Goto Chapter: Top 1 2 3 4 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[BEO02] Besche, H. U., Eick, B. and O'Brien, E. A., The Small Groups Library - a GAP package (2002).

[Dis10] Distler, A., Classification and Enumeration of finite Semigroups, Ph.D. thesis, St Andrews University (2010).

[Dis14] Distler, A., Finite Nilpotent Semigroups of Small Coclass, Communications in Algebra, 42 (3) (2014), 1136-1150.

[DMU13] Distler, A., Maltcev, V. and Umar, A., J*=D* need not hold in finite semigroups, submitted (2013)
(http://arxiv.org/abs/1302.0985), {\verb+http://arxiv.org/abs/1302.0985+}.

[For55] Forsythe, G. E., SWAC computes 126 distinct semigroups of order 4, Proc. Amer. Math. Soc., 6 (1955), 443--447.

[GJM06] Gent, I. P., Jefferson, C. and Miguel, I. (Brewka, G., Coradeschi, S., Perini, A. and Traverso, P., Eds.), Minion: A Fast Scalable Constraint Solver, in The European Conference on Artificial Intelligence 2006 (ECAI 06), IOS Press (2006), 98-102.

[JW77] J{\"u}rgensen, H. and Wick, P., Die Halbgruppen der Ordnungen ≤ 7, Semigroup Forum, 14 (1) (1977), 69--79.

[Ple67] Plemmons, R. J., There are 15973 semigroups of order 6, Math. Algorithms, 2 (1967), 2--17.

[SYT94] Satoh, S., Yama, K. and Tokizawa, M., Semigroups of order 8, Semigroup Forum, 49 (1) (1994), 7--29.

[Tam54] Tamura, T., Notes on finite semigroups and determination of semigroups of order 4, J. Gakugei. Tokushima Univ. Math., 5 (1954), 17--27.

[THASIT55] Tetsuya, K., Hashimoto, T., Akazawa, T., Shibata, R., Inui, T. and Tamura, T., All semigroups of order at most 5, J. Gakugei Tokushima Univ. Nat. Sci. Math., 6 (1955), 19--39. Errata on loose, unpaginated sheet.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Bib Ind

generated by GAPDoc2HTML