Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

5 Information Messages
 5.1 Info Class
 5.2 Example

5 Information Messages

It is possible to get informations about the status of the computation of the functions of Chapter 2 of this manual.

5.1 Info Class

5.1-1 InfoPolenta
‣ InfoPolenta( info class )

is the Info class of the Polenta package (for more details on the Info mechanism see Section Reference: Info Functions of the GAP Reference Manual). With the help of the function SetInfoLevel(InfoPolenta,level) you can change the info level of InfoPolenta.

5.2 Example

gap> SetInfoLevel( InfoPolenta, 1 );

gap> PcpGroupByMatGroup( PolExamples(11) );
#I  Determine a constructive polycyclic sequence
    for the input group ...
#I
#I  Chosen admissible prime: 3
#I
#I  Determine a constructive polycyclic sequence
    for the image under the p-congruence homomorphism ...
#I  finished.
#I  Finite image has relative orders [ 3, 2, 3, 3, 3 ].
#I
#I  Compute normal subgroup generators for the kernel
    of the p-congruence homomorphism ...
#I  finished.
#I
#I  Compute the radical series ...
#I  finished.
#I  The radical series has length 4.
#I
#I  Compute the composition series ...
#I  finished.
#I  The composition series has length 5.
#I
#I  Compute a constructive polycyclic sequence
    for the induced action of the kernel to the composition series ...
#I  finished.
#I  This polycyclic sequence has relative orders [  ].
#I
#I  Calculate normal subgroup generators for the
    unipotent part ...
#I  finished.
#I
#I  Determine a constructive polycyclic  sequence
    for the unipotent part ...
#I  finished.
#I  The unipotent part has relative orders
#I  [ 0, 0, 0 ].
#I
#I  ... computation of a constructive
    polycyclic sequence for the whole group finished.
#I
#I  Compute the relations of the polycyclic
    presentation of the group ...
#I  Compute power relations ...
#I  ... finished.
#I  Compute conjugation relations ...
#I  ... finished.
#I  Update polycyclic collector ...
#I  ... finished.
#I  finished.
#I
#I  Construct the polycyclic presented group ...
#I  finished.
#I
Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]


gap> SetInfoLevel( InfoPolenta, 2 );

gap> PcpGroupByMatGroup( PolExamples(11) );
#I  Determine a constructive polycyclic sequence
    for the input group ...
#I
#I  Chosen admissible prime: 3
#I
#I  Determine a constructive polycyclic sequence
    for the image under the p-congruence homomorphism ...
#I  finished.
#I  Finite image has relative orders [ 3, 2, 3, 3, 3 ].
#I
#I  Compute normal subgroup generators for the kernel
    of the p-congruence homomorphism ...
#I  finished.
#I  The normal subgroup generators are
#I  [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ]
    , [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ]
     ],
  [ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ]
#I
#I  Compute the radical series ...
#I  finished.
#I  The radical series has length 4.
#I  The radical series is
#I  [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ],
  [  ] ]
#I
#I  Compute the composition series ...
#I  finished.
#I  The composition series has length 5.
#I  The composition series is
#I  [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ], [  ] ]
#I
#I  Compute a constructive polycyclic sequence
    for the induced action of the kernel to the composition series ...
#I  finished.
#I  This polycyclic sequence has relative orders [  ].
#I
#I  Calculate normal subgroup generators for the
    unipotent part ...
#I  finished.
#I  The normal subgroup generators for the unipotent part are
#I  [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ]
    , [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ]
     ],
  [ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
  [ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ]
#I
#I  Determine a constructive polycyclic  sequence
    for the unipotent part ...
#I  finished.
#I  The unipotent part has relative orders
#I  [ 0, 0, 0 ].
#I
#I  ... computation of a constructive
    polycyclic sequence for the whole group finished.
#I
#I  Compute the relations of the polycyclic
    presentation of the group ...
#I  Compute power relations ...
.....
#I  ... finished.
#I  Compute conjugation relations ...
..............................................
#I  ... finished.
#I  Update polycyclic collector ...
#I  ... finished.
#I  finished.
#I
#I  Construct the polycyclic presented group ...
#I  finished.
#I
Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML