similar algebras can be computed; they are given as
matrix algebras.

8.1 Creators for FR algebras

The most straightforward creation method for FR algebras is Algebra(), applied with linear FR
elements as arguments. There are shortcuts to this somewhat tedious method:

8.1.1 FRAlgebra

. FRAlgebra(ring, {definition, }) (operation)

. FRAlgebraWithOne(ring, {definition, }) (operation)

Returns: A new self-similar algebra [with one].
This function constructs a new FR algebra [with one], generated by linear FR elements. It re-

ceives as argument any number of strings, each of which represents a generator of the object to be
constructed.

ring is the acting domain of the vector space on which the algebra will act.
Each definition is of the form "name=[[...],...,[...]]" or of the form

"name=[[...],...,[...]]:out", namely a matrix whose entries are algebraic expressions
in the names, possibly using 0,1, optionally followed by a scalar. The matrix entries specify the
decomposition of the element being defined, and the optional scalar specifies the output of that
element, by default assumed to be one.

The option IsVectorElement asks for the resulting algebra to be generated by vector elements,
see example below. The generators must of course be finite-state.

Example
gap> m := FRAlgebra(Rationals,"a=[[1,a],[a,0]]");
<self-similar algebra on alphabet Rationals^2 with 1 generator>
gap> Display(Activity(m.1,2));
[[1, 0, 1, 1],

87

Functionally recursive groups 88

[0, 1, 1, 0],
[1, 1, 0, 0],
[1, 0, 0, 0]]

gap> m2 := FRAlgebra(Rationals,"a=[[1,a],[a,0]]":IsVectorElement);;
gap> m.1=m2.1;
true

8.1.2 SCAlgebra

. SCAlgebra(m) (operation)

. SCLieAlgebra(m) (operation)

. SCAlgebraWithOne(m) (operation)

. SCAlgebraNC(m) (operation)

. SCAlgebraWithOneNC(m) (operation)

Returns: The state-closed algebra [with one] generated by the machine m .
This function constructs a new FR algebra [vith one] a, generated by all the states of the FR

machine m . There is a bijective correspondence between GeneratorsOfFRMachine(m) and the gen-
erators of a, which is accessible via Correspondence(a) (See Correspondence (7.1.4)); it is a
homomorphism from the stateset of m to a, or a list indicating for each state of m a corresponding
generator index in the generators of a (with 0 for identity).

In the non-NC forms, redundant (equal, zero or one) states are removed from the generating set of
a.

Example
gap> a := SCAlgebra(AsLinearMachine(Rationals,I4Machine));
<self-similar algebra on alphabet Rationals^2 with 3 generators>
gap> a.1 = AsLinearElement(Rationals,I4Monoid.1);
true

8.1.3 NucleusOfFRAlgebra

. NucleusOfFRAlgebra(a) (attribute)

. Nucleus(a) (operation)

Returns: The nucleus of the contracting algebra a .
This function returns the nucleus of the contracting algebra a , i.e. the smallest subspace N of a

such that the LimitStates (4.2.11) of every element of a belong to N.
This function returns fail if no such N exists. Usually, it loops forever without being able to

decide whether N is finite or infinite. It succeeds precisely when IsContracting(g) succeeds.
Example

gap> > a := GrigorchukThinnedAlgebra(2);
<self-similar algebra-with-one on alphabet GF(2)^2 with 4 generators, of dimension infinity>
gap> NucleusOfFRAlgebra(a);
<vector space over GF(2), with 4 generators>

8.1.4 BranchingIdeal

. BranchingIdeal(A) (operation)

Returns: An ideal I that contains matrices over itself.

Functionally recursive groups 89

Example
gap> R := GrigorchukThinnedAlgebra(2);;
gap> I := BranchingIdeal(R);
<two-sided ideal in <self-similar algebra-with-one on alphabet GF(2)^2
with 4 generators, of dimension infinity>, (3 generators)>

gap> e := EpimorphismMatrixQuotient(R,3);;
gap> eI := Ideal(Range(e),List(GeneratorsOfIdeal(I),x->x^e));
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (3 generators)>
gap> Dimension(Range(e)/eI);
6

8.2 Operations for FR algebras

8.2.1 MatrixQuotient

. MatrixQuotient(a, l) (operation)

. EpimorphismMatrixQuotient(a, l) (operation)

Returns: The matrix algebra of a ’s action on level l .
The first function returns the matrix algebra generated by the activities of a on level l (see the

examples in 6.1.7). The second functon returns an algebra homomorphism from a to the matrix
algebra.

Example
gap> a := ThinnedAlgebraWithOne(GF(2),GrigorchukGroup);
<self-similar algebra-with-one on alphabet GF(2)^2 with 4 generators>
gap> List([0..4],i->Dimension(MatrixQuotient(a,i)));
[1, 2, 6, 22, 78]

8.2.2 ThinnedAlgebra

. ThinnedAlgebra(r, g) (operation)

. ThinnedAlgebraWithOne(r, g) (operation)

Returns: The thinned algebra [with one] associated with g .
The first function returns the thinned algebra of a FR group/monoid/semigroup g , over the domain

r . This is the linear envelope of g in its natural action on sequences.
The embedding of g in its thinned algebra is returned by Embedding(g,a).

Example
gap> a := ThinnedAlgebraWithOne(GF(2),GrigorchukGroup);
<self-similar algebra on alphabet GF(2)^2 with 5 generators>
gap> a.1 = GrigorchukGroup.1^Embedding(GrigorchukGroup,a);
true
gap> Dimension(VectorSpace(GF(2),[One(a),a.2,a.3,a.4]));
3

8.2.3 Nillity

. Nillity(x) (attribute)

. IsNilElement(x) (property)

Returns: The smallest n such that xn = 0.

Functionally recursive groups 90

The first command computes the nillity of x , i.e. the smallest n such that xn = 0. The command
is not guaranteed to terminate.

The second command returns whether x is nil, that is, whether its nillity is finite.

8.2.4 DegreeOfHomogeneousElement

. DegreeOfHomogeneousElement(x) (attribute)

. IsHomogeneousElement(x) (property)

Returns: The degree of x in its parent.
If x belongs to a graded algebra A, then the second command returns whether x belongs to a

homogeneous component of Grading(A), and the first command returns the degree of that component
(or fail if no such component exists).

Chapter 9

Examples

FR predefines a large collection of machines and groups. The groups are, whenever possible, defined
as state closures of corresponding Mealy machines.

9.1 Examples of groups

9.1.1 FullBinaryGroup

. FullBinaryGroup (global variable)

. FiniteDepthBinaryGroup(l) (function)

. FinitaryBinaryGroup (global variable)

. BoundedBinaryGroup (global variable)

. PolynomialGrowthBinaryGroup (global variable)

. FiniteStateBinaryGroup (global variable)

These are the finitary, bounded, polynomial-growth, finite-state, or unrestricted groups
acting on the binary tree. They are respectively shortcuts for FullSCGroup([1..2]),
FullSCGroup([1..2],l), FullSCGroup([1..2],IsFinitaryFRSemigroup),
FullSCGroup([1..2],IsBoundedFRSemigroup), FullSCGroup([1..2],IsPolynomialGrowthFRSemigroup),
and FullSCGroup([1..2],IsFiniteStateFRSemigroup).

They may be used to draw random elements, or to test membership.

9.1.2 BinaryKneadingGroup

. BinaryKneadingGroup(angle/ks) (function)

. BinaryKneadingMachine(angle/ks) (function)

Returns: The [machine generating the] iterated monodromy group of a quadratic polynomial.
The first function constructs a Mealy machine whose state closure is the binary kneading group.
The second function constructs a new FR group G, which is the iterated monodromy group of a

quadratic polynomial, either specified by its angle or by its kneading sequence(s).
If the argument is a (rational) angle, the attribute Correspondence(G) is a function returning, for

any rational, the corresponding generator of G.
If there is one argument, which is a list or a string, it is treated as the kneading sequence of a

periodic (superattracting) polynomial. The sequence is implicity assumed to end by ’*’. The attribute
Correspondence(G) is a list of the generators of G.

91

Functionally recursive groups 92

If there are two arguments, which are lists or strings, they are treated as the preperiod and period
of the kneading sequence of a preperiodic polynomial. The last symbol of the arguments must differ.
The attribute Correspondence(G) is a pair of lists of generators; Correspondence(G)[1] is the
preperiod, and Correspondence(G)[2] is the period. The attribute KneadingSequence(G) returns
the kneading sequence, as a pair of strings representing preperiod and period respectively.

As particular examples, BinaryKneadingMachine() is the adding machine;
BinaryKneadingGroup() is the adding machine; and BinaryKneadingGroup("1") is
BasilicaGroup (9.1.3).

Example
gap> BinaryKneadingGroup()=AddingGroup(2);
true
gap> BinaryKneadingGroup(1/3)=BasilicaGroup;
true
gap> g := BinaryKneadingGroup([0,1],[0]);
BinaryKneadingGroup("01","0")
gap> ForAll(Correspondence(g)[1],IsFinitaryFRElement);
true
gap> ForAll(Correspondence(g)[2],IsFinitaryFRElement);
false
gap> ForAll(Correspondence(g)[2],IsBoundedFRElement);
true

9.1.3 BasilicaGroup

. BasilicaGroup (global variable)

The Basilica group. This is a shortcut for BinaryKneadingGroup("1"). It is the first-discovered
amenable group that is not subexponentially amenable, see [BV05] and [GŻ02].

Example
gap> IsBoundedFRSemigroup(BasilicaGroup);
true
gap> pi := EpimorphismFromFreeGroup(BasilicaGroup); F := Source(pi);;
[x1, x2] -> [a, b]
gap> sigma := GroupHomomorphismByImages(F,F,[F.1,F.2],[F.2,F.1^2]);
[x1, x2] -> [x2, x1^2]
gap> ForAll([0..10],i->IsOne(Comm(F.2,F.2^F.1)^(sigma^i*pi)));
true

9.1.4 FornaessSibonyGroup

. FornaessSibonyGroup (global variable)

The Fornaess-Sibony group. This group was studied by Nekrashevych in [Nek08b]. It is the
iterated monodromy group of the endomorphism of CP2 defined by (z, p) 7→ ((1−2z/p)2,(1−2/p)2).

Example
gap> Size(NucleusOfFRSemigroup(FornaessSibonyGroup));
288
gap> List(AdjacencyBasesWithOne(FornaessSibonyGroup),Length);
[128, 128, 36, 36, 16, 16, 8]
gap> p := AdjacencyPoset(FornaessSibonyGroup);

Functionally recursive groups 93

<general mapping: <object> -> <object> >
gap> Draw(HasseDiagramBinaryRelation(p));

This produces (in a new window) the following picture:

9.1.5 AddingGroup

. AddingGroup(n) (function)

. AddingMachine(n) (function)

. AddingElement(n) (function)

The second function constructs the adding machine on the alphabet [1..n]. This machine has a
trivial state 1, and a non-trivial state 2. It implements the operation "add 1 with carry" on sequences.

The third function constructs the Mealy element on the adding machine, with initial state 2.
The first function constructs the state-closed group generated by the adding machine on [1..n].

This group is isomorphic to the Integers.
Example

gap> Display(AddingElement(3));
| 1 2 3

---+-----+-----+-----+
a | a,1 a,2 a,3
b | a,2 a,3 b,1

---+-----+-----+-----+
Initial state: b
gap> ActivityPerm(FRElement(AddingMachine(3),2),2);
(1,4,7,2,5,8,3,6,9)
gap> G := AddingGroup(3);
<self-similar group over [1 .. 3] with 1 generator>
gap> Size(G);
infinity
gap> IsRecurrentFRSemigroup(G);
true
gap> IsLevelTransitive(G);
true

9.1.6 BinaryAddingGroup

. BinaryAddingGroup (global variable)

. BinaryAddingMachine (global variable)

. BinaryAddingElement (global variable)

These are respectively the same as AddingGroup(2), AddingMachine(2) and
AddingElement(2).

Functionally recursive groups 94

9.1.7 MixerGroup

. MixerGroup(A, B, f[, g]) (function)

. MixerMachine(A, B, f[, g]) (function)

Returns: A Mealy "mixer" machine/group.
The second function constructs a Mealy "mixer" machine m. This is a machine determined by

a permutation group A , a finitely generated group B , and a matrix of homomorphisms from B to A .
If A acts on [1..d], then each row of f contains at most d− 1 homomorphisms. The optional last
argument is an endomorphism of B . If absent, it is treated as the identity map on B .

The states of the machine are 1, followed by some elements a of A , followed by as many copies
of some elements b of B as there are rows in f . The elements in B that are taken is the smallest sublist
of B containing its generators and closed under g . The elements in A that are taken are the generators
of A and all images of all taken elements of B under maps in f .

The transitions from a are towards 1 and the outputs are the permutations in A . The transitions
from b are periodically given by f , completed by trivial elements, and finally by bg; the output of b is
trivial.

This construction is described in more detail in [BŠ01] and [BGŠ03].
Correspondence(m) is a list, with in first position the subset of the states that correspond to A ,

in second position the states that correspond to the first copy of B , etc.
The first function constructs the group generated by the mixer machine. For exam-

ples see GrigorchukGroups (9.1.9), NeumannGroup (9.1.20), GuptaSidkiGroups (9.1.18), and
ZugadiSpinalGroup (9.1.22).

Example
gap> grigorchukgroup := MixerGroup(Group((1,2)),Group((1,2)),

[[IdentityMapping(Group((1,2)))],[IdentityMapping(Group((1,2)))],[]]));
<self-similar group over [1 .. 2] with 4 generators>
gap> IdGroup(Group(grigorchukgroup.1,grigorchukgroup.2));
[32, 18]

9.1.8 SunicGroup

. SunicGroup(phi) (function)

. SunicMachine(phi) (function)

Returns: The Sunic machine associated with the polynomial phi .
A "Sunic machine" is a special kind of MixerMachine (9.1.7), in which the group A is a finite field

GF(q), the group B is an extension A[x]/(φ), where φ is a monic polynomial; there is a map f : B→A,
given say by evaluation; and there is an endomorphism of g : B→ B given by multiplication by φ .

These groups were described in [Šun07]. In particular, the case q = 2 and φ = x2+x+1 gives the
original GrigorchukGroup (9.1.10).

Example
gap> x := Indeterminate(GF(2));;
gap> g := SunicGroup(x^2+x+1);
SunicGroup(x^2+x+Z(2)^0)
gap> g = GrigorchukGroup;
true

Functionally recursive groups 95

9.1.9 GrigorchukMachines

. GrigorchukMachines(omega) (function)

. GrigorchukGroups(omega) (function)

Returns: One of the Grigorchuk groups.
This function constructs the Grigorchuk machine or group associated with the infinite sequence

omega , which is assumed (pre)periodic; omega is either a periodic list (see PeriodicList (11.2.2))
or a plain list describing the period. Entries in the list are integers in [1..3].

These groups are MixerGroup (9.1.7)s. The most famous example is
GrigorchukGroups([1,2,3]), which is also called GrigorchukGroup (9.1.10).

These groups are all 4-generated and infinite. They are described in [Gri84].
GrigorchukGroups([1]) is infinite dihedral. If omega contains at least 2 different dig-
its, GrigorchukGroups([1]) has intermediate word growth. If omega contains all 3 digits,
GrigorchukGroups([1]) is torsion.

The growth of GrigorchukGroups([1,2]) has been studied in [Ers04].
Example

gap> G := GrigorchukGroups([1]);
GrigorchukGroups([1])
gap> Index(G,DerivedSubgroup(G)); IsAbelian(DerivedSubgroup(G));
4
true
gap> H := GrigorchukGroups([1,2]);
GrigorchukGroups([1, 2])
gap> Order(H.1*H.2);
8
gap> Order(H.1*H.4);
infinity
gap> IsSubgroup(H,G);
true

9.1.10 GrigorchukMachine

. GrigorchukMachine (global variable)

. GrigorchukGroup (global variable)

This is Grigorchuk’s first group, introduced in [Gri80]. It is a 4-generated infi-
nite torsion group, and has intermediate word growth. It could have been defined as
FRGroup("a=(1,2)","b=<a,c>","c=<a,d>","d=<,b>"), but is rather defined using Mealy ele-
ments.

