Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 A B C Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

AddSpecialGapOfNumericalSemigroup 5.1-2
AdjacentCatenaryDegreeOfSetOfFactorizations 9.3-2
AdjustmentOfNumericalSemigroup 9.2-11
AffineSemigroup 11.2-1
AlmostSymmetricNumericalSemigroupsFromIrreducible 6.3-1
AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber 6.3-3
AmbientNumericalSemigroupOfIdeal 7.1-5
AnIrreducibleNumericalSemigroupWithFrobeniusNumber 6.1-4
AperyListOfIdealOfNumericalSemigroupWRTElement 7.2-8
AperyListOfNumericalSemigroup 3.1-7
AperyListOfNumericalSemigroupAsGraph 3.1-9
AperyListOfNumericalSemigroupWRTElement 3.1-6
AperyListOfNumericalSemigroupWRTInteger 3.1-8
AperyTableOfNumericalSemigroup 7.2-9
ArfNumericalSemigroupClosure 8.2-2
ArfNumericalSemigroupsWithFrobeniusNumber 8.2-4
AsAffineSemigroup 11.2-2
AsGluingOfNumericalSemigroups 6.2-1
BasisOfGroupGivenByEquations 11.2-9
BelongsToAffineSemigroup 11.2-4
BelongsToHomogenizationOfNumericalSemigroup 9.5-1
BelongsToIdealOfNumericalSemigroup 7.1-7
BelongsToNumericalSemigroup 2.2-6
BettiElementsOfAffineSemigroup 11.4-3
BettiElementsOfNumericalSemigroup 4.1-3
BezoutSequence A.1-1
BlowUpIdealOfNumericalSemigroup 7.2-2
BlowUpOfNumericalSemigroup 7.2-4
CanonicalIdealOfNumericalSemigroup 7.1-15
CatenaryDegreeOfAffineSemigroup 11.5-3
CatenaryDegreeOfElementInNumericalSemigroup 9.3-5
CatenaryDegreeOfNumericalSemigroup 9.3-7
CatenaryDegreeOfSetOfFactorizations 9.3-1
CeilingOfRational A.1-3
CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber 6.2-3
ConductorOfNumericalSemigroup 3.2-3
CurveAssociatedToDeltaSequence 10.2-4
DecomposeIntoIrreducibles 6.1-6
DeltaSequencesWithFrobeniusNumber 10.2-3
DeltaSetListUpToElementWRTNumericalSemigroup C.2-5
DeltaSetOfFactorizationsElementWRTNumericalSemigroup 9.2-6
DeltaSetOfNumericalSemigroup C.2-7
DeltaSetOfSetOfIntegers 9.2-5
DeltaSetPeriodicityBoundForNumericalSemigroup C.2-3
DeltaSetPeriodicityStartForNumericalSemigroup C.2-4
DeltaSetUnionUpToElementWRTNumericalSemigroup C.2-6
DenumerantOfElementInNumericalSemigroup 9.1-5
DifferenceOfIdealsOfNumericalSemigroup 7.1-11
ElasticityOfAffineSemigroup 11.5-2
ElasticityOfFactorizationsElementWRTNumericalSemigroup 9.2-3
ElasticityOfNumericalSemigroup 9.2-4
EmbeddingDimensionOfNumericalSemigroup 3.1-3
EqualCatenaryDegreeOfAffineSemigroup 11.5-4
EqualCatenaryDegreeOfNumericalSemigroup 9.3-9
EqualCatenaryDegreeOfSetOfFactorizations 9.3-3
EqualPrimitiveElementsOfNumericalSemigroup 9.3-8
EquationsOfGroupGeneratedBy 11.2-8
FactorizationsElementListWRTNumericalSemigroup C.2-2
FactorizationsElementWRTNumericalSemigroup 9.1-2
FactorizationsInHomogenizationOfNumericalSemigroup 9.5-2
FactorizationsIntegerWRTList 9.1-1
FactorizationsVectorWRTList 11.5-1
FirstElementsOfNumericalSemigroup 3.1-5
ForcedIntegersForPseudoFrobenius 5.6-1
FreeNumericalSemigroupsWithFrobeniusNumber 6.2-5
FrobeniusNumber 3.2-2
FrobeniusNumberOfNumericalSemigroup 3.2-1
FundamentalGapsOfNumericalSemigroup 3.3-3
GapsOfNumericalSemigroup 3.3-1
GeneratorsOfIdealOfNumericalSemigroup 7.1-4
GeneratorsOfIdealOfNumericalSemigroupNC 7.1-4
GeneratorsOfKernelCongruence 11.4-1
GeneratorsOfNumericalSemigroup 3.1-2
GenusOfNumericalSemigroup 3.3-2
GluingOfAffineSemigroups 11.3-1
GraeffePolynomial 10.1-3
GraphAssociatedToElementInNumericalSemigroup 4.1-2
HilbertBasisOfSystemOfHomogeneousEquations 11.2-6
