Goto Chapter: Top 1 2 3 4 5 6 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 


[Bar03] Bartholdi, L., Endomorphic presentations of Branch groups, J. Algebra, 268 (2003), 419-443.

[BEH08] Bartholdi, L., Eick, B. and Hartung, R., A nilpotent quotient algorithm for certain infinitely presented groups and its applications, Internat. J. Algebra Comput., 18 (8) (2008), 1321--1344.

[BG02] Bartholdi, L. and Grigorchuk, R. I., On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J., 28 (1) (2002), 47--90.

[BV05] Bartholdi, L. and Vir{\'a}g, B., Amenability via random walks, Duke Math. J., 130 (1) (2005), 39--56.

[Bau71] Baumslag, G., A finitely generated, infinitely related group with trivial multiplicator, Bull. Amer. Math. Soc., 5 (1971), 131--136.

[BSV99] Brunner, A. M., Sidki, S. and Vieira, A. C., A just-nonsolvable torsion-free group defined on the binary tree, J. Algebra, 211 (1) (1999), 99-114.

[Coo04] Cooperman, G., ParGAP (2004)
(A {\GAP4} package, see \cite{GAP4}).

[DP] Day, M. and Putman, A., A Birman exact sequence for the Torelli subgroup of Aut(F_n)
( Preprint ).

[FG85] Fabrykowski, J. and Gupta, N. D., On groups with sub-exponential growth functions, J. Indian Math. Soc. (N.S.), 49 (3-4) (1985), 249--256 (1987).

[Gri80] Grigorchuk, R. I., Burnside's problem on periodic groups, Functional Analysis and its Applications, 14 (1980), 41-43.

[Gri83] Grigorchuk, R. I., On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, 271 (1) (1983), 30--33.

[Gri98] Grigorchuk, R. I., An example of a finitely presented amenable group that does not belong to the class EG, Mat. Sb., 189 (1) (1998), 79--100.

[Gri99] Grigorchuk, R. I., On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata, in Groups St. Andrews 1997 in Bath, I, Cambridge Univ. Press, London Math. Soc. Lecture Note Ser., 260, Cambridge (1999), 290--317.

[GZ02] Grigorchuk, R. I. and {\. Z}uk, A., On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput., 12 (1--2) (2002), 223--246.

[Har8 ] Hartung, R., A nilpotent quotient algorithm for finitely L-presented groups , Diploma thesis , University of Braunschweig ( 2008 ).

[Har10] Hartung, R., Approximating the Schur multiplier of certain infinitely presented groups via nilpotent quotients, LMS J. Comput. Math., 13 (2010), 260--271.

[Har11] Hartung, R., Coset enumeration for certain infinitely presented groups, Internat. J. Algebra Comput., 21 (8) (2011), 1369--1380.

[Har12] Hartung, R., A Reidemeister-Schreier theorem for finitely L-presented groups, Int. Electron. J. Algebra, 11 (2012), 125--159.

[Har13] Hartung, R., Algorithms for finitely L-presented groups and their applications to some self-similar groups, Expo. Math., 31 (4) (2013), 368--384.

[Lys85] Lysenok, I. G., A system of defining relations for a Grigorchuk group, Mathematical Notes, 38 (1985), 784-792.

[Nic96] Nickel, W., Computing Nilpotent Quotients of Finitely Presented Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 25 (1996), 175-191.

[Nic03] Nickel, W., NQ (2003)
(A {\GAP4} package, see \cite{GAP4}).

[Sid87] Sidki, S., On a 2-generated infinite 3-group: The presentation problem, Journal of Algebra, 110 (1987), 13-23.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 Bib Ind

generated by GAPDoc2HTML