The command EpimorphismFromFpGroup(GrigorchukGroup,n) constructs an ap-
proximating presentation for the Grigorchuk group, as proven in [Lys85]. Adding
the relations Image(sigma^(n-2),(a*d)^2), Image(sigma^(n-1),(a*b)^2) and
Image(sigma^(n-2),(a*c)^4) yields the quotient acting on 2n points, as a finitely presented
group.

9.1.11 GrigorchukOverGroup

. GrigorchukOverGroup (global variable)

Functionally recursive groups 96

This is a group strictly containing the Grigorchuk group (see GrigorchukGroup (9.1.10)). It also
has intermediate growth (see [BG02], but it contains elements of infinite order. It could have been de-
fined as FRGroup("a=(1,2)","b=<a,c>","c=<,d>","d=<,b>"), but is rather defined using Mealy
elements.

Example
gap> IsSubgroup(GrigorchukOverGroup,GrigorchukGroup);
true
gap> Order(Product(GeneratorsOfGroup(GrigorchukOverGroup)));
infinity
gap> GrigorchukGroup.2=GrigorchukSuperGroup.2*GrigorchukSuperGroup.3;
true

The command EpimorphismFromFpGroup(GrigorchukOverGroup,n) will will construct an
approximating presentation for the Grigorchuk overgroup, as proven in [Bar03a].

9.1.12 GrigorchukTwistedTwin

. GrigorchukTwistedTwin (global variable)

This is a group with same closure as the Grigorchuk group (see
GrigorchukGroup (9.1.10)), but not isomorphic to it. It could have been defined as
FRGroup("a=(1,2)","x=<y,a>","y=<a,z>","z=<,x>"), but is rather defined using Mealy
elements.

Example
gap> AbelianInvariants(GrigorchukTwistedTwin);
[2, 2, 2, 2]
gap> AbelianInvariants(GrigorchukGroup);
[2, 2, 2]
gap> PermGroup(GrigorchukGroup,8)=PermGroup(GrigorchukTwistedTwin,8);
true

9.1.13 BrunnerSidkiVieiraGroup

. BrunnerSidkiVieiraGroup (global variable)

. BrunnerSidkiVieiraMachine (global variable)

This machine is the sum of two adding machines, one in standard form and one conjugated by
the element d described below. The group that it generates is described in [BSV99]. It could have
been defined as FRGroup("tau=<,tau>(1,2)","mu=<,mu^-1>(1,2)"), but is rather defined using
Mealy elements.

Example
gap> V := FRGroup("d=<e,e>(1,2)","e=<d,d>");
<self-similar group over [1 .. 2] with 2 generators>
gap> Elements(V);
[<2|identity ...>, <2|e>, <2|d>, <2|e*d>]
gap> AssignGeneratorVariables(BrunnerSidkiVieiraGroup);
#I Assigned the global variables ["tau", "mu", ""]
gap> List(V,x->tau^x)=[tau,mu,mu^-1,tau^-1];
true

Functionally recursive groups 97

9.1.14 AleshinGroups

. AleshinGroups(l) (function)

. AleshinMachines(l) (function)

Returns: The Aleshin machine with Length(l) states.
This function constructs the bireversible machines introduced by Aleshin in [Ale83]. The argu-

ment l is a list of permutations, either () or (1,2). The groups that they generate are contructed as
AleshinGroups.

If l=[(1,2),(1,2),()], this is AleshinGroup (9.1.15). More generally, if
l=[(1,2,(1,2),(),...,()] has odd length, this is a free group of rank Length(l), see
[VV07] and [VV06].

If l=[(1,2),(1,2),...] has even length and contains an even number of ()’s, then this is also
a free group of rank Length(l), see [SVV06].

If l=[(),(),(1,2)], this is BabyAleshinGroup (9.1.16). more generally, if l=[(),(),...]
has even length and contains an even number of (1,2)’s, then this is the free product of Length(l)
copies of the order-2 group.

9.1.15 AleshinGroup

. AleshinGroup (global variable)

. AleshinMachine (global variable)

This is the first example of non-abelian free group. It is the group gener-
ated by AleshinMachine([(1,2),(1,2),()]). It could have been defined as
FRGroup("a=<b,c>(1,2)","b=<c,b>(1,2)","c=<a,a>"), but is rather defined using Mealy
elements.

9.1.16 BabyAleshinGroup

. BabyAleshinGroup (global variable)

. BabyAleshinMachine (global variable)

There are only two connected, transitive bireversible machines on a 2-letter alphabet, with 3 gen-
erators: AleshinMachine(3) and the baby Aleshin machine.

The group generated by this machine is abstractly the free product of three C2’s, see [Nek05,
1.10.3]. It could have been defined as FRGroup("a=<b,c>","b=<c,b>","c=<a,a>(1,2)"), but is
rather defined here using Mealy elements.

Example
gap> K := Kernel(GroupHomomorphismByImagesNC(BabyAleshinGroup,Group((1,2)),

GeneratorsOfGroup(BabyAleshinGroup),[(1,2),(1,2),(1,2)]));
<self-similar group over [1 .. 2] with 4 generators>
gap> Index(BabyAleshinGroup,K);
2
gap> IsSubgroup(AleshinGroup,K);
true

Functionally recursive groups 98

9.1.17 SidkiFreeGroup

. SidkiFreeGroup (global variable)

This is a group suggested by Sidki as an example of a non-abelian state-closed free group. Nothing
is known about that group: whether it is free as conjectured; whether generator a is state-closed, etc.
It is defined as FRGroup("a=<a^2,a^t>","t=<,t>(1,2)")]]>.

9.1.18 GuptaSidkiGroups

. GuptaSidkiGroups(n) (function)

. GeneralizedGuptaSidkiGroups(n) (function)

. GuptaSidkiMachines(n) (function)

Returns: The Gupta-Sidki group/machine on an n -letter alphabet.
This function constructs the machines introduced by Gupta and Sidki in [GS83]. They generate

finitely generated infinite torsion groups: the exponent of every element divides some power of n .
The special case n = 3 is defined as GuptaSidkiGroup (9.1.19) and GuptaSidkiMachine (9.1.19).

For n > 3, there are (at least) two natural ways to generalize the Gupta-Sidki construction: the
original one involves the recursion "t=<a,a^-1,1,...,1,t>", while the second (called here ‘gen-
eralized’) involves the recursion "t=<a,a^2,...,a^-1,t>". A finite L-presentation for the latter is
implemented. It is not as computationally efficient as the L-presentation of the normal closure of t (a
subgroup of index p), which is an ascending L-presented group. The inclusion of that subgroup may
be recoverd via EmbeddingOfAscendingSubgroup(GuptaSidkiGroup).

9.1.19 GuptaSidkiGroup

. GuptaSidkiGroup (global variable)

. GuptaSidkiMachine (global variable)

This is an infinite, 2-generated, torsion 3-group. It could have been defined as
FRGroup("a=(1,2,3)","t=<a,a^-1,t>"), but is rather defined using Mealy elements.

9.1.20 NeumannGroup

. NeumannGroup(P) (function)

. NeumannMachine(P) (function)

Returns: The Neumann group/machine on the permutation group P .
The first function constructs the Neumann group associated with the permutation group P .

These groups were first considered in [Neu86]. In particular, NeumannGroup(PSL(3,2)) is a
group of non-uniform exponential growth (see [Bar03b]), and NeumannGroup(Group((1,2,3)))
is FabrykowskiGuptaGroup (9.1.21).

The second function constructs the Neumann machine associated to the permutation group P . It
is a shortcut for MixerMachine(P,P,[[IdentityMapping(P)]]).

The attribute Correspondence(G) is set to a list of homomorphisms from P to the A and B copies
of P.

Functionally recursive groups 99

9.1.21 FabrykowskiGuptaGroup

. FabrykowskiGuptaGroup (global variable)

. FabrykowskiGuptaGroups(p) (function)

This is an infinite, 2-generated group of intermediate word growth. It was studied in [FG85] and
[FG91]. It could have been defined as FRGroup("a=(1,2,3)","t=<a„t>"), but is rather defined
using Mealy elements. It has a torsion-free subgroup of index 3 and is branched.

The natural generalization, replacing 3 by p, is constructed by the second form. It is a specific case
of Neumann group (see NeumannGroup (9.1.20)), for which an ascending L-presentation is known.

9.1.22 ZugadiSpinalGroup

. ZugadiSpinalGroup (global variable)

This is an infinite, 2-generated group, which was studied in [BG02]. It has a torsion-free
subgroup of index 3, and is virtually branched but not branched. It could have been defined as
FRGroup("a=(1,2,3)","t=<a,a,t>"), but is rather defined using Mealy elements.

Amaia Zugadi computed its Hausdorff dimension to be 1/2.

9.1.23 GammaPQMachine

. GammaPQMachine(p, q) (function)

. GammaPQGroup(p, q) (function)

Returns: The quaternion-based machine / SC group.
The first function constructs a bireversible (see IsBireversible (5.2.7)) Mealy machine based

on quaternions, see [BM00a] and [BM00b]. This machine has p+1 states indexed by integer quater-
nions of norm p , and an alphabet of size q+1 indexed by quaternions of norm q . These quaternions
are congruent to 1 (mod 2) or i (mod 2) depending on whether the odd prime p or q is 1 or 3
(mod 4).

The structure of the machine is such that there is a transition from (q,a) to (q′,a′) precisely when
qa′ = ±q′a. In particular, the relations of the StructuralGroup (3.5.1) hold up to a sign, when the
alphabet/state letters are substituted for the appropriate quaternions.

The quaternions themselves can be recovered through Correspondence (3.5.12), which is a list
with in first position the quaternions of norm p and in second those of norm q.

The second function constructs the quaternion lattice that is the StructuralGroup (3.5.1) of that
machine. It has actions on two trees, given by VerticalAction (9.5.2) and HorizontalAction
(9.5.2); the ranges of these actions are groups generated by automata, which are infinitely-transitive
(see IsInfinitelyTransitive (7.2.13)) and free by [GM05, Proposition 3.3]; see also [Ale83].

9.1.24 RattaggiGroup

. RattaggiGroup (global variable)

This record contains interesting examples of VH groups, that were studied by Rattaggi in his PhD
thesis [Rat04]. His Example 2.x appears as RattaggiGroup.2_x.

The following summary of the examples’ properties are copied from Rattaggi’s thesis. RF means
"residually finite"; JI means "just infinite"; VS means "virtually simple".

Functionally recursive groups 100

Example Ph Pv Irred? Linear? RF? JI? VS?
2.2 2tr 2tr Y N N? Y Y?

2.15
2.18
2.21
2.26 2tr q-prim Y N N N N
2.30 2tr 2tr Y N N Y Y?
2.36
2.39
2.43 2tr 2tr Y N N Y Y
2.46
2.48
2.50
2.52 tr 2tr Y N N N N
2.56
2.58 2tr prim Y N N? N N
2.70
3.26 2tr 2tr Y Y Y Y N
3.28
3.31
3.33
3.36
3.38
3.40
3.44
3.46
3.72

9.1.25 HanoiGroup

. HanoiGroup(n) (function)

Returns: The Hanoi group on an n pegs.
This function constructs the Hanoi group on n pegs. Generators of the group correspond to moving

a peg, and tree vertices correspond to peg configurations. This group is studied in [GŠ06].

9.1.26 DahmaniGroup

. DahmaniGroup (global variable)

This is an example of a non-contracting weakly branched group. It was first studied in [Dah05].
It could have been defined as FRGroup("a=<c,a>(1,2)","b=<b,a>(1,2)","c=<b,c>"), but is
rather defined using Mealy elements.

It has relators abc, [a2c, [a,c]], [cab,a−1c−1ab] and [ac2,c−1b−1c2] among others.
It admits an endomorphism on its derived subgroup. Indeed

FRElement(1,Comm(a,b))=Comm(c^-1,b/a), FRElement(1,Comm(a,c))=Comm(a/b,c),
FRElement(1,Comm(b,c))=Comm(c,(a/b)^c).

Functionally recursive groups 101

9.1.27 MamaghaniGroup

. MamaghaniGroup (global variable)

This group was studied in [Mam03]. It is fractal, but not contracting. It could
have been defined as FRGroup("a=<,b>(1,2)","b=<a,c>","c=<a,a^-1>(1,2)")]]>,
but is rather defined using Mealy elements. It partially admits branching on its
subgroup Subgroup(G,[a^2,(a^2)^b,(a^2)^c]), and, setting x=Comm(a^2,b), on
Subgroup(G,[x,x^a,x^b,x^(b*a),x^(b/a)]). One has FRElement(1,x)=(x^-1)^b/x.

9.1.28 WeierstrassGroup

. WeierstrassGroup (global variable)

This is the iterated monodromy group associated with the Weierstrass ℘-function.
Some relators in the group: (atbt)4, ((atbt)(bt)4n)4, ((atbt)2(bt)4n)2.
Set x = [a, t], y = [b, t], z = [c, t], and w = [x,y]. Then G′ = 〈x,y,z〉 of index 8, and γ3 =

〈[{x,y,z},{a,b,c}]〉 of index 32, and γ4 = G′′ = 〈w〉G, of index 256, and G′′ > (G′′)4 since
[[ta, t], [tb, t]] = (w,1,1,1).

The Schreier graph is obtained in the complex plane as the image of a 2n×2n lattice in the torus,
via Weierstrass’s ℘-function.

The element at has infinite order.
[c, t,b][b, t,c][a, t,c][c, t,a] has order 2, and belongs to G′′; so there exist elements of arbitrary large

finite order in the group.

9.1.29 StrichartzGroup

. StrichartzGroup (global variable)

This group generates the graph of the Strichartz hexacarpet.
The Strichartz hexacarpet is the dual graph to the infinitely iterated barycentric subdivision of the

triangle. The Strichartz group acts on {1, . . . ,6}n for all n, and the Schreier graph with 6n vertices is
the nth Strichartz graph.

Conjecturally, that graph’s radius is 1/18(2(n + 1)(13 + 3n) + (−1)n − 9) and its diameter is
1/9(2(n−1)(31+12n)+2(−1)(n−1)−18).

See [BKN+12] for details.

9.1.30 FRAffineGroup

. FRAffineGroup(d, R, u[, transversal]) (operation)

Returns: The d -dimensional affine group over R .
This function constructs a new FR group G, which is finite-index subgroup of the d -dimensional

affine group over Ru, the local ring over R in which all non-multiples of u are invertible. Since no gen-
erators of G are known, G is in fact returned as a full SC group; only its attribute Correspondence(G),
which is a homomorphism from GLd+1(Ru) to G, is relevant.

The affine group can also be described as a subgroup of GLd+1(Ru), consisting of those matrices
M with Mi,d+1 = 0 and Md+1,d+1 = 1. The finite-index subgroup is defined by the conditions u|Mi, j

for all j < i.

Functionally recursive groups 102

The only valid arguments are R=Integers and R=PolynomialRing(S) for a finite ring S. The
alphabet of the affine group is R/RuR; an explicit transversal of RuR be specified as last argument.

The following examples construct the "Baumslag-Solitar group" Z[1
2]o2 Z first introduced in

[BS62], the "lamplighter group" (Z/2) oZ, and a 2-dimensional affine group. Note that the lamplighter
group may also be defined via CayleyGroup (9.1.31).

