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Abstract
The XMod package provides functions for computation with

• finite crossed modules of groups and cat1-groups, and morphisms of these structures;

• finite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

• isoclinism classes of groups and crossed modules;

• derivations of crossed modules and sections of cat1-groups;

• crossed squares and their morphisms, including the actor crossed square of a crossed module;

• crossed modules of finite groupoids (experimental version).

XMod was originally implemented in 1996 using the GAP3 language, when the second author was studying
for a Ph.D. [Alp97] at Bangor.

In April 2002 the first and third parts were converted to GAP4, the pre-structures were added, and version
2.001 was released. The final two parts, covering derivations, sections and actors, were included in the January
2004 release 2.002 for GAP 4.4.

In October 2015 functions for computing isoclinism classes of crossed modules, written by Alper Odabaş
and Enver Uslu, were added. These are contained in Chapter 4, and are described in detail in the paper [IOU16].

Bug reports, suggestions and comments are, of course, welcome. Please submit an is-
sue at https://github.com/gap-packages/xmod/issues/ or send an email to the first author at
cdwensley@btinternet.com.

Copyright
© 1996-2024, Chris Wensley et al.

The XMod package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
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Chapter 1

Introduction

The XMod package provides functions for computation with

• finite crossed modules of groups and cat1-groups, and morphisms of these structures;

• finite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

• derivations of crossed modules and sections of cat1-groups;

• isoclinism of groups and crossed modules;

• the actor crossed square of a crossed module;

• crossed squares, cat2-groups, and their morphisms (experimental version);

• crossed modules of groupoids (experimental version).

It is loaded with the command
Example

gap> LoadPackage( "xmod" );

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. Loday,
in [Lod82], reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90], [Nor87]
and Gilbert [Gil90] have studied derivations, automorphisms of crossed modules and the actor of
a crossed module, while Ellis [Ell84] has investigated higher dimensional analogues. Properties of
induced crossed modules have been determined by Brown, Higgins and Wensley in [BH78], [BW95]
and [BW96]. For further references see [AW00], where we discuss some of the data structures and
algorithms used in this package, and also tabulate isomorphism classes of cat1-groups up to size 30.

XMod was originally implemented in 1997 using the GAP 3 language. In April 2002 the first and
third parts were converted to GAP 4, the pre-structures were added, and version 2.001 was released.
The final two parts, covering derivations, sections and actors, were included in the January 2004
release 2.002 for GAP 4.4. Many of the function names have been changed during the conversion, for
example ConjugationXMod has become XModByNormalSubgroup (2.1.2). For a list of name changes
see the file names.pdf in the doc directory.

In October 2015 Alper Odabaş and Enver Uslu were added to the list of package authors. Their
functions for computing isoclinism classes of groups and crossed modules are contained in Chapter 4,
and are described in detail in their paper [IOU16].

5
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The package may be obtained as a compressed tar file XMod-version.number.tar.gz by ftp
from one of the following sites:

• the XMod GitHub release site: https://github.com/gap-packages.github.io/xmod/.

• any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/xmod/.
Crossed modules and cat1-groups are special types of 2-dimensional groups [Bro82], [BHS11],

and are implemented as 2DimensionalDomains and 2DimensionalGroups having a Source and a
Range.

The package divides into eight parts. The first part is concerned with the standard constructions
for pre-crossed modules and crossed modules; together with direct products; normal sub-crossed mod-
ules; and quotients. Operations for constructing pre-cat1-groups and cat1-groups, and for converting
between cat1-groups and crossed modules, are also included.

The second part is concerned with morphisms of (pre-)crossed modules and (pre-)cat1-groups,
together with standard operations for morphisms, such as composition, image and kernel.

The third part is the most recent part of the package, introduced in October 2015. Additional
operations and properties for crossed modules are included in Section 4.1. Then, in 4.2 and 4.3 there
are functions for isoclinism of groups and crossed modules.

The fourth part is concerned with the equivalent notions of derivation for a crossed module and
section for a cat1-group, and the monoids which they form under the Whitehead multiplication.

The fifth part deals with actor crossed modules and actor cat1-groups. For the actor crossed mod-
ule Act(X ) of a crossed module X we require representations for the Whitehead group of regular
derivations of X and for the group of automorphisms of X . The construction also provides an inner
morphism from X to Act(X ) whose kernel is the centre of X .

The sixth part, which remains under development, contains functions to compute induced crossed
modules.

Since version 2.007 there are experimental functions for crossed squares and their morphisms,
structures which arise as 3-dimensional groups. Examples of these are inclusions of normal sub-
crossed modules, and the inner morphism from a crossed module to its actor.

The eighth part has some experimental functions for crossed modules of groupoids, interacting
with the package groupoids. Much more work on this is needed.

Future plans include the implementation of group-graphs which will provide examples of pre-
crossed modules (their implementation will require interaction with graph-theoretic functions in GAP
4). There are also plans to implement cat2-groups, and conversion betwen these and crossed squares.

The equivalent categories XMod (crossed modules) and Cat1 (cat1-groups) are also equivalent to
GpGpd, the subcategory of group objects in the category Gpd of groupoids. Finite groupoids have been
implemented in Emma Moore’s package groupoids [Moo01] for groupoids and crossed resolutions.

In order that the user has some control of the verbosity of the XMod package’s functions, an
InfoClass InfoXMod is provided (see Chapter ref:Info Functions in the GAP Reference Manual
for a description of the Info mechanism). By default, the InfoLevel of InfoXMod is 0; progressively
more information is supplied by raising the InfoLevel to 1, 2 and 3.

