Goto Chapter: Top 1 2 3 4 5 6 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[Avi] Avis, D., lrslib -- reverse search vertex enumeration program, {A}vailable at \url{http://cgm.cs.mcgill.ca/~avis/C/lrs.html}.

[BC15] B\"achle, A. and Caicedo, M., On the Prime Graph Question for Almost Simple Groups with an Alternatin Socle, Submitted, \href{http://arxiv.org/abs/1510.04598}{\nolinkurl{arXiv:1510.04598 [math.RT]}} (2015)
(11 pages).

[BHKMS16] B\"achle, A., Herman, A., Konovalov, A., Margolis, L. and Singh, G., The status of the Zassenhaus conjecture for small groups, Submitted (2016)
(10 pages, \href{https://arxiv.org/abs/1609.00042}{\nolinkurl{arXiv:1609.00042 [math.RA]}}).

[BM14] B\"achle, A. and Margolis, L., Rational conjugacy of torsion units in integral group rings of non-solvable groups, Accepted in Proc. Edinb. Math. Soc., \href{http://arxiv.org/abs/1305.7419}{\nolinkurl{arXiv:1305.7419 [math.RT]}} (2014)
(22 pages).

[BM16a] B\"achle, A. and Margolis, L., On the Prime Graph Question for Integral Group Rings of 4-primary groups I, Submitted (2016)
(33 pages, \href{http://arxiv.org/abs/1601.05689}{\nolinkurl{arXiv:1601.05689 [math.RT]}}).

[BM16b] B\"achle, A. and Margolis, L., On the Prime Graph Question for Integral Group Rings of 4-primary groups II, Submitted (2016)
(17 pages, \href{https://arxiv.org/abs/1606.01506}{\nolinkurl{arXiv:1606.01506 [math.RT]}}).

[BH08] Bovdi, V. A. and Hertweck, M., Zassenhaus conjecture for central extensions of S_5, J. Group Theory, 11 (1) (2008), 63--74.

[BK07] Bovdi, V. A. and Konovalov, A. B., Integral group ring of the McLaughlin simple group, Algebra Discrete Math. (2) (2007), 43--53.

[BK10] Bovdi, V. A. and Konovalov, A. B., Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar., 47 (1) (2010), 1--11.

[BIRSS] Bruns, W., Ichim, B., R\"omer, T., Sieg, R. and S\"oger, C., Normaliz. Algorithms for rational cones and affine monoids, Available at \url{http://normaliz.uos.de}.

[BM15] B{\"a}chle, A. and Margolis, L., HeLP -- A \textsfGAP-package for torsion units in integral group rings, Submitted (2015)
(7 pages, \href{http://arxiv.org/abs/1507.08174}{\nolinkurl{arXiv:1507.08174 [math.RT]}}).

[CMR13] Caicedo, M., Margolis, L. and del R{\'{\i}}o, {., Zassenhaus conjecture for cyclic-by-abelian groups, J. Lond. Math. Soc. (2), 88 (1) (2013), 65--78.

[CL65] Cohn, J. A. and Livingstone, D., On the structure of group algebras. I, Canad. J. Math., 17 (1965), 583--593.

[CR90] Curtis, C. W. and Reiner, I., Methods of representation theory. Vol. I, John Wiley \& Sons, Inc., New York, Wiley Classics Library (1990), xxiv+819 pages
(With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication).

[Gil13] Gildea, J., Zassenhaus conjecture for integral group ring of simple linear groups, J. Algebra Appl., 12 (6) (2013), 1350016, 10.

[Her06] Hertweck, M., On the torsion units of some integral group rings, Algebra Colloq., 13 (2) (2006), 329--348.

[Her07] Hertweck, M., Partial Augmentations and Brauer Character values of torion Units in Group Rings, Preprint (2007)
(e-print \href{http://arxiv.org/abs/math/0612429v2}{\nolinkurl{arXiv:math.RA/0612429v2 [math.RA]}}).

[Her08a] Hertweck, M., The orders of torsion units in integral group rings of finite solvable groups, Comm. Algebra, 36 (10) (2008), 3585--3588.

[Her08b] Hertweck, M., Torsion units in integral group rings of certain metabelian groups, Proc. Edinb. Math. Soc. (2), 51 (2) (2008), 363--385.

[Her08c] Hertweck, M., Zassenhaus conjecture for A_6, Proc. Indian Acad. Sci. Math. Sci., 118 (2) (2008), 189--195.

[HK06] H{\"o}fert, C. and Kimmerle, W., On torsion units of integral group rings of groups of small order, in Groups, rings and group rings, Chapman \& Hall/CRC, Boca Raton, FL, Lect. Notes Pure Appl. Math., 248 (2006), 243--252.

[JM00] Juriaans, S. O. and Polcino Milies, C., Units of integral group rings of Frobenius groups, J. Group Theory, 3 (3) (2000), 277--284.

[Kim06] Kimmerle, W., On the prime graph of the unit group of integral group rings of finite groups, in Groups, rings and algebras, Amer. Math. Soc., Providence, RI, Contemp. Math., 420 (2006), 215--228.

[Kim07] Kimmerle, W., Mini-Workshop: Arithmetik von Gruppenringen, Oberwolfach Reports, European Mathematical Society, 4 (4) (2007), 3209-3239.

[KK15] Kimmerle, W. and Konovalov, A. B., Recent advances on torsion subgroups of Integral Group Rings, Proc. of Groups St Andrews 2013 (2015), 331--347.

[LP89] Luthar, I. S. and Passi, I. B. S., Zassenhaus conjecture for A_5, Proc. Indian Acad. Sci. Math. Sci., 99 (1) (1989), 1--5.

[MRSW87] Marciniak, Z., Ritter, J., Sehgal, S. and Weiss, A., Torsion units in integral group rings of some metabelian groups. II, Journal of Number Theory, 25 (3) (1987), 340--352.

[MRS16] Margolis, L., del R{\'{\i}}o, {. and Serrano, M., Zassenhaus Conjecture on torsion units holds for PSL(2,p) with p a Fermat or Mersenne prime, Submitted (2016), 32 pages, \href{https://arxiv.org/abs/1608.05797}{\nolinkurl{arXiv:1608.05797 [math.RA]}}.

[Sal11] Salim, M., Kimmerle's conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyh\'azi. (N.S.), 27 (1) (2011), 9--22.

[Sal13] Salim, M., The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory, 2 (1) (2013), 175--185.

[Seh93] Sehgal, S. K., Units in integral group rings, Longman Scientific \& Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, 69, Harlow (1993), xii+357 pages.

[Sri64] Srinivasan, B., On the modular characters of the special linear group SL(2,p^n), Proc. London Math. Soc. (3), 14 (1964), 101--114.

[tea] team, 4. t. 2., 4ti2---A software package for algebraic, geometric and combinatorial problems on linear spaces, {A}vailable at \url{www.4ti2.de}.

[Wag95] Wagner, R., Zassenhausvermutung über die Gruppen textupPSL(2, p) (1995), Diplomarbeit Universität Stuttgart.

[Wei91] Weiss, A., Torsion units in integral group rings, J. Reine Angew. Math., 415 (1991), 175--187.

[Zas74] Zassenhaus, H., On the torsion units of group rings, Estudos de Mathemátics em homenagem ao Prof. A. Almeida Costa, Instituto de Alta Cultura (Portugese) (1974), 119-126.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 Bib Ind

generated by GAPDoc2HTML