Example
gap> A := FRAffineGroup(1,Integers,3);
<self-similar group over [1 .. 3]>
gap> f := Correspondence(A);
MappingByFunction((Integers^
[2, 2]), <self-similar group over [1 .. 3]>, function(mat) ... end)
gap> BaumslagSolitar := Group([[2,0],[0,1]]^f,[[1,0],[1,1]]^f);
<self-similar group over [1 .. 3] with 2 generators>
gap> BaumslagSolitar.2^BaumslagSolitar.1=BaumslagSolitar.2^2;
true
gap> R := PolynomialRing(GF(2));;
gap> A := FRAffineGroup(1,R,R.1);;
gap> f := Correspondence(A);;
gap> Lamplighter := Group(([[1+R.1,0],[0,1]]*One(R))^f,([[1,0],[1,1]]*One(R))^f);
<self-similar group over [1 .. 2] with 2 generators>
gap> Lamplighter = CayleyGroup(Group((1,2)));
true
gap> StructureDescription(Group(Lamplighter.2,Lamplighter.2^Lamplighter.1));
"C2 x C2"
gap> ForAll([1..10],i->IsOne(Comm(Lamplighter.2,Lamplighter.2^(Lamplighter.1^i))));
true
gap> A := FRAffineGroup(2,Integers,2);;
gap> f := Correspondence(A);;
gap> a := [[1,4,0],[2,3,0],[1,0,1]];
[[1, 4, 0], [2, 3, 0], [1, 0, 1]]
gap> b := [[1,2,0],[4,3,0],[0,1,1]];
[[1, 2, 0], [4, 3, 0], [0, 1, 1]]
gap> Display(b^f);

| 1 2
----+------+------+

a | b,1 c,2
b | d,2 e,1
c | a,2 f,1

...
bh | cb,1 be,2
ca | bd,1 bf,2
cb | ae,2 bh,1

----+------+------+
Initial state: a
gap> a^f*b^f=(a*b)^f;
true

9.1.31 CayleyGroup

. CayleyGroup(G) (function)

. CayleyMachine(G) (function)

Functionally recursive groups 103

. LamplighterGroup(IsFRGroup, G) (method)

Returns: The Cayley machine/group of the group G .
The Cayley machine of a group G is a machine with alphabet and stateset equal to G , and with

output and transition functions given by multiplication in the group, in the order state*letter.
The second function constructs a new FR group CG, which acts on [1..Size(G)]. Its generators

are in bijection with the elements of G , and have as output the corresponding permutation of G induced
by right multiplication, and as transitions all elements of G ; see CayleyMachine. This construction
was introduced in [SS05].

If G is an abelian group, then CG is the wreath product G oZ; it is created by the constructor
LamplighterGroup(IsFRGroup,G).

The attribute Correspondence(CG) is a list. Its first entry is a homomorphism from G into CG. Its
second entry is the generator of CG that has trivial output. CG is generated Correspondence(CG)[2]
and the image of Correspondence(CG)[1].

In the example below, recall the definition of Lamplighter in the example of FRAffineGroup
(9.1.30).

Example
gap> L := CayleyGroup(Group((1,2)));
CayleyGroup(Group([(1,2)]))
gap> L=LamplighterGroup(IsFRGroup,CyclicGroup(2));
true
gap> (1,2)^Correspondence(L)[1];
<Mealy element on alphabet [1, 2] with 2 states, initial state 1>
gap> IsFinitaryFRElement(last); Display(last2);
true

| 1 2
---+-----+-----+
a | b,2 b,1
b | b,1 b,2

---+-----+-----+
Initial state: a

9.2 Examples of semigroups

9.2.1 I2Machine

. I2Machine (global variable)

. I2Monoid (global variable)

The Mealy machine I2, and the monoid that it generates. This is the smallest Mealy machine
generating a monoid of intermediate word growth; see [BRS06].

For sample calculations in this monoid see SCSemigroup (7.1.3).

9.2.2 I4Machine

. I4Machine (global variable)

. I4Monoid (global variable)

Functionally recursive groups 104

The Mealy machine generating I4, and the monoid that it generates. This is a very small Mealy
machine generating a monoid of intermediate word growth; see [BR08].

For sample calculations in this monoid see SCMonoid (7.1.3).

9.3 Examples of algebras

9.3.1 PSZAlgebra

. PSZAlgebra(k[, m]) (function)

This function creates an associative algebra A, over the field k of positive characteristic, generated
by m derivations d0,...,d(m-1),v. If the argument m is absent, it is taken to be 2.

This algebra has polynomial growth, and is not nilpotent. Petrogradsky showed in [Pet06] that
the Lie subalgebra of PSZAlgebra(GF(2)) generated by v, [u,v] is nil; this result was generalized by
Shestakov and Zelmanov in [SZ08] to arbitrary k and m = 2.

This ring is Zm-graded; the attribute Grading is set. It is graded nil [PSZ].
Example

gap> a := PSZAlgebra(2);
PSZAlgebra(GF(2))
gap> Nillity(a.1); Nillity(a.2);
2
4
gap> IsNilElement(LieBracket(a.1,a.2));
true
gap> DecompositionOfFRElement(LieBracket(a.1,a.2))=DiagonalMat([a.2,a.2]);
true

9.3.2 GrigorchukThinnedAlgebra

. GrigorchukThinnedAlgebra(k) (function)

This function creates the associative envelope A, over the field k , of Grigorchuk’s group
GrigorchukGroup (9.1.10).

k may be a field or an prime representing the prime field GF(k). In characteristic 2, this ring is
graded, and the attribute Grading is set.

For more information on the structure of this thinned algebra, see [Bar06].
Example

gap> R := GrigorchukThinnedAlgebra(2);
<self-similar algebra-with-one on alphabet GF(2)^2 with 4 generators, of dimension infinity>
gap> GrigorchukGroup.1^Embedding(GrigorchukGroup,R)=R.1;
true
gap> Nillity(R.2+R.1);
16
gap> x := 1+R.1+R.2+(R.1-1)*(R.4-1); # x has infinite order
<Linear element on alphabet GF(2)^2 with 5-dimensional stateset>
gap> Inverse(x);
<Linear element on alphabet GF(2)^2 with 9-dimensional stateset>
gap> Grading(R).hom_components(4);
<vector space of dimension 6 over GF(2)>

Functionally recursive groups 105

gap> Random(last);
<Linear element on alphabet GF(2)^2 with 6-dimensional stateset>
gap> Nillity(last);
4

9.3.3 GuptaSidkiThinnedAlgebra

. GuptaSidkiThinnedAlgebra(k) (function)

This function creates the associative envelope A, over the field k , of Gupta-Sidki’s group
GuptaSidkiGroup (9.1.19).

k may be a field or an prime representing the prime field GF(k).
For more information on the structure of this thinned algebra, see [Sid97].

Example
gap> R := GuptaSidkiThinnedAlgebra(3);
<self-similar algebra-with-one on alphabet GF(3)^3 with 4 generators>
gap> Order(R.1);
3
gap> R.1*R.3;
<Identity linear element on alphabet GF(3)^3>
gap> IsOne(R.2*R.4);
true
gap> x := 1+R.2*(1+R.1+R.3); # a non-invertible element
<Linear element on alphabet GF(3)^3 with 5-dimensional stateset>
gap> Inverse(x);
#I InverseOp: extending to depth 3
#I InverseOp: extending to depth 4
#I InverseOp: extending to depth 5
#I InverseOp: extending to depth 6
Error, user interrupt in

9.3.4 GrigorchukLieAlgebra

. GrigorchukLieAlgebra(k) (function)

. GuptaSidkiLieAlgebra(k) (function)

Two more examples of self-similar Lie algebras; see [Bar10].

9.3.5 SidkiFreeAlgebra

. SidkiFreeAlgebra(k) (function)

This is an example of a free 2-generated associative ring over the Z, defined by self-similar matri-
ces. It is due to S. Sidki. The argument is a field on which to construct the algebra. The recursion is
s=[[1,0],[0,2*s]] and t=[[0,2*s],[0,2*t]].

Example
gap> R := SidkiFreeAlgebra(Rationals);
<self-similar algebra-with-one on alphabet Rationals^2 with 2 generators>
gap> V := VectorSpace(Rationals,[R.1,R.2]);
<vector space over Rationals, with 2 generators>

Functionally recursive groups 106

gap> P := [V];; for i in [1..3] do Add(P,ProductSpace(P[i],V)); od;
gap> List(P,Dimension);
[2, 4, 8, 16]
gap> R := SidkiFreeAlgebra(GF(3));
<self-similar algebra-with-one on alphabet GF(3)^2 with 2 generators>
gap> V := VectorSpace(GF(3),[R.1,R.2]);;
gap> P := [V];; for i in [1..3] do Add(P,ProductSpace(P[i],V)); od;
gap> List(P,Dimension);
[2, 4, 7, 12]

9.3.6 SidkiMonomialAlgebra

. SidkiMonomialAlgebra(k) (function)

This is an example of a self-similar algebra that does not come from a semigroup; it is due to S.
Sidki. The argument is a field on which to construct the algebra. The recursion is s=[[0,0],[1,0]]
and t=[[0,t],[0,s]]. Sidki shows that this algebra, like the Grigorchuk thinned algebra in charac-
teristic 2 (see GrigorchukThinnedAlgebra (9.3.2)), admits a monomial presentation, and in partic-
ular is a graded ring.

Example
gap> R := SidkiMonomialAlgebra(Rationals);
<self-similar algebra-with-one on alphabet Rationals^2 with 2 generators>
gap> m := FreeSemigroup("s","t");;
gap> lambda := MagmaEndomorphismByImagesNC(m,[m.2,m.1*m.2]);;
gap> u := [m.1^2];; for i in [1..3] do u[2*i] := m.2*u[2*i-1]^lambda; u[2*i+1] := u[2*i]^lambda; od;
gap> u; # first relations
[s^2, t^3, s*t*s*t*s*t, t^2*s*t^2*s*t^2*s*t,

s*t*s*t^2*s*t*s*t^2*s*t*s*t^2*s*t,
t^2*s*t^2*s*t*s*t^2*s*t^2*s*t*s*t^2*s*t^2*s*t*s*t^2*s*t,
s*t*s*t^2*s*t*s*t^2*s*t^2*s*t*s*t^2*s*t*s*t^2*s*t^2*s*t*s*t^2*s*t*s*t^2*s*t^2*s*t*s*t^2*s*t]

gap> pi := MagmaHomomorphismByImagesNC(m,R,[R.1,R.2]);;
gap> Image(pi,u);
[<Zero linear element on alphabet Rationals^2>]
gap> # growth given by fibonacci numbers
gap> List([0..6],Grading(R).hom_components);
[<vector space over Rationals, with 1 generators>, <vector space over Rationals, with 2 generators>,

<vector space of dimension 3 over Rationals>, <vector space of dimension 4 over Rationals>,
<vector space of dimension 5 over Rationals>, <vector space of dimension 7 over Rationals>,
<vector space of dimension 8 over Rationals>]

9.4 Bacher’s determinant identities

In his paper [Bac08], Roland Bacher exhibits striking formulas for determinants of matrices obtained
from binomial coefficients.

The general construction is as follows: let P be an infinite matrix, and let P(n) be its upper n×n
corner. To evaluate detP(n), decompose P = LDR where L,D,R are respectively lower triangular,
diagonal, and upper triangular, with 1’s on the diagonals of L and R. Then that determinant is the
product of the first n entries of D.

Functionally recursive groups 107

Bacher considers some natural examples of matrices arising from binomial coefficients, and notes
that the matrix P is the limit of a convergent vector element (see IsConvergent (6.1.9)). He also
notes that the decomposition P = LDR may be achieved within vector elements.

As a first example, consider the n× n matrix P(n) with coefficients Ps,t =
(s+t

s

)
(mod 2). Here

and below, indices start at 0. Let also ds(n) denote the digit-sum of the integer n. Then

det(P(n)) =
{
(−1)n/2 if n is even,
(−1)(n−1)/2+ds((n−1)/2) if n is odd.

For the proof, note that P is a convergent infinite matrix; it may be presented as a self-similar linear
element by FRAlgebra("P=[[P,P],[P,0]]"). It then suffices to construct an LR decomposition of
P within FR vector elements, following Bacher:

Example
gap> AssignGeneratorVariables(FRAlgebra(Rationals,

"P=[[P,P],[P,0]]","L=[[L,0],[L,L]]","D=[[D,0],[0,-D]]"));
gap> L*D*TransposedFRElement(L)=P;
true

and to analyse the elements of the diagonal matrix D.
For a more complicated example, let v2 denote 2-valuation of a rational, and construct the n× n

matrix V (n) with coefficients Vs,t = iv2((s+t
s)). Then

det(V (n)) = det(P(n))
n−1

∏
k=1

(1− f (k)i),

where f (k) is the regular paper-folding sequence defined by f (2n) = 1 and f (2n + a) = − f (2n− a)
for 1≤ a < 2n.

This is again proved by noticing that V is a corner in a self-similar element, namely
Example

gap> AssignGeneratorVariables(FRAlgebra(GaussianRationals,
"V1=[[V1,V2],[V2,E(4)*V1]]",
"V2=[[V1,-E(4)*V1+(1+E(4))*V2],[-E(4)*V1+(1+E(4))*V2,-V1]]"));

gap> Activity(V1,3)=
List([0..7],s->List([0..7],t->E(4)^ValuationInt(Binomial(s+t,s),2)));

true

The LR decomposition of V =V 1 can be checked as follows:
Example

gap> AssignGeneratorVariables(FRAlgebra(GaussianRationals,
"L1=[[L1,0],[L3,L4]]",
"L2=[[0,-E(4)*L2],[-L1+L3,-E(4)*L2-E(4)*L4]]:0",
"L3=[[L1,L2],[-E(4)*L1+(1+E(4))*L3,L2+(1+E(4))*L4]]",
"L4=[[L1,0],[(1-E(4))*L1+E(4)*L3,L4]]",
"D1=[[D1,0],[0,D2]]",
"D2=[[D3,0],[0,2*D1-D2+2*D3]]:-1+E(4)",
"D3=[[D3,0],[0,-D2]]:-1+E(4)"));

gap> L1*D1*TransposedFRElement(L1)=V1;
true

Functionally recursive groups 108

The LR decomposition can also, in favourable situations, be discovered by FR through the command
LDUDecompositionFRElement (6.1.11). This approach will be followed below.

For the next example, consider "Beeblebrox reduction" β (4k±1) =±1,β (2k) = 0, and construct
the n×n matrix Z(n) (named after Zaphod Beeblebrox) with coefficients Zs,t = β (

(s+t
s

)
). Then

det(Z(n)) =
n−1

∏
k=1

g(k),

where g(∑ai2i) = (−1)a03#{i:ai=ai+1=1}−#{i:ai 6=ai+1=1} with all ai ∈ {0,1}.
This is again proved by noticing that Z is a corner in a self-similar element, namely

Example
gap> beta := n->Jacobi(-1,n)*(n mod 2);;
gap> Zaphod := GuessVectorElement(List([0..7],i->List([0..7],j->beta(Binomial(i+j,j)))));
<Linear element on alphabet Rationals^2 with 3-dimensional stateset>
gap> Display(Zaphod);
Rationals | 1 | 2 |

-----------+----------+----------+
1 | 1 0 0 | 0 1 0 |

| 1 0 0 | 0 1 0 |
| 1 0 0 | 0 -1 0 |

-----------+----------+----------+
2 | 0 0 1 | 0 0 0 |

| 0 0 -1 | 0 0 0 |
| 0 0 1 | 0 0 0 |

-----------+----------+----------+
Output: 1 1 1
Initial state: 1 0 0
gap> LDUDecompositionFRElement(guessZ);
[<Linear element on alphabet Rationals^2 with 4-dimensional stateset>,

<Linear element on alphabet Rationals^2 with 2-dimensional stateset>,
<Linear element on alphabet Rationals^2 with 4-dimensional stateset>]

gap> Display(last[2]);
Rationals | 1 | 2 |

-----------+---------+---------+
1 | 1 0 | 0 0 |

| 3 0 | 0 0 |
-----------+---------+---------+

2 | 0 0 | 0 1 |
| 0 0 | 0 1/3 |

-----------+---------+---------+
Output: 1 -1
Initial state: 1 0

and now the recursion read on this diagonal self-similar matrix gives immediately Bacher’s recursion
for det(Z(n)).