Example

gap> SetInfoLevel( InfoXMod, 1); #sets the InfoXMod level to 1

https://github.com/gap-packages.github.io/xmod/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/xmod/
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Once the package is loaded, the manual doc/manual.pdf can be found in the documentation
folder. The html versions, with or without MathJax, should be rebuilt as follows:

Example

gap> ReadPackage( "xmod, "makedoc.g" );

It is possible to check that the package has been installed correctly by running the test files:
Example

gap> ReadPackage( "xmod", "tst/testall.g" );
#I Testing .../pkg/xmod/tst/gp2obj.tst
...

Additional information can be found on the Computational Higher-dimensional Discrete Algebra
website at: https://github.com/cdwensley.

https://github.com/cdwensley


Chapter 2

2d-groups : crossed modules and
cat1-groups

The term 2d-group refers to a set of equivalent categories of which the most common are the categories
of crossed modules; cat1-groups; and group-groupoids, all of which involve a pair of groups.

2.1 Constructions for crossed modules

A crossed module (of groups) X = (∂ : S→ R) consists of a group homomorphism ∂ , called the
boundary of X , with source S and range R. The group R acts on itself by conjugation, and on S by an
action α : R→ Aut(S) such that, for all s,s1,s2 ∈ S and r ∈ R,

XMod 1 : ∂ (sr) = r−1(∂ s)r = (∂ s)r, XMod 2 : s∂ s2
1 = s−1

2 s1s2 = s1
s2 .

When only the first of these axioms is satisfied, the resulting structure is a pre-crossed module (see
section 2.3). The kernel of ∂ is abelian.

(Much of the literature on crossed modules uses left actions, but we have chosen to use right
actions in this package since that is the standard choice for group actions in GAP.)

2.1.1 XMod

▷ XMod(args) (function)

▷ XModByBoundaryAndAction(bdy, act) (operation)

The global function XMod calls one of the standard constructions described in the following sub-
sections. In the example the boundary is the identity mapping on c5 and the action is trivial.

Example

gap> c5 := Group( (5,6,7,8,9) );;
gap> SetName( c5, "c5" );
gap> id5 := IdentityMapping( c5 );;
gap> ac5 := AutomorphismGroup( c5 );;
gap> act := MappingToOne( c5, ac5 );;
gap> XMod( id5, act ) = XModByBoundaryAndAction( id5, act );
true

8
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2.1.2 XModByNormalSubgroup

▷ XModByNormalSubgroup(G, N) (operation)

A conjugation crossed module is the inclusion of a normal subgroup S⊴R, where R acts on S by
conjugation.

2.1.3 XModByTrivialAction

▷ XModByTrivialAction(bdy) (operation)

A trivial action crossed module (∂ : S→ R) has sr = s for all s ∈ S, r ∈ R, the source is abelian
and the image lies in the centre of the range.

Example

gap> q8 := QuaternionGroup( IsPermGroup, 8 );
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ])
gap> SetName( q8, "q8" );
gap> c2 := Centre( q8 );
Group([ (1,3)(2,4)(5,7)(6,8) ])
gap> SetName( c2, "<-1>" );
gap> bdy := InclusionMappingGroups( q8, c2 );;
gap> X8a := XModByTrivialAction( bdy );
[<-1>->q8]
gap> c4 := Subgroup( q8, [q8.1] );;
gap> SetName( c4, "<i>" );
gap> X8b := XModByNormalSubgroup( q8, c4 );
[<i>->q8]
gap> Display(X8b);
Crossed module [<i>->q8] :-
: Source group has generators:

[ (1,5,3,7)(2,8,4,6) ]
: Range group q8 has generators:

[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]
: Boundary homomorphism maps source generators to:

[ (1,5,3,7)(2,8,4,6) ]
: Action homomorphism maps range generators to automorphisms:

(1,5,3,7)(2,8,4,6) --> { source gens --> [ (1,5,3,7)(2,8,4,6) ] }
(1,2,3,4)(5,6,7,8) --> { source gens --> [ (1,7,3,5)(2,6,4,8) ] }
These 2 automorphisms generate the group of automorphisms.

2.1.4 XModByAutomorphismGroup

▷ XModByAutomorphismGroup(grp) (attribute)

▷ XModByInnerAutomorphismGroup(grp) (attribute)

▷ XModByGroupOfAutomorphisms(G, A) (operation)

An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S)
of S which contains the inner automorphism group of S. The boundary maps s ∈ S to the inner
automorphism of S by s.
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Example

gap> X5 := XModByAutomorphismGroup( c5 );
[c5 -> Aut(c5)]
gap> Display( X5 );
Crossed module [c5->Aut(c5)] :-
: Source group c5 has generators:

[ (5,6,7,8,9) ]
: Range group Aut(c5) has generators:

[ GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ], [ (5,7,9,6,8) ] ) ]
: Boundary homomorphism maps source generators to:

[ IdentityMapping( c5 ) ]
: Action homomorphism maps range generators to automorphisms:

GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ],
[ (5,7,9,6,8) ] ) --> { source gens --> [ (5,7,9,6,8) ] }

This automorphism generates the group of automorphisms.

2.1.5 XModByCentralExtension

▷ XModByCentralExtension(bdy) (operation)

A central extension crossed module has as boundary a surjection ∂ : S→ R, with central kernel,
where r ∈ R acts on S by conjugation with ∂−1r.