HilbertBasisOfSystemOfHomogeneousInequalities 11.2-7
HilbertFunctionOfIdealOfNumericalSemigroup 7.2-1
HilbertSeriesOfNumericalSemigroup 10.1-2
HomogeneousBettiElementsOfNumericalSemigroup 9.5-3
HomogeneousCatenaryDegreeOfAffineSemigroup 11.5-5
HomogeneousCatenaryDegreeOfNumericalSemigroup 9.5-4
IdealOfNumericalSemigroup 7.1-1
IntersectionIdealsOfNumericalSemigroup 7.1-13
IntersectionOfNumericalSemigroups 5.2-1
IrreducibleNumericalSemigroupsWithFrobeniusNumber 6.1-5
IsACompleteIntersectionNumericalSemigroup 6.2-2
IsAdditiveNumericalSemigroup 9.2-12
IsAffineSemigroup 11.2-3
IsAffineSemigroupByEquations 11.2-3
IsAffineSemigroupByGenerators 11.2-3
IsAffineSemigroupByInequalities 11.2-3
IsAffineSemigroupByMinimalGenerators 11.2-3
IsAlmostSymmetricNumericalSemigroup 6.3-2
IsAperyListOfNumericalSemigroup 2.2-4
IsAperySetAlphaRectangular C.1-8
IsAperySetBetaRectangular C.1-7
IsAperySetGammaRectangular C.1-6
IsArfNumericalSemigroup 8.2-1
IsBezoutSequence A.1-2
IsCyclotomicNumericalSemigroup 10.1-6
IsCyclotomicPolynomial 10.1-4
IsDeltaSequence 10.2-2
IsFreeNumericalSemigroup 6.2-4
IsFullAffineSemigroup 11.2-5
IsGenericAffineSemigroup 11.4-5
IsGenericNumericalSemigroup 4.2-2
IsGradedAssociatedRingNumericalSemigroupBuchsbaum C.1-1
IsGradedAssociatedRingNumericalSemigroupCI C.1-5
IsGradedAssociatedRingNumericalSemigroupCM 7.2-6
IsGradedAssociatedRingNumericalSemigroupGorenstein C.1-4
IsIdealOfNumericalSemigroup 7.1-2
IsIrreducibleNumericalSemigroup 6.1-1
IsKroneckerPolynomial 10.1-5
IsListOfIntegersNS A.2-2
IsMEDNumericalSemigroup 8.1-1
IsModularNumericalSemigroup 2.2-1
IsMonomialNumericalSemigroup 7.2-7
IsMpureNumericalSemigroup C.1-2
IsNumericalSemigroup 2.2-1
IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity 6.2-8
IsNumericalSemigroupByAperyList 2.2-1
IsNumericalSemigroupByFundamentalGaps 2.2-1
IsNumericalSemigroupByGaps 2.2-1
IsNumericalSemigroupByGenerators 2.2-1
IsNumericalSemigroupByInterval 2.2-1
IsNumericalSemigroupByMinimalGenerators 2.2-1
IsNumericalSemigroupByOpenInterval 2.2-1
IsNumericalSemigroupBySmallElements 2.2-1
IsNumericalSemigroupBySubAdditiveFunction 2.2-1
IsProportionallyModularNumericalSemigroup 2.2-1
IsPseudoSymmetricNumericalSemigroup 6.1-3
IsPureNumericalSemigroup C.1-3
IsSaturatedNumericalSemigroup 8.3-1
IsSelfReciprocalUnivariatePolynomial 10.1-7
IsSubsemigroupOfNumericalSemigroup 2.2-5
IsSuperSymmetricNumericalSemigroup 9.2-13
IsSymmetricNumericalSemigroup 6.1-2
IsTelescopicNumericalSemigroup 6.2-6
IsUniquelyPresentedAffineSemigroup 11.4-6
IsUniquelyPresentedNumericalSemigroup 4.2-1
KunzCoordinatesOfNumericalSemigroup 3.1-10
KunzPolytope 3.1-11
LengthsOfFactorizationsElementWRTNumericalSemigroup 9.2-2
LengthsOfFactorizationsIntegerWRTList 9.2-1
LShapesOfNumericalSemigroup 9.1-4
MaximalDenumerantOfElementInNumericalSemigroup 9.2-8
MaximalDenumerantOfNumericalSemigroup 9.2-10
MaximalDenumerantOfSetOfFactorizations 9.2-9
MaximalIdealOfNumericalSemigroup 7.1-14
MaximumDegreeOfElementWRTNumericalSemigroup 9.2-7
MEDNumericalSemigroupClosure 8.1-2
MicroInvariantsOfNumericalSemigroup 7.2-5
MinimalArfGeneratingSystemOfArfNumericalSemigroup 8.2-3
MinimalGeneratingSystem 3.1-2
MinimalGeneratingSystem 7.1-3
MinimalGeneratingSystemOfIdealOfNumericalSemigroup 7.1-3
MinimalGeneratingSystemOfNumericalSemigroup 3.1-2
MinimalMEDGeneratingSystemOfMEDNumericalSemigroup 8.1-3