Bacher notes that the group generated by a = L1,b = L2/2,c = L3,d = L4 in the last example may
be of interest. A quick check produces the following relations (slightly rewritten):

Example
gap> AssignGeneratorVariables(FRAlgebra(Rationals,

"a=[[a,0],[c,d]]","b=[[-1/3*a,2*b],[1/3*c,d]]",
"c=[[a,2*b],[c,d]]","d=[[a,0],[1/3*c,d]]"));

Functionally recursive groups 109

gap> g := Group(List([a,b,c,d], x->Activity(x,3)));
<matrix group with 4 generators>
gap> FindShortGroupRelations(g,10);
[b*d^-1*c*a^-1,

c*a^-1*c*a^-1,
c*a*d^-1*a^-1*d^2*a^-1*b^-1,
c*a*d^-1*c^-1*b*d*a^-1*b^-1,
c*d*a^-2*d*a*d^-1*b^-1,
c*a^2*d^-1*a^-2*d*a*d*a^-2*b^-1,
d^2*a*d^-2*b^-1*c*a*d*a^-3,
c*d*a*d^-2*a^-1*d*a*d*a^-2*b^-1]

Consider next the "triangular Beeblebrox matrix" with entries Ls,t = β (
(s

t

)
). The recurrence is now

given by
Example

gap> A := FRAlgebra(Rationals,
"L1=[[L1,0],[L2,L3]]",
"L2=[[L1,0],[L2,-L3]]",
"L3=[[L1,0],[-L2,L3]]");

<self-similar algebra on alphabet Rationals^2 with 3 generators>

and it is striking that A is a graded algebra, with L1,L2,L3 homogeneous of degree 1, and each homo-
geneous component is 3-dimensional; all of L1,L2,L3 are invertible (with inverses have degree −1),
and generate a group that admits a faithful 3× 3 linear representation. As a final example, Bacher
considers the "Jacobi character" χ(8Z±1) = 1,χ(8Z±3) =−1,χ(2Z) = 0, and the associated ma-
trix Js,t = χ(

(s+t
s

)
). He gives an easily-computed, but complicated formula for det(J(n)). We can

recover this formula, as before, by "guessing" an LR decomposition for J, which is self-similar and
convergent:

Example
gap> chi := function(x)

if x mod 8 in [1,7] then return 1;
elif x mod 8 in [3,5] then return -1;
else return 0; fi;

end;;
gap> m := List([0..63],i->List([0..63],j->chi(Binomial(i+j,j))));;
gap> J := GuessVectorElement(m,2);
<Linear element on alphabet Rationals^2 with 9-dimensional stateset>
gap> LDUDecompositionFRElement(J);
[<Linear element on alphabet Rationals^2 with 20-dimensional stateset>,

<Linear element on alphabet Rationals^2 with 4-dimensional stateset>,
<Linear element on alphabet Rationals^2 with 20-dimensional stateset>]

gap> time;
26869
gap> Display(last2[2]);
Rationals | 1 | 2 |

-----------+-----------------+-----------------+
1 | 1 0 0 0 | 0 0 0 0 |

0 0 1 0	0 0 0 0
3 0 0 0	0 0 0 0
0 0 3 0	0 0 0 0

-----------+-----------------+-----------------+

Functionally recursive groups 110

2 | 0 0 0 0 | 0 1 0 0 |
0 0 0 0	0 0 0 1
0 0 0 0	0 1/3 0 0
0 0 0 0	0 0 0 1/3

-----------+-----------------+-----------------+
Output: 1 -1 3 -1/3
Initial state: 1 0 0 0

9.5 VH groups

FR understands a special kind of finitely presented groups, called VH groups. These are groups with
two distinguished sets of generators, V and H, and such that for every choice of v ∈V,h ∈H there are
unique v′ ∈ V,h′ ∈ H such that vh = h′v′ and conversely. In other words, these are finitely presented
groups whose Cayley complex is a product of two trees.

These groups are of particular interest thanks to the work of Burger and Mozes, see [BM00a] and
[BM00b], who constructed the first examples of finitely presented simple groups in this manner.

VH groups are connected to groups generated by automata as follows. Given a VH group, consider
the automaton with stateset V , acting on alphabet H; its output and transition are determined by
Φ(v,h) = (h′,v′) where v′,h′ are determined by the equation vh = h′v′.

Conversely, any bireversible automaton gives rise to a VH group by the inverse construction.
FR contains commands that automatize the verification that a VH group is non-residually finite,

or virtually simple. Inspiration came from Diego Rattaggi’s PhD thesis [Rat04].

9.5.1 VHStructure

. VHStructure(g) (operation)

. IsVHGroup(g) (filter)

Returns: A VH-structure for the group g .
A VH-structure on a group g is a partition of the generators in two sets V,H such that every relator

of g is of the form vhv′h′, and such that for all v ∈V,h ∈ H there exist unique v′ ∈V,h′ ∈ H such that
vhv′h′ = 1.

The VH structure is stored as a record with fields v,h containing lists of generators, and integer
matrices transitions,output such that transitions[v][h’]=v’ and output[v][h’]=h.

The filter recognizes groups with a VH structure.

9.5.2 VerticalAction

. VerticalAction(g) (attribute)

. HorizontalAction(g) (attribute)

Returns: A homomorphism to an FR group.
A group with VH structure admits a vertical action of its subgroup 〈V 〉; this is the group generated

by the automaton MealyMachine(trans,out). The function returns the group homomorphism from
the subgroup 〈V 〉 to that FR group.

The horizontal action is that of the dual automaton (see DualMachine (5.2.3)).
Example

gap> v := VerticalAction(RattaggiGroup.2_21);
[a1, a2, a3] -> [<Mealy element on alphabet [1 .. 8] with 6 states>,

Functionally recursive groups 111

<Mealy element on alphabet [1 .. 8] with 6 states>,
<Mealy element on alphabet [1 .. 8] with 6 states>]

gap> RattaggiGroup.2_21.1^v;
<Mealy element on alphabet [1 .. 8] with 6 states>
gap> Range(v);
<state-closed group over [1, 2, 3, 4, 5, 6, 7, 8] with 3 generators>
gap> PermGroup(last,1);
Group([(3,4)(5,6), (1,7,8,2)(3,4,6,5), (1,7,5,3)(2,8,6,4)])
gap> DisplayCompositionSeries(last);
G (3 gens, size 1344)
| A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,7) = U(2,7) ~ A(2,2) = L(3,2)

S (3 gens, size 8)
| Z(2)

S (2 gens, size 4)
| Z(2)

S (1 gens, size 2)
| Z(2)

1 (0 gens, size 1)

9.5.3 VHGroup

. VHGroup(l1, l2, ...) (function)

Returns: A new VH group.
This function constructs the VH group specified by the squares l1, l2, Each li is a list

of length 4, of the form [v,h,v’,h’]. Here the entries are indices of vertical, respectively horizontal
generators, if positive; and their inverses if negative.

Example
gap> # the Baby-Aleshin group
gap> g := VHGroup([[1,1,-2,-1],[1,2,-3,-2],[2,1,-3,-1],

[2,2,-2,-2],[3,1,-1,-2],[3,2,-1,-1]]);
<VH group on the generators [a1, a2, a3 | b1, b2]>
gap> Display(g);
generators = [a1, a2, a3, b1, b2] ## relators = [
a1*b1*a2^-1*b1^-1,
a1*b2*a3^-1*b2^-1,
a2*b1*a3^-1*b1^-1,
a2*b2*a2^-1*b2^-1,
a3*b1*a1^-1*b2^-1,
a3*b2*a1^-1*b1^-1]

9.5.4 IsIrreducibleVHGroup

. IsIrreducibleVHGroup(g) (property)

Returns: Whether g is an irreducible lattice.
A VH group is irreducible if its projections on both trees is dense.

Example
gap> Display(RattaggiGroup.2_21);
generators = [a1, a2, a3, b1, b2, b3, b4]
relators = [
a1*b1*a1^-1*b1^-1,
a1*b2*a1^-1*b2^-1,

Functionally recursive groups 112

a1*b3*a1^-1*b4^-1,
a1*b4*a2^-1*b3^-1,
a1*b4^-1*a2^-1*b3,
a2*b1*a2^-1*b2^-1,
a2*b2*a3^-1*b1,
a2*b3*a2^-1*b4,
a2*b2^-1*a3*b1^-1,
a3*b1*a3*b3^-1,
a3*b2*a3*b4^-1,
a3*b3*a3*b4]

gap> IsIrreducibleVHGroup(RattaggiGroup.2_21);
true

9.5.5 MaximalSimpleSubgroup

. MaximalSimpleSubgroup(g) (attribute)

Returns: A maximal simple subgroup of g , if possible.
A VH group is never simple, but in favourable cases it admits a finite-index simple subgroup, see

[BM97]. This function attempts to construct such a subgroup. It returns fail if no such subgroup can
be found.

The current implementation is not smart enough to work with the Rattaggi examples (see
IsVirtuallySimpleGroup (7.3.4)).

Chapter 10

FR implementation details

FR creates new categories for the various objects considered in the package. The first category is
FRObject; all objects are in this category, and have an Alphabet method.

There are two categories below: FRMachine and FRElement. An FRMachine must have a
StateSet, and methods for Output and a Transition. An FRElement must have an underlying
FRMachine and InitialState, and Output and a Transition that use the initial state.

A self-similar group is simply a collections category of FR elements which is also a group.

10.1 The family of FR objects

All FR objects have an associated AlphabetOfFRObject (10.1.3).

10.1.1 FRMFamily

. FRMFamily(obj) (operation)

Returns: the family of FR machines on alphabet obj .
The family of an FR object is the arity of the tree on which elements cat act; in other words, there

is one family for each alphabet.

10.1.2 FREFamily

. FREFamily(obj) (operation)

Returns: the family of FR elements on alphabet obj .
The family of an FR object is the arity of the tree on which elements cat act; in other words, there

is one family for each alphabet.
The argument may be an FR machine, an alphabet, or a family of FR machines.

10.1.3 AlphabetOfFRObject

. AlphabetOfFRObject(obj) (operation)

. AlphabetOfFRAlgebra(obj) (operation)

. AlphabetOfFRSemigroup(obj) (operation)

. Alphabet(obj) (operation)

Returns: the alphabet associated with obj .

113

Functionally recursive groups 114

This command applies to the family of any FR object, or to the object themselves. Alphabets are
returned as lists, and in pratice are generally of the form [1..n].

10.1.4 AsPermutation (FR object)

. AsPermutation(o) (method)

This method takes as argument an FR object o : machine, element, or group, and produces an
equivalent object whose outputs are permutations. In particular, it converts Mealy machines from
domain representation to int representation.

If this is not possible, the method returns fail.

10.1.5 AsTransformation (FR object)

. AsTransformation(o) (method)

This method takes as argument an FR object o : machine, element, or group, and produces an
equivalent object whose outputs are transformations. In particular, it converts Mealy machines from
domain representation to int representation.

Since transformations can never be inverted by GAP, even when they are invertible, this function
returns a monoid when applied to a full SC group.

10.2 Filters for FRObjects

10.2.1 IsGroupFRMachine

. IsGroupFRMachine(obj) (property)

. IsMonoidFRMachine(obj) (property)

. IsSemigroupFRMachine(obj) (property)

Returns: true if obj is an FR machine whose stateset is a free group/monoid/semigroup.
This function is the acceptor for those functionally recursive machines whose stateset (accessible

via StateSet (3.4.1)) is a free group, monoid or semigroup. The generating set of its stateset is
accessible via GeneratorsOfFRMachine (3.4.2).

10.2.2 IsFRMachineStrRep

. IsFRMachineStrRep(obj) (filter)

Returns: true if obj is a standard (group,monoid,semigroup) FR machine.
There is a free object free, of rank N, a list transitions of length N, each entry a list, indexed

by the alphabet, of elements of free, and a list output of length N of transformations or permutations
of the alphabet.

10.2.3 IsMealyMachine

. IsMealyMachine(obj) (filter)

Returns: true if obj is a Mealy machine.
This function is the acceptor for the Mealy machine subcategory of FR machines.

Functionally recursive groups 115

10.2.4 IsMealyElement

. IsMealyElement(obj) (filter)

Returns: true if obj is a Mealy element.
This function is the acceptor for the Mealy element subcategory of FR elements.

10.2.5 IsMealyMachineIntRep

. IsMealyMachineIntRep(obj) (filter)

Returns: true if obj is a Mealy machine in integer representation.
A Mealy machine in integer representation has components nrstates, transitions, output

and optionally initial.
Its stateset is [1..nrstates], its transitions is a matrix with transitions[s][x] the transition

from state s with input x, its output is a list of transformations or permutations, and its initial state is
an integer.

10.2.6 IsMealyMachineDomainRep

. IsMealyMachineDomainRep(obj) (filter)

Returns: true if obj is a Mealy machine in domain representation.
A Mealy machine in domain representation has components states, transitions, output and

optionally initial.
Its states is a domain, its transitions is a function with transitions(s,x) the transition from

state s with input x, its output is a function with output(s,x) the output from input x in state s, and
its initial state is an elemnent of states.

10.2.7 IsVectorFRMachineRep

. IsVectorFRMachineRep(obj) (filter)

Returns: true if obj is a vector machine
A vector machine is a representation of a linear machine by a finite-dimensional vector space

(implicit in the structure), a transition tensor (represented as a matrix of matrices), and an output
vector (represented as a list).

10.2.8 IsAlgebraFRMachineRep

. IsAlgebraFRMachineRep(obj) (filter)

Returns: true if obj is an algebra machine
An algebra machine is a representation of a linear machine by a finitely generated free algebra,

a tensor of transitions, indexed by generator index and two alphabet indices, and an output vector,
indexed by a generator index.

The transition tensor’s last two entries are the 0 and 1 matrix over the free algebra, and the output
tensor’s last two entries are the 0 and 1 elements of the left acting domain.

10.2.9 IsLinearFRMachine

. IsLinearFRMachine(obj) (filter)

Returns: true if obj is a linear machine.
This function is the acceptor for the linear machine subcategory of FR machines.

Functionally recursive groups 116

10.2.10 IsLinearFRElement

. IsLinearFRElement(obj) (filter)

Returns: true if obj is a linear element.
This function is the acceptor for the linear element subcategory of FR elements.

10.2.11 IsFRElement

. IsFRElement(obj) (filter)

. IsSemigroupFRElement(obj) (filter)

. IsMonoidFRElement(obj) (filter)

. IsGroupFRElement(obj) (filter)

Returns: true if obj is an FR element.
This filter is the acceptor for the functionally recursive element category.
It implies that obj has an underlying FR machine, may act on sequences, and has a recursive

DecompositionOfFRElement (4.2.6).
The next filters specify the type of free object the stateset of obj is modelled on.

10.2.12 IsFRMealyElement

. IsFRMealyElement(obj) (filter)

. IsSemigroupFRMealyElement(obj) (filter)

. IsMonoidFRMealyElement(obj) (filter)

. IsGroupFRMealyElement(obj) (filter)

. UnderlyingMealyElement(obj) (attribute)

Returns: true if obj is an FR element.
This filter is the acceptor for the functionally recursive element category, with an additional Mealy

element stored as attribute for faster calculations. It defines a subcategory of IsFRElement (10.2.11).
This additional Mealy element may be obtained as UnderlyingMealyElement(obj).

The next filters specify the type of free object the stateset of obj is modelled on.

10.2.13 IsFRObject

. IsFRObject(obj) (filter)

Returns: true if obj is an FR machine or element.
This function is the acceptor for the most general FR category (which splits up as IsFRMachine

(10.2.14) and IsFRElement (10.2.11)).
It implies that obj has an attribute AlphabetOfFRObject (10.1.3).