Example

gap> gen12 := [ (1,2,3,4,5,6), (2,6)(3,5) ];;
gap> d12 := Group( gen12 );;
gap> gen6 := [ (7,8,9), (8,9) ];;
gap> s3 := Group( gen6 );;
gap> SetName( d12, "d12" ); SetName( s3, "s3" );
gap> pr12 := GroupHomomorphismByImages( d12, s3, gen12, gen6 );;
gap> Kernel( pr12 ) = Centre( d12 );
true
gap> X12 := XModByCentralExtension( pr12 );;
gap> Display( X12 );
Crossed module [d12->s3] :-
: Source group d12 has generators:

[ (1,2,3,4,5,6), (2,6)(3,5) ]
: Range group s3 has generators:

[ (7,8,9), (8,9) ]
: Boundary homomorphism maps source generators to:

[ (7,8,9), (8,9) ]
: Action homomorphism maps range generators to automorphisms:

(7,8,9) --> { source gens --> [ (1,2,3,4,5,6), (1,3)(4,6) ] }
(8,9) --> { source gens --> [ (1,6,5,4,3,2), (2,6)(3,5) ] }
These 2 automorphisms generate the group of automorphisms.
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2.1.6 XModByPullback

▷ XModByPullback(xmod, hom) (operation)

Let X0 = (µ : M→ P) be a crossed module. If ν : N→ P is a group homomorphism with the same
range as X0, form the pullback group L = M×P N, with projection λ : L→ N (as defined in the Utils
package). Then N acts on L by (m,n)n′ := (mνn′ ,nn′), so that X1 = (λ : L→N) is the pullback crossed
module determined by X0 and ν . There is also a morphism of crossed modules (κ,ν) : X1→X2.

The example forms a pullback of the crossed module X12 of the previous subsection.
Example

gap> gens4 := [ (11,12), (12,13), (13,14) ];;
gap> s4 := Group( gens4 );;
gap> theta := GroupHomomorphismByImages( s4, s3, gens4, [(7,8),(8,9),(7,8)] );;
gap> X1 := XModByPullback( X12, theta );;
gap> StructureDescription( Source( X1 ) );
"C2 x S4"
gap> SetName( s4, "s4" ); SetName( Source( X1 ), "c2s4" );
gap> infoX1 := PullbackInfo( Source( X1 ) );;
gap> infoX1!.directProduct;
Group([ (1,2,3,4,5,6), (2,6)(3,5), (7,8), (8,9), (9,10) ])
gap> infoX1!.projections[1];
[ (7,8)(9,10), (7,9)(8,10), (2,6)(3,5)(8,9), (1,5,3)(2,6,4)(8,10,9),

(1,6,5,4,3,2)(8,9,10) ] -> [ (), (), (2,6)(3,5), (1,5,3)(2,6,4),
(1,6,5,4,3,2) ]

gap> infoX1!.projections[2];
[ (7,8)(9,10), (7,9)(8,10), (2,6)(3,5)(8,9), (1,5,3)(2,6,4)(8,10,9),

(1,6,5,4,3,2)(8,9,10) ] -> [ (11,12)(13,14), (11,13)(12,14), (12,13),
(12,14,13), (12,13,14) ]

2.1.7 XModByAbelianModule

▷ XModByAbelianModule(abmod) (operation)

A crossed abelian module has an abelian module as source and the zero map as boundary. See
section 14.2 for an example.

2.1.8 DirectProduct (for crossed modules)

▷ DirectProduct(X1, X2) (operation)

The direct product X1×X2 of two crossed modules has source S1×S2, range R1×R2 and bound-
ary ∂1× ∂2, with R1, R2 acting trivially on S2, S1 respectively. The embeddings and projections are
constructed automatically, and placed in the DirectProductInfo attribute, together with the two
objects X1×X2.

The example constructs the product of the two crossed modules formed in subsection
XModByTrivialAction (2.1.3).
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Example

gap> X8ab := DirectProduct( X8a, X8b );
[[<-1>->q8]x[<i>->q8]]
gap> infoX8ab := DirectProductInfo( X8ab );
rec(

embeddings := [ [[<-1>->q8] => [<-1>x<i>->q8xq8]],
[[<i>->q8] => [<-1>x<i>->q8xq8]] ], objects := [ [<-1>->q8], [<i>->q8] ]

,
projections := [ [[<-1>x<i>->q8xq8] => [<-1>->q8]],

[[<-1>x<i>->q8xq8] => [<i>->q8]] ] )
gap> DirectProduct( X8a, X8b, X12 );
[[[<-1>->q8]x[<i>->q8]]x[d12->s3]]

2.1.9 Source (for crossed modules)

▷ Source(X0) (attribute)

▷ Range(X0) (attribute)

▷ Boundary(X0) (attribute)

▷ XModAction(X0) (attribute)

The following attributes are used in the construction of a crossed module X0.

• Source(X0) and Range(X0) are the source S and range R of ∂ , the boundary Boundary(X0);

• XModAction(X0) is a homomorphism from R to a group of automorphisms of X0.