MinimalPresentationOfAffineSemigroup 11.4-2
MinimalPresentationOfNumericalSemigroup 4.1-1
ModularNumericalSemigroup 2.1-2
MoebiusFunctionAssociatedToNumericalSemigroup 9.6-1
MonotoneCatenaryDegreeOfAffineSemigroup 11.5-6
MonotoneCatenaryDegreeOfNumericalSemigroup 9.3-11
MonotoneCatenaryDegreeOfSetOfFactorizations 9.3-4
MonotonePrimitiveElementsOfNumericalSemigroup 9.3-10
MultipleOfIdealOfNumericalSemigroup 7.1-9
MultiplicityOfNumericalSemigroup 3.1-1
NumericalSemigroup 2.1-1
NumericalSemigroupByAperyList 2.1-4
NumericalSemigroupByFundamentalGaps 2.1-4
NumericalSemigroupByGaps 2.1-4
NumericalSemigroupByGenerators 2.1-4
NumericalSemigroupByInterval 2.1-4
NumericalSemigroupByMinimalGenerators 2.1-4
NumericalSemigroupByMinimalGeneratorsNC 2.1-4
NumericalSemigroupByOpenInterval 2.1-4
NumericalSemigroupBySmallElements 2.1-4
NumericalSemigroupBySubAdditiveFunction 2.1-4
NumericalSemigroupPolynomial 10.1-1
NumericalSemigroupsAssociatedIrreduciblePlanarCurveSingularityWithFrobeniusNumber 6.2-9
NumericalSemigroupsWithFrobeniusNumber 5.4-1
NumericalSemigroupsWithGenus 5.5-1
NumericalSemigroupsWithPseudoFrobeniusNumbers 5.6-3
NumSgpsUse4ti2 11.1-1
NumSgpsUse4ti2gap 11.1-2
NumSgpsUseNormalize 11.1-3
NumSgpsUseSingular 11.1-4
NumSgpsUseSingularGradedModules 11.1-6
NumSgpsUseSingularInterface 11.1-5
OmegaPrimalityOfAffineSemigroup 11.5-9
OmegaPrimalityOfElementInAffineSemigroup 11.5-8
OmegaPrimalityOfElementInNumericalSemigroup 9.4-1
OmegaPrimalityOfElementListInNumericalSemigroup C.2-1
OmegaPrimalityOfNumericalSemigroup 9.4-2
OverSemigroupsNumericalSemigroup 5.3-1
PrimitiveElementsOfAffineSemigroup 11.4-7
PrimitiveElementsOfNumericalSemigroup 4.1-4
ProportionallyModularNumericalSemigroup 2.1-3
PseudoFrobeniusOfNumericalSemigroup 3.2-4
QuotientOfNumericalSemigroup 5.2-2
RandomListForNS B.1-2
RandomListRepresentingSubAdditiveFunction B.1-5
RandomModularNumericalSemigroup B.1-3
RandomNumericalSemigroup B.1-1
RandomNumericalSemigroupWithPseudoFrobeniusNumbers 5.6-4
RandomProportionallyModularNumericalSemigroup B.1-4
RClassesOfSetOfFactorizations 9.1-3
ReductionNumberIdealNumericalSemigroup 7.2-3
RemoveMinimalGeneratorFromNumericalSemigroup 5.1-1
RepresentsGapsOfNumericalSemigroup 2.2-3
RepresentsPeriodicSubAdditiveFunction A.2-1
RepresentsSmallElementsOfNumericalSemigroup 2.2-2
SaturatedNumericalSemigroupClosure 8.3-2
SaturatedNumericalSemigroupsWithFrobeniusNumber 8.3-3
SemigroupOfValuesOfCurve_Global 10.2-6
SemigroupOfValuesOfCurve_Local 10.2-5
SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity 10.2-1
ShadedSetOfElementInAffineSemigroup 11.4-4
ShadedSetOfElementInNumericalSemigroup 4.1-5
SimpleForcedIntegersForPseudoFrobenius 5.6-2
SmallElements 3.1-4
SmallElements 7.1-6
SmallElementsOfIdealOfNumericalSemigroup 7.1-6
SmallElementsOfNumericalSemigroup 3.1-4
SpecialGapsOfNumericalSemigroup 3.3-4
StarClosureOfIdealOfNumericalSemigroup 7.2-10
SubtractIdealsOfNumericalSemigroup 7.1-10
SumIdealsOfNumericalSemigroup 7.1-8
TameDegreeOfAffineSemigroup 11.5-7
TameDegreeOfElementInNumericalSemigroup 9.3-13
TameDegreeOfNumericalSemigroup 9.3-12
TameDegreeOfSetOfFactorizations 9.3-6
TelescopicNumericalSemigroupsWithFrobeniusNumber 6.2-7
TranslationOfIdealOfNumericalSemigroup 7.1-12
TypeOfNumericalSemigroup 3.2-5
TypeSequenceOfNumericalSemigroup C.1-9

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 A B C Bib Ind

generated by GAPDoc2HTML