10.2.14 IsFRMachine

. IsFRMachine(obj) (filter)

Returns: true if obj is an FR machine.
This function is the acceptor for the functionally recursive machine category. It splits up as

IsGroupFRMachine (10.2.1), IsSemigroupFRMachine (10.2.1), IsMonoidFRMachine (10.2.1) and
IsMealyMachine (10.2.3)).

It implies that obj has attributes StateSet (3.4.1), GeneratorsOfFRMachine (3.4.2), and
WreathRecursion (3.4.6); the last two are usually not used for Mealy machines.

Functionally recursive groups 117

10.2.15 IsInvertible

. IsInvertible(m) (property)

Returns: true if m is an invertible FR machine.
This function accepts invertible FR machines, i.e. machines m such that (m,q) is an invertible

transformation of the alphabet for all q in the stateset of m .
Example

gap> m := FRMachine([[[],[]]],[(1,2)]);
<FR machine with alphabet [1, 2] on Group([f1])>
gap> IsInvertible(m);
true
gap> m := FRMachine([[[],[]]],[[1,1]]);
<FR machine with alphabet [1, 2] on Monoid([m1], ...)>
gap> IsInvertible(m);
false

10.2.16 IsFRGroup

. IsFRGroup(obj) (filter)

. IsFRMonoid(obj) (filter)

. IsFRSemigroup(obj) (filter)

Returns: true if obj is a FR group/monoid/semigroup.
These functions accept self-similar groups/monoids/semigroups, i.e. groups/monoids/semigroups

whose elements are FR elements.

10.2.17 IsFRAlgebra

. IsFRAlgebra(obj) (filter)

. IsFRAlgebraWithOne(obj) (filter)

Returns: true if obj is a FR algebra [with one].
These functions accept self-similar algebras [with one], i.e. algebras whose elements are linear

FR elements.

10.3 Some of the algorithms implemented

Few calculations with infinite groups can be guaranteed to terminate — and especially to terminate
within reasonable time. This section describes some of the algorithms implemented in FR.

10.3.1 FRMachineRWS

. FRMachineRWS(m) (attribute)

Returns: A record containing a rewriting system for m .
Elements of an FR machine are compared using a rewriting system, which records all known

relations among states of the machine.
One may specify via an optional argument :fr_maxlen:=n, the maximal length of rules to be

added. By default, this maximum length is 5.

Functionally recursive groups 118

Example
gap> n := FRMachine(["a","b"],[[[],[2]],[[],[1]]],[(1,2),()]);
<FR machine with alphabet [1, 2] on Group([a, b])>
gap> FRMachineRWS(n);
rec(rws := Knuth Bendix Rewriting System for Monoid([a^-1, a, b^-1, b

], ...) with rules
[[a^-1*a, <identity ...>], [a*a^-1, <identity ...>],

[b^-1*b, <identity ...>], [b*b^-1, <identity ...>]],
tzrules := [[[1, 2], []], [[2, 1], []], [[3, 4], []],

[[4, 3], []]], letterrep := function(w) ... end,
pi := function(w) ... end, reduce := function(w) ... end,
addgprule := function(w) ... end, commit := function() ... end,
restart := function() ... end)

10.3.2 Order of FR elements

The order of an FR element e is computed as follows: the tree is traversed recursively, filling it as
follows. For each cycle of e on the first level, the product of the states on that cycle are computed.
The method continues recursively with that product, remembering the order of the cycle. Once a state
reappears in the traversal, FR determines if one instance of the state is in the subtree of the other, and
if so whether the top one was raised to a non-trivial power to yield the second one as a state. If this
happens, then e has infinite order. Otherwise, the least common multiple of the powers that appeared
in the traversal is returned.

This method is guaranteed to succeed if e is a bounded element. To improve chances of success,
FR first computes whether e acts by vertex transformations belonging to an abelian group; and if so,
if e is conjugate to an adding machine. In that case too, e has infinite order.

10.3.3 Membership in semigroups

The following algorithm is used to determine whether a Mealy element belongs to a self-similar group.
The corresponding problem of membership of an FR element in a state-closed self-similar group can
be much simpler, because an FR element has an associated FR machine, all of whose states belong to
the group.

Assume the group is given by generators. FR attempts to express the given Mealy element as a
product of generators. At the same time, it constructs epimorphisms to finite groups. It is hoped that
one of these two processes will stop.

This amounts, in fact, to the following. Consider a group G acting on a tree. It has a natural,
profinite closure G. The algorithm then attempts either to write an element x as a product of generators
of G , or to show that x does not belong to G.

There are groups G such that G\G contains Mealy machines. For these, the above algorithm will
not terminate.

An additional refinement is implemented for bounded groups (see IsBoundedFRSemigroup
(7.2.14)). The Germs (5.2.24) of an element are computed, and compared to the germs of elements in
the group.

Finally, for a group that possesses self-similar data (see Section 10.3.9), very fast methods are
implemented to recognize and express an FR element as a product of generators.

Functionally recursive groups 119

10.3.4 The conjugacy problem

The conjugacy problem for self-similar branch groups has been implemented by Thorsten Groth, as
part of his Diploma Thesis. His code is integrated in FR.

Specialized algorithms are implemented for the Grigorchuk and Gupta-Sidki groups, and a generic
algorithm is implemented, which is however not guaranteed to succeed. The implementation follows
[BBSZ13].

The following extra attibutes are part of his implementation:

10.3.5 OrbitSignalizer

. OrbitSignalizer(g) (attribute)

Returns: The Orbit Signalizer of the group element g
This attribute computes the orbit signalizer of an element. This is the set OS(g) := {g|Orbg(v)|@v |

v ∈ X∗} where X is the alphabet of the element g and Orbg(v) is the orbit of v under 〈g〉.
Example

gap> a := MealyElement([[2,2],[2,2]],[(1,2),()],1);
<Mealy element on alphabet [1 .. 2] with 2 states>
gap> OrbitSignalizer(a);
[<Mealy element on alphabet [1 .. 2] with 2 states>, <Trivial Mealy element on alphabet [1 .. 2]>]

DeclareAttribute("OrbitSignalizer", IsFRElement);

10.3.6 FRConjugacyAlgorithm

. FRConjugacyAlgorithm(G) (attribute)

Returns: A function which solves the conjugacy problem for G
This attribute stores a function in three arguments which computes a representative conjugator if

exists or fail otherwise.
This attribute is not meant to have a standard setter but to be set if a specialized conjugacy algo-

rithm for a certain group is discovered.
Example

gap> f := FRConjugacyAlgorithm(GrigorchukGroup);
function(G, g, h) ... end
gap> AssignGeneratorVariables(GrigorchukGroup);
#I Assigned the global variables ["a", "b", "c", "d"]
gap> f(GrigorchukGroup,a,a^b);
<Mealy element on alphabet [1 .. 2] with 5 states>

DeclareAttribute("FRConjugacyAlgorithm", IsFRGroup,2);

10.3.7 FRBranchGroupConjugacyData

. FRBranchGroupConjugacyData(G) (attribute)

Returns: The initial data for the branch algorithm for G
This attribute records the data for the branch algorithm. The record has the following components:

initial_conj_dic:
Dictionary of already known conjugacy pairs with corresponding conjugator tuples. This has to
cover at least the TorsionNucleus of G

Functionally recursive groups 120

Branchstructure
Usally calculated by the function BranchStructure

RepSystem
List of representatives of G/K where K is the branching subgroup of G

DeclareAttribute("FRBranchGroupConjugacyData", IsFRGroup,"mutable");

10.3.8 Order of groups

The order of an FR group is computed as follows: if all generators are finitary, then enumeration will
succeed in computing the order. If the action of the group is primitive, and it comes from a bireversible
automaton, then the Thompson-Wielandt theorem is tested against. This theorem states that, in our
context (a group acting on a rooted tree, coming from a larger group acting transitively), if the group
is finite then the stabilizer of a sphere of radius 2 is a p-group; see [BM00a, Proposition 2.1.1]. Then,
FR attempts to find whether the group is level-transitive (in which case it would be infinite). Finally,
it attempts to enumerate the group’s elements, testing at the same time whether these elements have
infinite order.

Needless to say, none except the first few steps are guaranteed to succeed.

10.3.9 Images and preimages of some groups in f.p. and l.p. groups

Contracting, branched groups admit finite L-presentations (see [Bar03a]), that is, presentations by
finitely many generators, relators and endomorphisms; the (usual) relators are the images of the given
relators under iteration by all endomorphisms.

Using the package NQL, it is possible to construct infinite nilpotent quotients of self-similar
groups, and perform fast computations in them.

It is possible to construct, algorithmically, such an L-presentation from a self-similar groups;
however, this algorithm has not been implemented yet, mainly because efficiency issues would make
it usable only in very few cases.

For groups with an isomorphism to an L-presented group (constructed by IsomorphismLpGroup
(7.2.31)), a fast method expresses group elements as words in the L-presented group’s generators. It
proceeds recursively on the decomposition of the element, mapping elements that are expressible by
short words over the nucleus (usually length 1; length 3 is needed for the BrunnerSidkiVieiraGroup
(9.1.13)) to their value in the L-presented group, and using the presentation’s endomorphism to con-
struct words with appropriate decompositions.

In particular, the algorithm will stop, returning fail, if during the recursion it reaches an element
x such that x is a state of x but x does not belong to the nucleus.

10.3.10 Comparison of FR, Mealy, vector, and algebra elements

FR and Mealy elements can be compared quite efficiently, as long as they are distinct. The algorithm
runs as follows: let the two elements be x and y. Considering both in turn, FR constructs the first
entries of minimal Mealy elements expressing x and y; as soon as an output entry is distinct for x and
for y, the status of x < y is determined; and similarly for transition entries. Finally, if either of x or y
is finite-state and the entries were identical up to that step, then the element with smallest stateset is
considered smaller.

Functionally recursive groups 121

In this way, FR and Mealy elements can efficiently be compared. For Mealy elements, it suffices
to follow their internal data; while for FR elements, this amounts to constructing Mealy elements
approximating them to a sufficient precision so that they can be compared as such.

The algorithm first tries to test its arguments for equality; this test is not guaranteed to succeed.
A similar algorithm applies for linear elements. Here, one constructs vector element approxima-

tions; and compares, for ever-increasing values of i, first the output vectors of basis state i; then the
transitions from state i to state j, for all j ∈ {1, . . . , i}; then the transitions from state j to state i for all
j ∈ {1, . . . , i−1}.

10.3.11 Inverses of linear elements

It is probably difficult to compute the inverse of a vector element. The following approach is used:
to compute the inverse of x, large (scalar) matrix approximations of x are computed; they are inverted
using linear algebra; a vector element representing this inverse is guessed; and the guess is checked.
As long as that check fails, larger approximations are computed.

Needless to say, this method need not succeed; for there are vector elements that are invertible, but
whose inverse is not a vector element. A good test example appears in [Bac08]: consider the infinite
matrix with 1’s on the diagonal, and ω below the diagonal. This element admits an inverse if and only
if ω is a root of unity. The complexity of the inverse grows as the degree of ω grows. Here is an
illustation:

Example
gap> bacher := function(n)

local f;
f := CyclotomicField(n);
return VectorElement(f,One(f)*[[[[1,0],[0,0]],

[[0,0],[0,1]]],[[[0,1],[0,0]],[[1,0],[0,0]]]],[One(f),E(n)],[One(f),Zero(f)]);
end;;
gap> Inverse(bacher(3));
<Linear element on alphabet CF(3)^2 with 4-dimensional stateset>
6 gap> Inverse(bacher(5));
<Linear element on alphabet CF(5)^2 with 6-dimensional stateset>

n 1 2 3 4 5 6 7 8 9 10
dimension 2 4 4 6 3 5 5 8 5

n 11 12 13 14 15 16 17 18 19 20
dimension ? 5 ? 4 6 6 ? 7 ? 7

n 22 24 26 28 30 32 34 36 38 40
dimension ? 6 ? 6 ? 7 ? ? ? ?

Table: Dimension of states of inverse

Chapter 11

Miscellanea

11.1 Generic operations

11.1.1 TensorSum

. TensorSum(objects, ...) (function)

This function is similar in syntax to DirectProduct (Reference: DirectProduct), and delegates
to TensorSumOp; its meaning depends on context, see e.g. TensorSumOp (3.5.4).

11.1.2 TensorProduct

. TensorProduct(objects, ...) (function)

This function is similar in syntax to DirectProduct (Reference: DirectProduct), and delegates
to TensorProductOp; its meaning depends on context, see e.g. TensorProductOp (3.5.5).

11.1.3 DirectSum

. DirectSum(objects, ...) (function)

This function is similar in syntax to DirectProduct (Reference: DirectProduct), and delegates
to DirectSumOp; its meaning depends on context, see e.g. DirectSumOp (3.5.6).

11.2 Periodic lists

11.2.1 PeriodicListsFamily

. PeriodicListsFamily (family)

. IsPeriodicList (filter)

The family, respectively filter, of PeriodicList (11.2.2)s.

122

Functionally recursive groups 123

11.2.2 PeriodicList

. PeriodicList(preperiod[, period]) (operation)

. PeriodicList(list, i) (operation)

. PeriodicList(list, f) (operation)

. CompressedPeriodicList(preperiod[, period]) (operation)

. CompressedPeriodicList(list, i) (operation)

. PrePeriod(list) (operation)

. Period(list) (operation)

These functions manipulate periodic lists, i.e. lists of infinite length such that elements follow a
periodic order after some point.

The first command creates a periodic list, specified by its preperiod and period, which must both
be lists. If the period is absent, this is actually a finite list.

The second command creates a periodic list by decreeing that the entries after the end of the list
start again at position i .

The third command creates a list by applying function f to all elements of l .
The fourth and fifth command compress the newly created periodic list, see

CompressPeriodicList (11.2.3).
The sixth and seventh commands return respectively the preperiod and period of a periodic list.
Most of the methods applied for lists have an obvious equivalent for periodic lists: List

(Reference: Lists), Filtered (Reference: Filtered), First (Reference: First), ForAll
(Reference: ForAll), ForAny (Reference: ForAny), Number (Reference: Number).

Example
gap> l := PeriodicList([1],[2,3,4]);
[1, / 2, 3, 4]
gap> l[5];
2
gap> Add(l,100,3); l;
[1, 2, 100, / 3, 4, 2]
gap> Remove(l,5);
4
gap> l;
[1, 2, 100, 3, / 2, 3, 4]
gap> PrePeriod(l);
[1, 2, 100, 3]
gap> Period(l);
[2, 3, 4]

11.2.3 CompressPeriodicList

. CompressPeriodicList(l) (operation)

This function compresses a periodic list, in replacing the period by a minimal period, and short-
ening the preperiod. No value is returned, but the list l is modified. It remains equal (under =) to the
original list.

Example
gap> l := PeriodicList([1],[2,3,4,2,3,4]);
[1, / 2, 3, 4, 2, 3, 4]

Functionally recursive groups 124

gap> Add(l,4,5); l;
[1, 2, 3, 4, 4, / 2, 3, 4, 2, 3, 4]
gap> CompressPeriodicList(l);
gap> l;
[1, 2, 3, 4, / 4, 2, 3]

11.2.4 IsConfinal

. IsConfinal(l, m) (operation)

Returns: true if l and m are eventually equal.
This function tests whether two lists are confinal, i.e. whether, after removal of the same suitable

number of elements from both lists, they become equal.
Example

gap> l := PeriodicList([1],[2,3,2,3]);
[1, / 2, 3, 2, 3]
gap> m := PeriodicList([0,1],[3,2]);
[0, 1, / 3, 2]
gap> IsConfinal(l,m);
true

11.2.5 ConfinalityClass

. ConfinalityClass(l) (operation)

Returns: The strictly periodic list with same tail as l .
There exists a unique periodic list, with no preperiod, which is confinal (see IsConfinal (11.2.4))

to l . This strictly periodic list is returned by this command.
Example

gap> l := PeriodicList([1],[2,3,2,3]);
[1, / 2, 3, 2, 3]
gap> ConfinalityClass(l);
[/ 3, 2]

11.2.6 LargestCommonPrefix

. LargestCommonPrefix(c) (operation)

Returns: The longest list that is a prefix of all elements of c .
This command computes the longest (finite or periodic) list which is a prefix of all elements of c .