(Up until version 2.63 there was an additional attribute AutoGroup, the range of XModAction(X0).)
The example uses the crossed module X12 constructed in subsection XModByCentralExtension

(2.1.5).
Example

gap> [ Source( X12 ), Range( X12 ) ];
[ d12, s3 ]
gap> Boundary( X12 );
[ (1,2,3,4,5,6), (2,6)(3,5) ] -> [ (7,8,9), (8,9) ]
gap> XModAction( X12 );
[ (7,8,9), (8,9) ] ->
[ [ (1,2,3,4,5,6), (2,6)(3,5) ] -> [ (1,2,3,4,5,6), (1,3)(4,6) ],

[ (1,2,3,4,5,6), (2,6)(3,5) ] -> [ (1,6,5,4,3,2), (2,6)(3,5) ] ]

2.1.10 ImageElmXModAction

▷ ImageElmXModAction(X0, s, r) (operation)

This function returns the element sr given by XModAction(X0).
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Example

gap> ImageElmXModAction( X12, (1,2,3,4,5,6), (8,9) );
(1,6,5,4,3,2)

2.1.11 Size2d (for crossed modules)

▷ Size2d(X0) (attribute)

The standard operation Size cannot be used for crossed modules because the size of a collection
is required to be a number, and we wish to return a list. Size2d( X0 ) returns the two-element list, [
Size( Source(X0) ), Size( Range(X0) ) ].

In the simple example below, X5 is the automorphism crossed module constructed in subsection
XModByAutomorphismGroup (2.1.4).

Example

gap> Size2d( X5 );
[ 5, 4 ]

2.1.12 Name (for crossed modules)

▷ Name(X0) (attribute)

▷ IdGroup(X0) (attribute)

▷ ExternalSetXMod(X0) (attribute)

More familiar attributes are Name and IdGroup. The name is formed by concatenating the names
of the source and range (if these exist). IdGroup( X0 ) returns a two-element list [ IdGroup(
Source(X0) ), IdGroup( Range(X0) ) ].

The ExternalSetXMod for a crossed module is the source group considered as a G-set of the
range group using the crossed module action.

The Display function is used to print details of 2d-groups.
The Print statements at the end of the example list the GAP representations and attributes of X5.

Example

gap> IdGroup( X5 );
[ [ 5, 1 ], [ 4, 1 ] ]
gap> ext := ExternalSetXMod( X5 );
<xset:[ (), (5,6,7,8,9), (5,7,9,6,8), (5,8,6,9,7), (5,9,8,7,6) ]>
gap> Orbits( ext );
[ [ () ], [ (5,6,7,8,9), (5,7,9,6,8), (5,9,8,7,6), (5,8,6,9,7) ] ]
gap> a := GeneratorsOfGroup( Range( X5 ) )[1]^2;
[ (5,6,7,8,9) ] -> [ (5,9,8,7,6) ]
gap> ImageElmXModAction( X5, (5,7,9,6,8), a );
(5,8,6,9,7)
gap> Print( RepresentationsOfObject(X5), "\n" );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "IsPreXModObj" ]
gap> Print( KnownAttributesOfObject(X5), "\n" );
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[ "Name", "Range", "Source", "IdGroup", "Boundary", "Size2d", "XModAction",
"ExternalSetXMod", "HigherDimension" ]

2.2 Properties of crossed modules

The underlying category structures for the objects constructed in this chapter follow the se-
quence Is2DimensionalDomain; Is2DimensionalMagma; Is2DimensionalMagmaWithOne;
Is2DimensionalMagmaWithInverses, mirroring the situation for (one-dimensional) groups.
From these we construct Is2DimensionalSemigroup, Is2DimensionalMonoid and
Is2DimensionalGroup.

There are then a variety of properties associated with crossed modules, starting with IsPreXMod
and IsXMod.

2.2.1 IsXMod

▷ IsXMod(X0) (property)

▷ IsPreXMod(X0) (property)

▷ IsPerm2DimensionalGroup(X0) (property)

▷ IsPc2DimensionalGroup(X0) (property)

▷ IsFp2DimensionalGroup(X0) (property)

A structure which has IsPerm2DimensionalGroup is a precrossed module or a pre-cat1-
group (see section 2.4) whose source and range are both permutation groups. The prop-
erties IsPc2DimensionalGroup, IsFp2DimensionalGroup are defined similarly. In the
example below we see that X5 has IsPreXMod, IsXMod and IsPerm2DimensionalGroup.
There are also properties corresponding to the various construction methods listed in sec-
tion 2.1: IsTrivialAction2DimensionalGroup; IsNormalSubgroup2DimensionalGroup;
IsCentralExtension2DimensionalGroup; IsAutomorphismGroup2DimensionalGroup;
IsAbelianModule2DimensionalGroup.

Example

gap> [ IsTrivial( X5 ), IsNonTrivial( X5 ), IsFinite( X5 ) ];
[ false, true, true ]
gap> kpoX5 := KnownPropertiesOfObject(X5);;
gap> ForAll( [ "IsTrivial", "IsNonTrivial", "IsFinite",
> "CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",
> "IsGeneratorsOfSemigroup", "IsPreXModDomain", "IsPreXMod", "IsXMod",
> "IsAutomorphismGroup2DimensionalGroup" ],
> s -> s in kpoX5 );
true

2.2.2 SubXMod

▷ SubXMod(X0, src, rng) (operation)

▷ TrivialSubXMod(X0) (attribute)



XMod 15

▷ NormalSubXMods(X0) (attribute)

With the standard crossed module constructors listed above as building blocks, sub-crossed mod-
ules, normal sub-crossed modules N ◁X , and also quotients X /N may be constructed. A sub-
crossed module S = (δ : N→M) is normal in X = (∂ : S→ R) if

• N,M are normal subgroups of S,R respectively,

• δ is the restriction of ∂ ,

• nr ∈ N for all n ∈ N, r ∈ R,

• (s−1)ms ∈ N for all m ∈M, s ∈ S.

These conditions ensure that M ⋉N is normal in the semidirect product R⋉ S. (Note that ⟨s,m⟩ =
(s−1)ms is a displacement: see Displacement (4.1.3).)

A method for IsNormal for precrossed modules is provided. See section 4.1 for factor crossed
modules and their natural morphisms.

The five normal subcrossed modules of X4 found in the following example are [id,id],
[k4,k4], [k4,a4], [a4,a4] and X4 itself.

Example

gap> s4 := Group( (1,2), (2,3), (3,4) );;
gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4) ] );;
gap> k4 := Subgroup( a4, [ (1,2)(3,4), (1,3)(2,4) ] );;
gap> SetName(s4,"s4"); SetName(a4,"a4"); SetName(k4,"k4");
gap> X4 := XModByNormalSubgroup( s4, a4 );
[a4->s4]
gap> Y4 := SubXMod( X4, k4, a4 );
[k4->a4]
gap> IsNormal(X4,Y4);
true
gap> NX4 := NormalSubXMods( X4 );;
gap> Length( NX4 );
5

2.2.3 KernelCokernelXMod

▷ KernelCokernelXMod(X0) (attribute)

Let X = (∂ : S→ R). If K ⩽ S is the kernel of ∂ , and J ⩽ R is the image of ∂ , form C = R/J.
Then (ν∂ |K : K→C) is a crossed module where ν : R→C,r 7→ Jr is the natural map, and the action
of C on K is given by kJr = kr.

Example

gap> d8d8 := Group( (1,2,3,4), (1,3), (5,6,7,8), (5,7) );;
gap> X88 := XModByAutomorphismGroup( d8d8 );;
gap> Size2d( X88 );
[ 64, 2048 ]
gap> Y88 := KernelCokernelXMod( X88 );;



XMod 16

gap> IdGroup(Y88);
[ [ 4, 2 ], [ 128, 928 ] ]
gap> StructureDescription( Y88 );
[ "C2 x C2", "(D8 x D8) : C2" ]

2.3 Pre-crossed modules

2.3.1 PreXModByBoundaryAndAction

▷ PreXModByBoundaryAndAction(bdy, act) (operation)

▷ PreXModWithTrivialRange(src, rng) (operation)

▷ SubPreXMod(X0, src, rng) (operation)

If axiom XMod 2 is not satisfied, the corresponding structure is known as a pre-crossed module.
A special case of this operation is when the range is a trivial group (not necessarily a subgroup

of the source), and so the action is trivial. This case will be used when constructing a special type of
double groupoid in Chapter 11.

Example

gap> b1 := (11,12,13,14,15,16,17,18);; b2 := (12,18)(13,17)(14,16);;
gap> d16 := Group( b1, b2 );;
gap> sk4 := Subgroup( d16, [ b1^4, b2 ] );;
gap> SetName( d16, "d16" ); SetName( sk4, "sk4" );
gap> bdy16 := GroupHomomorphismByImages( d16, sk4, [b1,b2], [b1^4,b2] );;
gap> aut1 := GroupHomomorphismByImages( d16, d16, [b1,b2], [b1^5,b2] );;
gap> aut2 := GroupHomomorphismByImages( d16, d16, [b1,b2], [b1,b2^4*b2] );;
gap> aut16 := Group( [ aut1, aut2 ] );;
gap> act16 := GroupHomomorphismByImages( sk4, aut16, [b1^4,b2], [aut1,aut2] );;
gap> P16 := PreXModByBoundaryAndAction( bdy16, act16 );
[d16->sk4]
gap> IsXMod( P16 );
false
gap> Q16 := PreXModWithTrivialRange( d16, d16 );
[d16->Group( [ () ] )]
gap> SQ16 := SubPreXMod( Q16, sk4, Group( [()] ) );;
gap> Display(SQ16);
Crossed module :-
: Source group has generators:

[ (11,15)(12,16)(13,17)(14,18), (12,18)(13,17)(14,16) ]
: Range group has generators:

[ () ]
: Boundary homomorphism maps source generators to:

[ (), () ]
The automorphism group is trivial
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2.3.2 PeifferSubgroup

▷ PeifferSubgroup(X0) (attribute)

▷ XModByPeifferQuotient(prexmod) (attribute)

The Peiffer subgroup P of a pre-crossed module X is the subgroup of ker(∂ ) generated by Peiffer
commutators

⌊s1,s2⌋ = (s−1
1 )∂ s2 s−1

2 s1 s2 = ⟨∂ s2,s1⟩ [s1,s2] .

Then P = (0 : P→ {1R}) is a normal sub-pre-crossed module of X and X /P = (∂ : S/P→ R) is
a crossed module.

In the following example the Peiffer subgroup is cyclic of size 4.
Example

gap> P := PeifferSubgroup( P16 );
Group( [ (11,15)(12,16)(13,17)(14,18), (11,17,15,13)(12,18,16,14) ] )
gap> X16 := XModByPeifferQuotient( P16 );
Peiffer([d16->sk4])
gap> Display( X16 );
Crossed module Peiffer([d16->sk4]) :-
: Source group has generators:

[ f1, f2 ]
: Range group has generators:

[ (11,15)(12,16)(13,17)(14,18), (12,18)(13,17)(14,16) ]
: Boundary homomorphism maps source generators to:

[ (12,18)(13,17)(14,16), (11,15)(12,16)(13,17)(14,18) ]
The automorphism group is trivial

gap> iso16 := IsomorphismPermGroup( Source( X16 ) );;
gap> S16 := Image( iso16 );
Group([ (1,2), (3,4) ])

2.4 Cat1-groups and pre-cat1-groups

In [Lod82], Loday reformulated the notion of a crossed module as a cat1-group, namely a group G
with a pair of endomorphisms t,h : G→ G having a common image R and satisfying certain axioms.
We find it computationally convenient to define a cat1-group C = (e; t,h : G→ R) as having source
group G, range group R, and three homomorphisms: two surjections t,h : G→ R and an embedding
e : R→ G satisfying:

Cat 1 : t ◦ e = h◦ e = idR, Cat 2 : [ker t,kerh] = {1G}.