The argument c is a collection of finite and periodic lists.
Example

gap> LargestCommonPrefix([PeriodicList([1],[2,3,2,3]),[1,2,3,4]]);
[1, 2, 3]

11.3 Word growth

11.3.1 WordGrowth

. WordGrowth(g, rec(options...)) (function)

. WordGrowth(g: options...) (function)

Functionally recursive groups 125

. OrbitGrowth(g, point[, limit]) (function)

. Ball(g, radius) (function)

. Sphere(g, radius) (function)

Returns: The word growth of the semigroup g .
This function computes the first terms of growth series associated with the semigroup g . The argu-

ment g can actually be a group/monoid/semigroup, or a list representing that semigroup’s generating
set.

The behaviour of WordGrowth is controlled via options passed in the second argument, which is
a record. They can be combined when reasonable, and are:

limit:=n
to specify a limit radius;

sphere:=radius
to return the sphere of the specified radius, unless a radius was specified in limit, in which
case the value is ignored;

spheres:=maxradius
to return the list of spheres of radius between 0 and the specified limit;

spheresizes:=maxradius
to return the list sizes of spheres of radius between 0 and the specified limit;

ball:=radius
to return the ball of the specified radius;

balls:=maxradius
to return the list of balls of radius between 0 and the specified limit;

ballsizes:=maxradius
to return the list sizes of balls of radius between 0 and the specified limit;

indet:=z
to return the spheresizes, as a polynomial in z (or the first indeterminate if z is not a polyno-
mial;

draw:=filename
to create a rendering of the Cayley graph of g . Edges are given colours according to the cyclic
ordering "red", "blue", "green", "gray", "yellow", "cyan", "orange", "purple". If filename is a
string, the graph is appended, in dot format, to that file. Otherwise, the output is converted to
Postscript using the program neato from the graphviz package, and displayed in a separate X
window using the program display or rsvg-view. This works on UNIX systems.

It is assumed, but not checked, that graphviz and display/rsvg-view are properly installed on
the system. The option usesvg requests the use of rsvg-view; by default, display is used.

point:=p
to compute the growth of the orbit of p under g , rather than the growth of g .

track:=true
to keep track of a word in the generators that gives the element. This affects the "ball", "balls",

Functionally recursive groups 126

"sphere" and "spheres" commands, where the result returned is a 3-element list: the first entry is
the original results; the second entry is a homomorphism from a free group/monoid/semigroup;
and the third entry contains the words corresponding to the first entry via the homomorphism.

If the first argument is an integer n and not a record, the command is interpreted as
WordGrowth(...,rec(spheresizes:=n)).

WordGrowth(...,rec(draw:=true)) may be abbreviated as Draw(...);
WordGrowth(...,rec(ball:=n)) may be abbreviated as Ball(...,n);
WordGrowth(...,rec(sphere:=n)) may be abbreviated as Sphere(...,n);

Example
gap> WordGrowth(GrigorchukGroup,4);
[1, 4, 6, 12, 17]
gap> WordGrowth(GrigorchukGroup,rec(limit:=4,indet:=true));
17*x_1^4+12*x_1^3+6*x_1^2+4*x_1+1
gap> WordGrowth(GrigorchukGroup,rec(limit:=1,spheres:=true));
[[<Mealy element on alphabet [1, 2] with 1 state, initial state 1>],

[d, b, c, a]]
gap> WordGrowth(GrigorchukGroup,rec(point:=[2,2,2]));
[1, 1, 1, 1, 1, 1, 1, 1]
gap> OrbitGrowth(GrigorchukGroup,[1,1,1]);
[1, 2, 2, 1, 1, 1]
gap> WordGrowth(GrigorchukGroup,rec(spheres:=4,point:=PeriodicList([],[2])));
[[[/ 2]], [[1, / 2]], [[1, 1, / 2]], [[2, 1, / 2]],

[[2, 1, 1, / 2]]]
gap> WordGrowth([(1,2),(2,3)],rec(spheres:=infinity,track:=true));
[[[], [(2,3), (1,2)], [(), (1,2,3), (1,3,2)], [(1,3)]],

MappingByFunction(<free semigroup on the generators [s1, s2]>, <group>, function(w) ... end),
[[], [s2, s1], [s2^2, s2*s1, s1*s2], [s2*s1*s2]]]

Note that the orbit growth of [/2] is constant 1, while that of [/1] is constant 2. The following code
would find the point with maximal orbit growth of a semigroup acting on the integers (for example,
constructed with PermGroup (7.2.1)):

MaximalOrbitGrowth := function(g)
local maxpt, growth, max;
maxpt := LargestMovedPoint(g);
growth := List([1..maxpt],n->WordGrowth(g:point:=n));
max := Maximum(growth);
return [max,Filtered([1..maxpt],n->growth[n]=max)];

end;

For example, the command Draw(BasilicaGroup,rec(point:=PeriodicList([],[2,1]),limit:=3));

Functionally recursive groups 127

produces (in a new window) the following picture:

11.4 Finding short relations

11.4.1 ShortGroupRelations

. ShortGroupRelations(g, n) (operation)

. ShortMonoidRelations(g, n) (operation)

Returns: A list of relations between words over g , of length at most n .
This function assumes that g is a list of monoid elements. it searches for products of at most n

elements over g that are equal.
In its first form, it returns a list of words in a free group f of rank the length of g , that are trivial

in g . The first argument may be a group, in which case its symmetric generating set is considered.
In its second form, it returns a list of pairs [l,r], where l and r are words in a free monoid f

of rank the length of g , that are equal in g . The first argument may be a monoid, in which case its
monoid generating set is considered.

This command does not construct all such pairs; rather, it returns a small set, in the hope that it
may serve as a presentation for the monoid generated by g .

The first element of the list returned is actually not a relation: it is a homomorphism from f to [the
group/monoid generated by] g .

Example
gap> ShortGroupRelations(GrigorchukGroup,10);
[[x1, x2, x3, x4] -> [a, b, c, d],

x1^2, x2^2, x3^2, x4^2, x2*x3*x4, x4*x1*x4*x1*x4*x1*x4*x1,
x3*x1*x3*x1*x3*x1*x3*x1*x3*x1*x3*x1*x3*x1*x3*x1]

gap> ShortGroupRelations(GuptaSidkiGroup,9);
[[x1, x2] -> [x, gamma],

x1^3, x2^3, x2*x1^-1*x2*x1^-1*x2*x1^-1*x2*x1^-1*x2*x1^-1*x2*x1^-1*
x2*x1^-1*x2*x1^-1*x2*x1^-1, x1^-1*x2^-1*x1^-1*x2^-1*x1^-1*x2^-1*

x1^-1*x2^-1*x1^-1*x2^-1*x1^-1*x2^-1*x1^-1*x2^-1*x1^-1*x2^-1*x1^-1*x2^-1]

11.4.2 ShortGroupWordInSet

. ShortGroupWordInSet(g, s, n) (operation)

. ShortMonoidWordInSet(g, s, n) (operation)

. ShortSemigroupWordInSet(g, s, n) (operation)

Returns: Words over g that express elements of s .

Functionally recursive groups 128

This command produces words in the free group/monoid/semigroup generated by g ’s generators
that express elements of the set s . Elements of length at most AbsoluteValue(n) are searched; if n
is non-negative then at most one element is returned. The value n=infinity is allowed.

The second argument may be either a list, a predicate (i.e. a function returning true or false) or
an element.

The function returns a list of words in the free group/monoid/semigroup; the first entry of the list
is a homomorphism from the free group/monoid/semigroup to g .

Example
gap> l := ShortMonoidWordInSet(Group((1,2),(2,3),(3,4)),

[(1,2,3,4),(4,3,2,1)],-3);
[MappingByFunction(<free monoid on the generators [m1, m2, m3]>, Group(

[(1,2), (2,3), (3,4)]), function(w) ... end), m3*m2*m1, m1*m2*m3]
gap> f := Remove(l,1);;
gap> List(l,x->x^f);
[(1,2,3,4), (1,4,3,2)]
gap> ShortMonoidWordInSet(GrigorchukGroup,

[Comm(GrigorchukGroup.1,GrigorchukGroup.2)],4);
[MappingByFunction(<free monoid on the generators [m1, m2, m3, m4

]>, <self-similar monoid over [1 .. 2] with
4 generators>, function(w) ... end), m1*m2*m1*m2]

11.5 Braid groups

11.5.1 SurfaceBraidFpGroup

. SurfaceBraidFpGroup(n, g, p) (function)

. PureSurfaceBraidFpGroup(n, g, p) (function)

Returns: The [pure] surface braid group on n strands.
This function creates a finitely presented group, isomorphic to the [pure] braid group on n strands

of the surface of genus g , with p punctures. In particular, SurfaceBraidFpGroup(n,0,1) is the
usual braid group (on the disc).

The presentation comes from [Bel04]. The first 2g generators are the standard ai,bi surface gen-
erators; the next n−1 are the standard si braid generators; and the last are the extra z generators.

The pure surface braid group is the kernel of the natural map from the surface braid group to the
symmetric group on n points, defined by sending ai,bi,z to the identity and si to the transposition
(i,i+1).

11.5.2 CharneyBraidFpGroup

. CharneyBraidFpGroup(n) (function)

Returns: The braid group on n strands.
This function creates a finitely presented group, isomorphic to the braid group on n strands (on

the disc). It is isomorphic to SurfaceBraidFpGroup(n,0,1), but has a different presentation, due
to Charney ([Cha95]), with one generator per non-trivial permutation of n points.

11.5.3 ArtinRepresentation

. ArtinRepresentation(n) (function)

Returns: The braid group’s representation on FreeGroup(n).

Functionally recursive groups 129

This function creates a Artin’s representatin, a homomorphism from the braid group on n strands
(on the disc) into the automorphism group of a free group of rank n .

11.6 Dirichlet series

11.6.1 DirichletSeries (0)

. DirichletSeries() (operation)

. DirichletSeries(maxdeg) (operation)

. DirichletSeries(indices, coeffs[, maxdeg]) (operation)

. DirichletSeries(series, maxdeg) (operation)

Creates a new Dirichlet series, namely, a formal power series of the form f (s) = ∑n≥1 a(n)n−s.
Such series have a maximal degree, which may be infinity, and may be added or multiplied as
polynomials.

11.6.2 DegreeDirichletSeries

. DegreeDirichletSeries(f) (attribute)

Returns: The maximal degree of a non-zero coefficient of f .

11.6.3 SpreadDirichletSeries

. SpreadDirichletSeries(f, n) (attribute)

Returns: The series f (ns).

11.6.4 ShiftDirichletSeries

. ShiftDirichletSeries(s, n) (attribute)

Returns: The series n−s f (s).

11.6.5 ShrunkDirichletSeries

. ShrunkDirichletSeries(f) (attribute)

Returns: The series f , with maximal precision set to its maximal degree.

11.6.6 ZetaSeriesOfGroup

. ZetaSeriesOfGroup(G) (attribute)

Returns: The series \sum_{\chi\in\widehat G}(\dim G)^{-s} .

11.6.7 ValueOfDirichletSeries

. ValueOfDirichletSeries(f, s) (attribute)

Returns: The evaluation of f at s . Synonym for Value.

Functionally recursive groups 130

11.7 Projective representations

11.7.1 IsProjectiveRepresentation

. IsProjectiveRepresentation(rep) (property)

. IsLinearRepresentation(rep) (property)

A projective representation is a mapping to matrices, that is multiplicative up to scalars. This
property is set by the following functions that create projective representations.

The second property describes those projective representations that are in fact homomorphisms.

11.7.2 ProjectiveRepresentationByFunction

. ProjectiveRepresentationByFunction(group, matrixgroup, function) (operation)

Returns: A projective representation of group .

11.7.3 LinearRepresentationByImages

. LinearRepresentationByImages(group, matrixgroup, src, dst) (operation)

Returns: A linear representation of group .

11.7.4 DegreeOfProjectiveRepresentation

. DegreeOfProjectiveRepresentation(rep) (operation)

Returns: The dimension of the matrices in the image of rep .

11.7.5 ProjectiveExtension

. ProjectiveExtension(rep, group) (operation)

Returns: A projective representation of group whose restriction to Source(rep) (which is a
subgroup of group) is rep .

11.7.6 ProjectiveQuotient

. ProjectiveQuotient(rep, hom) (operation)

Returns: A projective representation of Image(hom) that comes from rep .

11.8 Miscellanea

11.8.1 ForwardOrbit

. ForwardOrbit(g, x) (operation)

Returns: The forward orbit of x under g .
This operation computes the smallest list containing x and closed under application of g .

Example
gap> ForwardOrbit((1,2,4,3),2);
[2, 4, 3, 1]
gap> ForwardOrbit(Transformation([4,4,5,2,1]),1);
[1, 4, 2]

Functionally recursive groups 131

11.8.2 StringByInt

. StringByInt(n[, b]) (function)

Returns: A string representing n in base b .
This function converts a positive integer to string. It accepts an optional second argument, which

is a base in which to print n . By default, b is 2.

11.8.3 PositionInTower

. PositionInTower(t, x) (function)

Returns: The largest index such that t[i] contains x .
This function assumes t is a descending tower of domains, such as that constructed by

LowerCentralSeries. It returns the largest integer i such that t[i] contains x ; in case the tower
ends precisely with x , the value infinity is returned.

x can be an element or a subdomain of t[1].

11.8.4 RenameSubobjects

. RenameSubobjects(obj, refobj) (function)

This function traverses obj if it is a list or a record, and, when it finds an element which has no
name, but is equal (in the sense of =) to an element of refobj , assigns it the name of that element.

Example
gap> trivial := Group(());; SetName(trivial,"trivial");
gap> a := List([1..10],i->Group(Random(SymmetricGroup(3))));
[Group([(2,3)]), Group([(2,3)]), Group([(1,3)]), Group([(1,3)]),

Group([(1,3,2)]), Group([(1,3,2)]), Group([(1,2)]), Group(()),
Group([(2,3)]), Group([(1,3,2)])]

gap> RenameSubobjects(a,[trivial]); a;
[Group([(2,3)]), Group([(2,3)]), Group([(1,3)]), Group([(1,3)]),

Group([(1,3,2)]), Group([(1,3,2)]), Group([(1,2)]), trivial,
Group([(2,3)]), Group([(1,3,2)])]

11.8.5 CoefficientsInAbelianExtension

. CoefficientsInAbelianExtension(x, b, G) (function)

Returns: The coefficients in b of the element x , modulo G .
If b is a list of group elements b1, . . . ,bk, and H = 〈G,b1, . . . ,bk〉 contains G as a normal subgroup,

and H/G is abelian and x ∈ H, then this function computes exponents e1, . . . ,ek such that ∏bei
i G =

xG.

11.8.6 MagmaEndomorphismByImagesNC

. MagmaEndomorphismByImagesNC(f, im) (function)

Returns: An endomorphism of f .
This function constructs an endomorphism of the group,monoid or semi-

group f specified by sending generator number i to the ith entry in
im . It is a shortcut for a call to GroupHomomorphismByImagesNC or
MagmaHomomorphismByFunctionNC(...,MappedWord(...)).

Functionally recursive groups 132

11.8.7 MagmaHomomorphismByImagesNC

. MagmaHomomorphismByImagesNC(f, g, im) (function)

Returns: An homomorphism from f to g .
This function constructs a homomorphism of the group,monoid or semi-

group f specified by sending generator number i to the ith entry in
im . It is a shortcut for a call to GroupHomomorphismByImagesNC or
MagmaHomomorphismByFunctionNC(...,MappedWord(...)).

11.8.8 Draw (poset)

. Draw(p) (function)

. HeightOfPoset(p) (function)

Returns: The length of a maximal chain in the poset.

11.8.9 IsFIFO

. IsFIFO (filter)

. NewFIFO([l]) (operation)

. Add(f, i) (operation)

. Append(f, l) (operation)

These functions create and extend FIFOs, i.e. first-in first-out data structures.
The first command creates a FIFO, with an optional list initializing it.
The second and third commands add an element, or append a list, to the FIFO.
Elements are removed via NextIterator(f), and the FIFO is tested for emptyness via

IsDoneIterator(f). Thus, a typical use is the following code, which tests in breadth-first man-
ner that all numbers in [1..1000] have a successor which is prime:

Example
gap> f := NewFIFO([1..10000]);
<iterator>
gap> for i in f do if not IsPrime(i) then Add(f,i+1); fi; od;

11.8.10 ProductIdeal

. ProductIdeal(a, b) (function)

. ProductBOIIdeal(a, b) (function)

Returns: the product of the ideals a and b .
The first command computes the product of the left ideal a and the right ideal b . If they are not

appropriately-sided ideals, the command first attempts to convert them.
The second command assumes that the ring of these ideals has a basis made of invertible elements.

It is then much easier to compute the product.

11.8.11 DimensionSeries

. DimensionSeries(a[, n]) (function)

Returns: A nested list of ideals in the algebra-with-one a .

Functionally recursive groups 133

This command computes the powers of the augmentation ideal of a , and returns their list. The list
stops when the list becomes stationary.

The optional second argument gives a limit to the number of terms to put in the series.
Example

gap> a := ThinnedAlgebraWithOne(GF(2),GrigorchukGroup);
<self-similar algebra-with-one on alphabet GF(2)^2 with 4 generators>
gap> q := MatrixQuotient(a,3);
<algebra-with-one of dimension 22 over GF(2)>
gap> l := DimensionSeries(q);
[<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (5 generators)>,

<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 21)>,
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 18)>,
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 14)>,
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 10)>,
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 6)>,
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 3)>,
<two-sided ideal in <algebra-with-one of dimension 22 over GF(2)>, (dimension 1)>,
<algebra of dimension 0 over GF(2)>]

11.8.12 AlgebraHomomorphismByFunction

. AlgebraHomomorphismByFunction(A, B, f) (operation)

. AlgebraWithOneHomomorphismByFunction(A, B, f) (operation)

Returns: A homomorphism from the algebra A to the algebra B .
These functions construct an algebra homomorphism from a one-argument function. They do not

check that the function actually defines a homomorphism.
Example

gap> A := MatrixAlgebra(Rationals,2);
(Rationals^[2, 2])
gap> e1 := AlgebraHomomorphismByFunction(Rationals,A,f->[[f,0],[0,0]]);
MappingByFunction(Rationals, (Rationals^[2, 2]), function(f) ... end)
gap> 11^e1;
[[11, 0], [0, 0]]

11.8.13 IsFpLieAlgebra

. IsFpLieAlgebra (filter)

The category of Lie algebras coming from a finitely presented group. They appear as the
JenningsLieAlgebra (Reference: JenningsLieAlgebra) of a finitely presented group.

If G is an infinite, finitely presented group, then the original implementation of
JenningsLieAlgebra (Reference: JenningsLieAlgebra) does not return. On the other hand, the
implementation in FR constructs a graded object, for which the graded components are computed
on-demand; see JenningsLieAlgebra (11.8.14).

11.8.14 JenningsLieAlgebra

. JenningsLieAlgebra(ring, fpgroup) (operation)

Returns: The Jennings Lie algebra of fpgroup .

Functionally recursive groups 134

This method does not compute the Jennings Lie algebra per se; it merely constructs a placeholder
to contain the result.

Example
gap> f := FreeGroup(4);
<free group on the generators [f1, f2, f3, f4]>
gap> surfacegp := f/[Comm(f.1,f.2)*Comm(f.3,f.4)];
<fp group of size infinity on the generators [f1, f2, f3, f4]>
gap> j := JenningsLieAlgebra(Rationals,surfgp);
<FP Lie algebra over Rationals>
gap> List([1..4],Grading(j).hom_components);
[<vector space over Rationals, with 4 generators>,

<vector space over Rationals, with 5 generators>,
<vector space over Rationals, with 16 generators>,
<vector space over Rationals, with 45 generators>]

gap> B := Basis(Grading(j).hom_components(1));
gap> B[1]*B[2]+B[3]*B[4];
<zero Lie element>

11.8.15 SolutionMatModN

. SolutionMatModN(mat, vec, N) (operation)

Solve the linear system sol*mat=vec modulo N . The arguments are assumed to be an integer
matrix and vector. Either returns an integer solution, or fail if no such solution exists.

11.8.16 SolutionMatMod1

. SolutionMatMod1(mat, vec) (operation)

Solve the linear system sol*mat=vec in Q/Z. The arguments are assumed to be rational matrices.
Assuming there are finitely many solutions, returns them all.

11.8.17 CyclotomicByArgument

. CyclotomicByArgument(q) (operation)

Returns: The cyclotomic field element equal to exp(2πiq).

11.8.18 ArgumentOfCyclotomic

. ArgumentOfCyclotomic(z) (operation)

Returns: The rational q such that exp(2πiq) = z.

11.9 User settings

11.9.1 InfoFR

. InfoFR (info class)

Functionally recursive groups 135

This is an Info class for the package FR. The command SetInfoLevel(InfoFR,1); switches
on the printing of some information during the computations of certain FR functions; in particular all
automatic conversions between FR machines and Mealy machines.

The command SetInfoLevel(InfoFR,2); requests a little more information, and in particular
prints intermediate results in potentially long calculations such as NucleusOfFRSemigroup (7.2.19).

The command SetInfoLevel(InfoFR,3); ensures that FR will print information every few
seconds or so. This is useful to gain confidence that the program is not stuck due to a programming
bug by the author of FR.

11.9.2 SEARCH@

. SEARCH@ (global variable)

This variable controls the search mechanism in FR groups. It is a record with in particular entries
radius and depth.

radius limits the search in FR groups to balls of that radius in the generating set. For example,
the command x in G will initiate a search in G to attempt to express x as a reasonably short word in
the generators of G.

depth limits the level of the tree on which quotients of FR groups should be considered. Again
for the command x in G, deeper and deeper quotients will be considered, in the hope of finding a
quotient of G to which x does not belong.

A primitive mechanism is implemented to search alternatively for a quotient disproving x in G
and a word proving x in G.

When the limits are reached and the search was unsuccessful, an interactive Error() is raised, to
let the user increase their values.

Specific limits can be passed to any command via the options FRdepth and FRradius, as for
example in Size(G:FRdepth:=3,FRradius:=5).

References

[Ale83] S. V. Aleshin. A free group of finite automata. Vestnik Moskov. Univ. Ser. I Mat. Mekh.,
(4):12–14, 1983. 7, 97, 99

[Bac08] R. Bacher. Determinants related to Dirichlet characters modulo 2, 4 and 8 of binomial co-
efficients and the algebra of recurrence matrices. Internat. J. Algebra Comput., 18(3):535–
566, 2008. 106, 121

[Bar03a] L. Bartholdi. Endomorphic presentations of branch groups. J. Algebra, 268(2):419–443,
2003. 84, 96, 120

[Bar03b] L. Bartholdi. A Wilson group of non-uniformly exponential growth. C. R. Math. Acad.
Sci. Paris, 336(7):549–554, 2003. 98

[Bar06] L. Bartholdi. Branch rings, thinned rings, tree enveloping rings. Israel J. Math., 154:93–
139, 2006. 104

[Bar10] L. Bartholdi. Self-similar lie algebras. arXiv:math/1003.1125, 2010. 105

[BBSZ13] I. V. Bondarenko, N. V. Bondarenko, S. N. Sidki, and F. R. Zapata. On the conjugacy
problem for finite-state automorphisms of regular rooted trees. Groups Geom. Dyn.,
7(2):323–355, 2013. With an appendix by Rapha{\"e}l M. Jungers. 119

[BEH08] L. Bartholdi, B. Eick, and R. Hartung. A nilpotent quotient algorithm for certain infinitely
presented groups and its applications. Internat. J. Algebra Comput., 18(8):1321–1344,
2008. 84

[Bel04] P. Bellingeri. On presentations of surface braid groups. J. Algebra, 274(2):543–563,
2004. 128

[BG02] L. Bartholdi and R. I. Grigorchuk. On parabolic subgroups and Hecke algebras of some
fractal groups. Serdica Math. J., 28(1):47–90, 2002. 96, 99

[BGN03] L. Bartholdi, R. I. Grigorchuk, and V. Nekrashevych. From fractal groups to fractal sets.
In Fractals in Graz 2001, Trends Math., pages 25–118. Birkhäuser, Basel, 2003. 6

[BGŠ03] L. Bartholdi, R. I. Grigorchuk, and Z. Šuniḱ. Branch groups. In Handbook of algebra,
Vol. 3, pages 989–1112. North-Holland, Amsterdam, 2003. 6, 94

[BKN+12] M. Begue, D. J. Kelleher, A. Nelson, H. Panzo, R. Pellico, and A. Teplyaev. Random
walks on barycentric subdivisions and the Strichartz hexacarpet. Exp. Math., 21(4):402–
417, 2012. 101

136

Functionally recursive groups 137

[BM97] M. Burger and S. Mozes. Finitely presented simple groups and products of trees. C. R.
Acad. Sci. Paris Sér. I Math., 324(7):747–752, 1997. 112

[BM00a] M. Burger and S. Mozes. Groups acting on trees: from local to global structure. Inst.
Hautes Études Sci. Publ. Math., (92):113–150 (2001), 2000. 86, 99, 110, 120

[BM00b] M. Burger and S. Mozes. Lattices in product of trees. Inst. Hautes Études Sci. Publ.
Math., (92):151–194 (2001), 2000. 86, 99, 110

[BR08] L. Bartholdi and I. I. Reznykov. A Mealy machine with polynomial growth of irrational
degree. Internat. J. Algebra Comput., 18(1):59–82, 2008. 104

[BRS06] L. Bartholdi, I. I. Reznykov, and V. I. Sushchansky. The smallest Mealy automaton of
intermediate growth. J. Algebra, 295(2):387–414, 2006. 103

[BS62] G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups. Bull.
Amer. Math. Soc., 68:199–201, 1962. 102

[BŠ01] L. Bartholdi and Z. Šuniḱ. On the word and period growth of some groups of tree auto-
morphisms. Comm. Algebra, 29(11):4923–4964, 2001. 94

[BSV99] A. M. Brunner, S. N. Sidki, and A. C. Vieira. A just nonsolvable torsion-free group
defined on the binary tree. J. Algebra, 211(1):99–114, 1999. 96

[BV05] L. Bartholdi and B. Virág. Amenability via random walks. Duke Math. J., 130(1):39–56,
2005. 7, 92

[Cha95] R. Charney. Geodesic automation and growth functions for Artin groups of finite type.
Math. Ann., 301(2):307–324, 1995. 128

[Dah05] F. Dahmani. An example of non-contracting weakly branch automaton group. In Geo-
metric methods in group theory, volume 372 of Contemp. Math., pages 219–224. Amer.
Math. Soc., Providence, RI, 2005. 100

[Ers04] A. Erschler. Boundary behavior for groups of subexponential growth. Ann. of Math. (2),
160(3):1183–1210, 2004. 95

[FG85] J. Fabrykowski and N. Gupta. On groups with sub-exponential growth functions. J. Indian
Math. Soc. (N.S.), 49(3-4):249–256 (1987), 1985. 99

[FG91] J. Fabrykowski and N. Gupta. On groups with sub-exponential growth functions. II. J.
Indian Math. Soc. (N.S.), 56(1-4):217–228, 1991. 99

[GM05] Y. Glasner and S. Mozes. Automata and square complexes. Geom. Dedicata, 111:43–64,
2005. 99

[Gri80] R. I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen., 14(1):53–54, 1980. 7, 95

[Gri84] R. I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invari-
ant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939–985, 1984. 95

Functionally recursive groups 138

[GS83] N. Gupta and S. N. Sidki. On the Burnside problem for periodic groups. Math. Z.,
182(3):385–388, 1983. 7, 98

[GŠ06] R. I. Grigorchuk and Z. Šuniḱ. Asymptotic aspects of Schreier graphs and Hanoi Towers
groups. C. R. Math. Acad. Sci. Paris, 342(8):545–550, 2006. 100

[GŻ02] R. I. Grigorchuk and A. Żuk. On a torsion-free weakly branch group defined by a three
state automaton. Internat. J. Algebra Comput., 12(1-2):223–246, 2002. International
Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup
Theory (Lincoln, NE, 2000). 7, 92

[Lys85] I. G. Lysënok. A set of defining relations for the Grigorchuk group. Mat. Zametki,
38(4):503–516, 634, 1985. 95

[Mam03] M. J. Mamaghani. A fractal non-contracting class of automata groups. Bull. Iranian
Math. Soc., 29(2):51–64, 92, 2003. 101

[MNS00] O. Macedońska, V. V. Nekrashevych, and V. I. Sushchansky. Commensurators of groups
and reversible automata. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki,
(12):36–39, 2000. 42, 43

[Nek05] V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 2005. 22, 97

[Nek08a] V. Nekrashevych. Combinatorial models of expanding dynamical systems.
arXiv:math.GR/0810.4936, 2008. 80

[Nek08b] V. Nekrashevych. The julia set of a post-critically finite endomorphism of pc^2.
arXiv:math.GR/0811.2777, 2008. 92

[Neu86] P. M. Neumann. Some questions of Edjvet and Pride about infinite groups. Illinois J.
Math., 30(2):301–316, 1986. 98

[Pet06] V. M. Petrogradsky. Examples of self-iterating Lie algebras. J. Algebra, 302(2):881–886,
2006. 104

[PSZ] V. Petrogradsky, I. Shestakov, and E. Zelmanov. Nil graded self-similar algebras. Sub-
mitted. 104

[Rat04] D. Rattaggi. Computations in Groups Acting on a Product of Trees: Normal Subgroup
Structures and Quaternion Lattices. PhD thesis, Eidgenössische Technische Hochschule
Zürich, 2004. 99, 110

[Sid97] S. N. Sidki. A primitive ring associated to a Burnside 3-group. J. London Math. Soc. (2),
55(1):55–64, 1997. 105

[Sid00] S. N. Sidki. Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity.
J. Math. Sci. (New York), 100(1):1925–1943, 2000. Algebra, 12. 44

[Sid05] S. N. Sidki. Tree-wreathing applied to generation of groups by finite automata. Internat.
J. Algebra Comput., 15(5-6):1205–1212, 2005. 21, 70

Functionally recursive groups 139

[SS05] P. V. Silva and B. Steinberg. On a class of automata groups generalizing lamplighter
groups. Internat. J. Algebra Comput., 15(5-6):1213–1234, 2005. 103

[Šun07] Z. Šunić. Hausdorff dimension in a family of self-similar groups. Geom. Dedicata,
124:213–236, 2007. 94

[SVV06] B. Steinberg, M. Vorobets, and Y. Vorobets. Automata over a binary alphabet generating
free groups of even rank. arXiv:math.GR/0610033, 2006. 97

[SW03] S. N. Sidki and J. S. Wilson. Free subgroups of branch groups. Arch. Math. (Basel),
80(5):458–463, 2003. 71

[SZ08] I. P. Shestakov and E. Zelmanov. Some examples of nil Lie algebras. J. Eur. Math. Soc.
(JEMS), 10(2):391–398, 2008. 104

[vN29] J. von Neumann. Zur allgemeinen Theorie des Masses. Fund. Math., 13:73–116 and 333,
1929. (= Collected works, vol. I, pages 599–643). 85

[VV06] M. Vorobets and Y. Vorobets. On a series of finite automata defining free transformation
groups. arXiv:math.GR/0604328, 2006. 97