It follows that t ◦ e ◦ h = h, h ◦ e ◦ t = t, t ◦ e ◦ t = t and h ◦ e ◦ h = h. (See section 2.5 for the case
when t,h are endomorphisms.)

2.4.1 Cat1Group

▷ Cat1Group(args) (function)

▷ PreCat1Group(args) (function)

▷ PreCat1GroupByTailHeadEmbedding(t, h, e) (operation)
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▷ PreCat1GroupWithIdentityEmbedding(t, h) (operation)

The global functions Cat1Group and PreCat1Group can be called in various ways.

• as Cat1Group(t,h,e); when t,h,e are three homomorphisms, which is equivalent to
PreCat1GroupByTailHeadEmbedding(t,h,e);

• as Cat1Group(t,h); when t,h are two endomorphisms, which is equivalent to
PreCat1GroupWithIdentityEmbedding(t,h);

• as Cat1Group(t); when t = h is an endomorphism, which is equivalent to
PreCat1GroupWithIdentityEmbedding(t,t);

• as Cat1Group(t,e); when t = h and e are homomorphisms, which is equivalent to
PreCat1GroupByTailHeadEmbedding(t,t,e);

• as Cat1Group(i,j,k); when i, j,k are integers, which is equivalent to Cat1Select(i,j,k);
as described in section 2.7.

Example

gap> g18gens := [ (1,2,3), (4,5,6), (2,3)(5,6) ];;
gap> s3agens := [ (7,8,9), (8,9) ];;
gap> g18 := Group( g18gens );; SetName( g18, "g18" );
gap> s3a := Group( s3agens );; SetName( s3a, "s3a" );
gap> t1 := GroupHomomorphismByImages(g18,s3a,g18gens,[(7,8,9),(),(8,9)]);
[ (1,2,3), (4,5,6), (2,3)(5,6) ] -> [ (7,8,9), (), (8,9) ]
gap> h1 := GroupHomomorphismByImages(g18,s3a,g18gens,[(7,8,9),(7,8,9),(8,9)]);
[ (1,2,3), (4,5,6), (2,3)(5,6) ] -> [ (7,8,9), (7,8,9), (8,9) ]
gap> e1 := GroupHomomorphismByImages(s3a,g18,s3agens,[(1,2,3),(2,3)(5,6)]);
[ (7,8,9), (8,9) ] -> [ (1,2,3), (2,3)(5,6) ]
gap> C18 := Cat1Group( t1, h1, e1 );
[g18=>s3a]

2.4.2 Source (for cat1-groups)

▷ Source(C) (attribute)

▷ Range(C) (attribute)

▷ TailMap(C) (attribute)

▷ HeadMap(C) (attribute)

▷ RangeEmbedding(C) (attribute)

▷ KernelEmbedding(C) (attribute)

▷ Boundary(C) (attribute)

▷ Name(C) (attribute)

▷ Size2d(C) (attribute)

These are the attributes of a cat1-group C in this implementation.
The maps t,h are often referred to as the source and target, but we choose to call them the tail and

head of C , because source is the GAP term for the domain of a function. The RangeEmbedding is the
embedding of R in G, the KernelEmbedding is the inclusion of the kernel of t in G, and the Boundary



XMod 19

is the restriction of h to the kernel of t. It is frequently the case that t = h, but not in the example C18
above.

Example

gap> [ Source( C18 ), Range( C18 ) ];
[ g18, s3a ]
gap> TailMap( C18 );
[ (1,2,3), (4,5,6), (2,3)(5,6) ] -> [ (7,8,9), (), (8,9) ]
gap> HeadMap( C18 );
[ (1,2,3), (4,5,6), (2,3)(5,6) ] -> [ (7,8,9), (7,8,9), (8,9) ]
gap> RangeEmbedding( C18 );
[ (7,8,9), (8,9) ] -> [ (1,2,3), (2,3)(5,6) ]
gap> Kernel( C18 );
Group([ (4,5,6) ])
gap> KernelEmbedding( C18 );
[ (4,5,6) ] -> [ (4,5,6) ]
gap> Name( C18 );
"[g18=>s3a]"
gap> Size2d( C18 );
[ 18, 6 ]
gap> StructureDescription( C18 );
[ "(C3 x C3) : C2", "S3" ]

The next four subsections contain some more constructors for cat1-groups.

2.4.3 DiagonalCat1Group

▷ DiagonalCat1Group(genG) (operation)

This operation constructs examples of cat1-groups of the form G×G⇒ G. The tail map is the
identity on the first factor and kills of the second, while the head map does the reverse. The range
embedding maps G to the diagonal in G×G. The corresponding crossed module is isomorphic to the
identity crossed module on G.

Example

gap> C4 := DiagonalCat1Group( [ (1,2,3), (2,3,4) ] );;
gap> SetName( Source(C4), "a4a4" ); SetName( Range(C4_, "a4d" );
gap> Display( C4 );
Cat1-group [a4a4=>a4d] :-
: Source group a4a4 has generators:

[ (1,2,3), (2,3,4), (5,6,7), (6,7,8) ]
: Range group a4d has generators:

[ ( 9,10,11), (10,11,12) ]
: tail homomorphism maps source generators to:

[ ( 9,10,11), (10,11,12), (), () ]
: head homomorphism maps source generators to:

[ (), (), ( 9,10,11), (10,11,12) ]
: range embedding maps range generators to:

[ (1,2,3)(5,6,7), (2,3,4)(6,7,8) ]
: kernel has generators:
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[ (5,6,7), (6,7,8) ]
: boundary homomorphism maps generators of kernel to:

[ ( 9,10,11), (10,11,12) ]
: kernel embedding maps generators of kernel to:

[ (5,6,7), (6,7,8) ]

2.4.4 TransposeCat1Group

▷ TransposeCat1Group(C0) (attribute)

▷ TransposeIsomorphism(C0) (attribute)

The transpose of a cat1-group C has the same source, range and embedding, but has the tail and
head maps interchanged. The TransposeIsomorphism gives the isomorphism between the two.

Example

gap> R4 := TransposeCat1Group( C4 );
[a4a4=>a4d]
gap> Boundary( R4 );
[ (2,3,4), (1,2,3) ] -> [ (10,11,12), (9,10,11) ]
gap> TailMap( R4 ) = HeadMap( R4 );
false
gap> TailMap( R4 ) = HeadMap( C4 );
true
gap> MappingGeneratorsImages( TransposeIsomorphism(C4) );
[ [ [ (1,2,3), (2,3,4), (5,6,7), (6,7,8) ],

[ (5,6,7), (6,7,8), (1,2,3), (2,3,4) ] ],
[ [ (9,10,11), (10,11,12) ], [ (9,10,11), (10,11,12) ] ] ]

2.4.5 Cat1GroupByPeifferQuotient

▷ Cat1GroupByPeifferQuotient(P) (operation)

If C = (e; t,h : G→ R) is a pre-cat1-group, its Peiffer subgroup is P = [ker t,kerh] and the asso-
ciated cat1-group C2 has source G/P. In the example, t = h : s4→ c2 with ker t = kerh = a4 and
P = [a4,a4] = k4, so that G/P = s4/k4∼= s3.

Example

gap> s4 := Group( (1,2,3), (3,4) );; SetName( s4, "s4" );
gap> h := GroupHomomorphismByImages( s4, s4, [(1,2,3),(3,4)], [(),(3,4)] );;
gap> c2 := Image( h );; SetName( c2, "c2" );
gap> C := PreCat1Group( h, h );
[s4=>c2]
gap> P := PeifferSubgroupPreCat1Group( C );
Group([ (1,3)(2,4), (1,2)(3,4) ])
gap> C2 := Cat1GroupByPeifferQuotient( C );
[Group( [ f1, f2 ] )=>c2]
gap> StructureDescription( C2 );
[ "S3", "C2" ]
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gap> rec2 := PreXModRecordOfPreCat1Group( C );;
gap> XC := rec2.prexmod;;
gap> StructureDescription( XC );
[ "A4", "C2" ]
gap> XC2 := XModByPeifferQuotient( XC );;
gap> StructureDescription( XC2 );
[ "C3", "C2" ]
gap> CXC2 := Cat1GroupOfXMod( XC2 );;
gap> StructureDescription( CXC2 );
[ "S3", "C2" ]
gap> IsomorphismCat1Groups( C2, CXC2 );
[[Group( [ f1, f2 ] ) => c2] => [(..|X..) => c2]]

2.4.6 SubCat1Group

▷ SubCat1Group(C1, S1) (operation)

▷ SubPreCat1Group(C1, S1) (operation)

S1 is a sub-cat1-group of C1 provided the source and range of S1 are subgroups of the source and
range of C1 and that the tail, head and embedding of S1 are the appropriate restrictions of those of C1.

Example

gap> s3 := Subgroup( s4, [(2,3),(3,4)] );;
gap> res := DoublyRestrictedMapping( h, s3, s3 );;
gap> S := PreCat1Group( res, res );
[Group( [ (2,3), (3,4) ] )=>Group( [ (3,4), (3,4) ] )]

2.4.7 DirectProduct (for cat1-groups)

▷ DirectProduct(C1, C2) (operation)

The direct product C1×C2 of two cat1-groups has source G1×G2 and range R1×R2. The tail, head
and embedding maps are t1× t2, h1×h2 and e1× e2. The embeddings and projections are constructed
automatically, and placed in the DirectProductInfo attribute, together with the two objects C1 and
C2.