[VV07] M. Vorobets and Y. Vorobets. On a free group of transformations defined by an automaton.
Geom. Dedicata, 124:237–249, 2007. 97

Index

*, 19
PROD, 35

\+, 19
\[\]

ELMLIST, 36
\^

POW, 35
\{\}

ELMSLIST, 36

Activities, 57
Activity, 30
ActivityInt, 30
ActivityPerm, 30
ActivitySparse, 56
ActivityTransformation, 30
Add

FIFO, 132
AddingElement, 93
AddingGroup, 93
AddingMachine, 93
AdjacencyBasesWithOne, 79
AdjacencyPoset, 79
AleshinGroup, 97
AleshinGroups, 97
AleshinMachine, 97
AleshinMachines, 97
AlgebraElement, 55
AlgebraElementNC, 55
AlgebraHomomorphismByFunction, 133
AlgebraMachine, 55
AlgebraMachineNC, 55
AlgebraWithOneHomomorphismByFunction,

133
AllMealyMachines, 40
Alphabet, 113
AlphabetInvolution, 43
AlphabetOfFRAlgebra, 113
AlphabetOfFRObject, 113

AlphabetOfFRSemigroup, 113
Append

FIFO, 132
ArgumentOfCyclotomic, 134
ArtinRepresentation, 128
AsAlgebraElement, 61

Linear machine, 61
AsAlgebraMachine, 61

Linear machine, 61
AsGroupFRElement, 28
AsGroupFRMachine, 14

endomorphism, 16
AsIntMealyElement, 49
AsIntMealyMachine, 49
AsLinearElement, 59
AsLinearMachine, 59
AsLpGroup, 84
AsMealyElement, 48
AsMealyMachine

FR machine, 47
List, 48

AsMonoidFRElement, 28
AsMonoidFRMachine, 14

endomorphism, 16
AsPermutation

FR object, 114
AsSemigroupFRElement, 28
AsSemigroupFRMachine, 14

endomorphism, 16
AssociativeObject, 54
AsSubgroupFpGroup, 84
AsTransformation

FR object, 114
AsVectorElement, 60

Linear machine, 61
AsVectorMachine, 60

Linear machine, 61

BabyAleshinGroup, 97

140

Functionally recursive groups 141

BabyAleshinMachine, 97
Ball, 125
BasilicaGroup, 92
BinaryAddingElement, 93
BinaryAddingGroup, 93
BinaryAddingMachine, 93
BinaryKneadingGroup, 91
BinaryKneadingMachine, 91
BoundedBinaryGroup, 91
BranchingIdeal, 88
BranchingSubgroup, 80
BranchStructure, 82
BrunnerSidkiVieiraGroup, 96
BrunnerSidkiVieiraMachine, 96

CayleyGroup, 102
CayleyMachine, 102
ChangeFRMachineBasis, 22
CharneyBraidFpGroup, 128
CoefficientsInAbelianExtension, 131
ComposeElement

elementcoll,perm, 26
CompressedPeriodicList, 123

period, looping point, 123
CompressPeriodicList, 123
ConfinalityClass, 124
ConfinalityClasses, 50
Correspondence

FR machine, 23
FR semigroup, 65

CyclotomicByArgument, 134

DahmaniGroup, 100
DecompositionOfFRElement, 31
Degree

FR element, 44
FR semigroup, 77

DegreeDirichletSeries, 129
DegreeOfFRElement, 44
DegreeOfFRMachine, 44
DegreeOfFRSemigroup, 77
DegreeOfHomogeneousElement, 90
DegreeOfProjectiveRepresentation, 130
Depth

FR element, 45
FR semigroup, 77

DepthOfFRElement, 45

DepthOfFRMachine, 45
DepthOfFRSemigroup, 77
DiagonalElement, 27
DimensionSeries, 132
DirectProductOp

FR Machines, 21
DirectSum, 122
DirectSumOp

FR Machines, 20
DirichletSeries

0, 129
ic, 129
md, 129
sm, 129

Draw, 41
poset, 132

DualMachine, 42

EpimorphismFromFpGroup, 83
EpimorphismGermGroup, 73

EGG0, 73
EpimorphismMatrixQuotient, 89
EpimorphismPcGroup, 71
EpimorphismPermGroup, 71
EpimorphismTransformationMonoid, 72
EpimorphismTransformationSemigroup, 73

FabrykowskiGuptaGroup, 99
FabrykowskiGuptaGroups, 99
FindBranchingSubgroup, 81
FinitaryBinaryGroup, 91
FiniteDepthBinaryGroup, 91
FiniteStateBinaryGroup, 91
FixedRay

FR element, 46
FixedStates, 33
FornaessSibonyGroup, 92
ForwardOrbit, 130
FRAffineGroup, 101
FRAlgebra, 87
FRAlgebraWithOne, 87
FRBranchGroupConjugacyData, 119
FRConjugacyAlgorithm, 119
FREFamily, 113
FRElement

[list,]list,list,list, 25
machine/element,list, 26

Functionally recursive groups 142

semigroup,list,list,list, 25
FRElementNC

family,free,listlist,list,assocword, 24
FRGroup, 62
FRGroupByVirtualEndomorphism, 69
FRMachine

[list,]list,list, 12
semigroup,list,list, 12

FRMachineFRGroup, 66
FRMachineFRMonoid, 66
FRMachineFRSemigroup, 66
FRMachineNC

family,free,listlist,list, 12
FRMachineRWS, 117
FRMFamily, 113
FRMonoid, 62
FRSemigroup, 62
FullBinaryGroup, 91
FullSCGroup, 65
FullSCMonoid, 65
FullSCSemigroup, 65

GammaPQGroup, 99
GammaPQMachine, 99
GeneralizedGuptaSidkiGroups, 98
GeneratorsOfFRMachine, 16
GermData, 74
Germs, 50
GermValue, 74
GrigorchukGroup, 95
GrigorchukGroups, 95
GrigorchukLieAlgebra, 105
GrigorchukMachine, 95
GrigorchukMachines, 95
GrigorchukOverGroup, 95
GrigorchukThinnedAlgebra, 104
GrigorchukTwistedTwin, 96
GuessMealyElement, 52
GuessVectorElement, 59
GuptaSidkiGroup, 98
GuptaSidkiGroups, 98
GuptaSidkiLieAlgebra, 105
GuptaSidkiMachine, 98
GuptaSidkiMachines, 98
GuptaSidkiThinnedAlgebra, 105

HanoiGroup, 100

HasCongruenceProperty, 78
HasOpenSetConditionFRElement, 51
HasOpenSetConditionFRSemigroup, 78
HeightOfPoset, 132
HorizontalAction, 110

I2Machine, 103
I2Monoid, 103
I4Machine, 103
I4Monoid, 103
InfoFR, 134
InitialState, 35
IsAlgebraFRMachineRep, 115
IsAmenableGroup, 85
IsAntisymmetricFRElement, 58
IsBireversible, 43
IsBoundedFRElement, 45
IsBoundedFRMachine, 45
IsBoundedFRSemigroup, 77
IsBranched

FR group, 81
IsBranchingSubgroup

FR semigroup, 81
IsConfinal, 124
IsContracting, 78
IsConvergent, 57
IsDiagonalFRElement, 58
IsFIFO, 132
IsFinitaryFRElement, 44
IsFinitaryFRMachine, 44
IsFinitaryFRSemigroup, 77
IsFiniteStateFRElement, 34
IsFiniteStateFRMachine, 34
IsFiniteStateFRSemigroup, 77
IsFpLieAlgebra, 133
IsFRAlgebra, 117
IsFRAlgebraWithOne, 117
IsFRElement, 116
IsFRGroup, 117
IsFRMachine, 116
IsFRMachineStrRep, 114
IsFRMealyElement, 116
IsFRMonoid, 117
IsFRObject, 116
IsFRSemigroup, 117
IsGroupFRElement, 116
IsGroupFRMachine, 114

Functionally recursive groups 143

IsGroupFRMealyElement, 116
IsHomogeneousElement, 90
IsInfinitelyTransitive, 76
IsInvertible, 117
IsIrreducibleVHGroup, 111
IsJustInfinite, 86
IsLevelTransitive

FR element, 47
FR group, 76

IsLevelTransitiveOnPatterns, 76
IsLinearFRElement, 116
IsLinearFRMachine, 115
IsLinearRepresentation, 130
IsLowerTriangularFRElement, 58
IsMealyElement, 115
IsMealyMachine, 114
IsMealyMachineDomainRep, 115
IsMealyMachineIntRep, 115
IsMinimized, 42
IsMonoidFRElement, 116
IsMonoidFRMachine, 114
IsMonoidFRMealyElement, 116
IsNilElement, 89
IsomorphismFRGroup, 67
IsomorphismFRMonoid, 67
IsomorphismFRSemigroup, 67
IsomorphismLpGroup, 84
IsomorphismMealyGroup, 68
IsomorphismMealyMonoid, 68
IsomorphismMealySemigroup, 68
IsomorphismSubgroupFpGroup, 84
IsPeriodicList, 122
IsPolynomialGrowthFRElement, 45
IsPolynomialGrowthFRMachine, 45
IsPolynomialGrowthFRSemigroup, 77
IsProjectiveRepresentation, 130
IsRecurrentFRSemigroup, 76
IsResiduallyFinite, 86
IsReversible, 42
IsSemigroupFRElement, 116
IsSemigroupFRMachine, 114
IsSemigroupFRMealyElement, 116
IsSQUniversal, 86
IsStateClosed, 75
IsSymmetricFRElement, 58
IsTorsionFreeGroup, 85
IsTorsionGroup, 84

IsUpperTriangularFRElement, 58
IsVectorFRMachineRep, 115
IsVHGroup, 110
IsVirtuallySimpleGroup, 85
IsWeaklyFinitaryFRElement, 50
IsWeaklyFinitaryFRSemigroup, 77

JenningsLieAlgebra, 133

LambdaElementVHGroup, 85
LamplighterGroup, 103
LargestCommonPrefix, 124
LDUDecompositionFRElement, 58
LevelStabilizer, 75
LimitFRMachine, 51
LimitStates, 33
LinearRepresentationByImages, 130

MagmaEndomorphismByImagesNC, 131
MagmaHomomorphismByImagesNC, 132
MamaghaniGroup, 101
MatrixQuotient, 89
MaximalSimpleSubgroup, 112
MealyElement

[list,]listlist,list,int, 38
domain,domain,function,function,obj, 39

MealyElementNC
family,listlist,list,int, 39

MealyMachine
[list,]listlist,list, 38
domain,domain,function,function, 39

MealyMachineFRGroup, 66
MealyMachineFRMonoid, 66
MealyMachineFRSemigroup, 66
MealyMachineNC

family,listlist,list, 39
Minimized

FR machine, 23
Mealy machine, 41

MixerGroup, 94
MixerMachine, 94

NestedMatrixCoefficient, 56
NestedMatrixState, 56
NeumannGroup, 98
NeumannMachine, 98
NewFIFO, 132
NewGroupFRMachine, 64

Functionally recursive groups 144

NewMonoidFRMachine, 64
NewSemigroupFRMachine, 64
Nillity, 89
NormOfBoundedFRElement, 50
Nucleus

FR algebra, 88
FR machine, 34
FR semigroup, 79

NucleusMachine
FR machine, 52
FR semigroup, 79

NucleusOfFRAlgebra, 88
NucleusOfFRMachine, 34
NucleusOfFRSemigroup, 79

OrbitGrowth, 125
OrbitSignalizer, 119
Output

FR element, 29
FR machine, 17
FR machine,state, 17
FR machine,state,letter, 17

PcGroup, 71
Period, 123
PeriodicList, 123

list, function, 123
period, looping point, 123

PeriodicListsFamily, 122
PermGroup, 71
PolynomialGrowthBinaryGroup, 91
Portrait, 31
PortraitInt, 31
PortraitPerm, 31
PortraitTransformation, 31
PositionInTower, 131
PrePeriod, 123
ProductBOIIdeal, 132
ProductIdeal, 132
ProjectiveExtension, 130
ProjectiveQuotient, 130
ProjectiveRepresentationByFunction, 130
PSZAlgebra, 104
PureSurfaceBraidFpGroup, 128

RattaggiGroup, 99
RenameSubobjects, 131

SCAlgebra, 88
SCAlgebraNC, 88
SCAlgebraWithOne, 88
SCAlgebraWithOneNC, 88
SCGroup, 64
SCGroupNC, 64
SCLieAlgebra, 88
SCMonoid, 64
SCMonoidNC, 64
SCSemigroup, 64
SCSemigroupNC, 64
ShiftDirichletSeries, 129
ShortGroupRelations, 127
ShortGroupWordInSet, 127
ShortMonoidRelations, 127
ShortMonoidWordInSet, 127
ShortSemigroupWordInSet, 127
ShrunkDirichletSeries, 129
SidkiFreeAlgebra, 105
SidkiFreeGroup, 98
SidkiMonomialAlgebra, 106
Signatures, 46
SolutionMatMod1, 134
SolutionMatModN, 134
Sphere, 125
SpreadDirichletSeries, 129
StabilizerImage, 74
State, 32
StateClosure, 75
StateGrowth, 43
States, 32
StateSet

FR element, 32
FR machine, 16

StrichartzGroup, 101
StringByInt, 131
StructuralGroup, 18
StructuralMonoid, 18
StructuralSemigroup, 18
SubFRMachine, 22

machine,map, 22
SunicGroup, 94
SunicMachine, 94
SurfaceBraidFpGroup, 128

TensorProduct, 122
TensorProductOp

Functionally recursive groups 145

FR Machines, 20
TensorSum, 122
TensorSumOp

FR Machines, 19
ThinnedAlgebra, 89
ThinnedAlgebraWithOne, 89
TopElement, 49
TopVertexTransformations, 82
TransformationMonoid, 72
TransformationSemigroup, 73
Transition

FR element,input, 30
FR machine,state,input, 17
Linear machine, 55

Transitions, 56
FR element, 31
FR machine,state, 17

TransposedFRElement, 58
TreeWreathProduct

FR group, 70
FR machine, 21

UnderlyingFRMachine, 13
UnderlyingMealyElement, 116

ValueOfDirichletSeries, 129
VectorElement, 53
VectorElementNC, 53
VectorMachine, 53
VectorMachineNC, 53
VertexElement, 27
VertexTransformations

FR semigroup, 82
VertexTransformationsFRElement, 46
VertexTransformationsFRMachine, 46
VerticalAction, 110
VHGroup, 111
VHStructure, 110
VirtualEndomorphism, 83

WeaklyBranchedEmbedding, 71
WeierstrassGroup, 101
WordGrowth, 124

1arg, 124
WreathRecursion, 18

ZetaSeriesOfGroup, 129
ZugadiSpinalGroup, 99

	Licensing
	FR package
	A brief mathematical introduction
	An example session

	Functionally recursive machines
	Types of machines
	Products of machines
	Creators for FRMachines
	Attributes for FRMachines
	Operations for FRMachines

	Functionally recursive elements
	Creators for FRElements
	Operations and Attributes for FRElements

	Mealy machines and elements
	Creators for MealyMachines and MealyElements
	Operations and Attributes for MealyMachines and MealyElements

	Linear machines and elements
	Methods and operations for LinearFRMachines and LinearFRElements

	Self-similar groups, monoids and semigroups
	Creators for FR semigroups
	Operations for FR semigroups
	Properties for infinite groups

	Algebras
	Creators for FR algebras
	Operations for FR algebras

	Examples
	Examples of groups
	Examples of semigroups
	Examples of algebras
	Bacher's determinant identities
	VH groups

	FR implementation details
	The family of FR objects
	Filters for FRObjects
	Some of the algorithms implemented

	Miscellanea
	Generic operations
	Periodic lists
	Word growth
	Finding short relations
	Braid groups
	Dirichlet series
	Projective representations
	Miscellanea
	User settings

	References