The example constructs the product of two of the cat1-groups constructed above.
Example

gap> C418 := DirectProduct( C4, C18 );
[(a4a4xg18)=>(a4d x s3a)]
gap> infoC418 := DirectProductInfo( C418 );
rec(

embeddings := [ [[a4a4=>a4d] => [(a4a4xg18)=>(a4d x s3a)]],
[[g18=>s3a] => [(a4a4xg18)=>(a4d x s3a)]] ],

objects := [ [a4a4=>a4d], [g18=>s3a] ],
projections := [ [[(a4a4xg18)=>(a4d x s3a)] => [a4a4=>a4d]],

[[(a4a4xg18)=>(a4d x s3a)] => [g18=>s3a]] ] )



XMod 22

gap> t418 := TailMap( C418 );
[ (1,2,3), (2,3,4), (5,6,7), (6,7,8), (9,10,11), (12,13,14), (10,11)(13,14)
] -> [ (1,2,3), (2,3,4), (), (), (5,6,7), (), (6,7) ]

gap> h418 := HeadMap( C418 );
[ (1,2,3), (2,3,4), (5,6,7), (6,7,8), (9,10,11), (12,13,14), (10,11)(13,14)
] -> [ (), (), (1,2,3), (2,3,4), (5,6,7), (5,6,7), (6,7) ]

gap> e418 := RangeEmbedding( C418 );
[ (1,2,3), (2,3,4), (5,6,7), (6,7) ] -> [ (1,2,3)(5,6,7), (2,3,4)(6,7,8),

(9,10,11), (10,11)(13,14) ]

2.5 Properties of cat1-groups and pre-cat1-groups

Many of the properties listed in section 2.2 apply to pre-cat1-groups and to cat1-groups since these are
also 2d-groups. There are also more specific properties.

2.5.1 IsCat1Group

▷ IsCat1Group(C0) (property)

▷ IsPreXCat1Group(C0) (property)

▷ IsIdentityCat1Group(C0) (property)

IsIdentityCat1Group(C0) is true when the head and tail maps of C0 are identity mappings.
Example

gap> G8 := SmallGroup( 288, 956 ); SetName( G8, "G8" );
<pc group of size 288 with 7 generators>
gap> d12 := DihedralGroup( 12 ); SetName( d12, "d12" );
<pc group of size 12 with 3 generators>
gap> a1 := d12.1;; a2 := d12.2;; a3 := d12.3;; a0 := One( d12 );;
gap> gensG8 := GeneratorsOfGroup( G8 );;
gap> t8 := GroupHomomorphismByImages( G8, d12, gensG8,
> [ a0, a1*a3, a2*a3, a0, a0, a3, a0 ] );;
gap> h8 := GroupHomomorphismByImages( G8, d12, gensG8,
> [ a1*a2*a3, a0, a0, a2*a3, a0, a0, a3^2 ] );;
gap> e8 := GroupHomomorphismByImages( d12, G8, [a1,a2,a3],
> [ G8.1*G8.2*G8.4*G8.6^2, G8.3*G8.4*G8.6^2*G8.7, G8.6*G8.7^2 ] );
[ f1, f2, f3 ] -> [ f1*f2*f4*f6^2, f3*f4*f6^2*f7, f6*f7^2 ]
gap> C8 := PreCat1GroupByTailHeadEmbedding( t8, h8, e8 );
[G8=>d12]
gap> IsCat1Group( C8 );
true
gap> KnownPropertiesOfObject( C8 );
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",

"IsGeneratorsOfSemigroup", "IsPreCat1Domain", "IsPc2DimensionalGroup",
"IsPreXMod", "IsPreCat1Group", "IsCat1Group", "IsIdentityPreCat1Group",
"IsPreCat1GroupWithIdentityEmbedding" ]
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2.5.2 IsPreCat1GroupWithIdentityEmbedding

▷ IsPreCat1GroupWithIdentityEmbedding(C0) (property)

▷ IsomorphicPreCat1GroupWithIdentityEmbedding(C0) (attribute)

▷ IsomorphismToPreCat1GroupWithIdentityEmbedding(C0) (attribute)

IsPreCat1GroupWithIdentityEmbedding(C0) is true when the range embedding of C0 is an
inclusion mapping. (This property used to be called IsPreCat1GroupByEndomorphisms but, as the
example below shows, when the tail and head maps are endomorphisms the range embedding need not
be an inclusion.) When this is not the case, replacing t,h,e by t ∗ e,h∗ e and the inclusion mapping of
the image of e gives an isomorphic cat1-group for which IsPreCat1GroupWithIdentityEmbedding
is true. This is the IsomorphicPreCat1GroupWithIdentityEmbedding of C0 and
IsomorphismToPreCat1GroupWithIdentityEmbedding is the isomorphism between them.
(See the next chapter for mappings of cat1-groups.)

Example

gap> G5 := Group( (1,2,3,4,5) );;
gap> t := GroupHomomorphismByImages( G5, G5, [(1,2,3,4,5)], [(1,5,4,3,2)] );;
gap> PC5 := PreCat1GroupByTailHeadEmbedding( t, t, t );
[Group( [ (1,2,3,4,5) ] )=>Group( [ (1,2,3,4,5) ] )]
gap> IsPreCat1GroupWithIdentityEmbedding( PC5 );
false
gap> IPC5 := IsomorphicPreCat1GroupWithIdentityEmbedding( PC5 );
[Group( [ (1,2,3,4,5) ] )=>Group( [ (1,2,3,4,5) ] )]
gap> TailMap( IPC5 ); RangeEmbedding( IPC5 );
[ (1,2,3,4,5) ] -> [ (1,2,3,4,5) ]
[ (1,2,3,4,5) ] -> [ (1,2,3,4,5) ]

2.5.3 Cat1GroupOfXMod

▷ Cat1GroupOfXMod(X0) (attribute)

▷ XModOfCat1Group(C0) (attribute)

▷ PreCat1GroupRecordOfPreXMod(P0) (attribute)

▷ PreXModRecordOfPreCat1Group(P0) (attribute)

The category of crossed modules is equivalent to the category of cat1-groups, and the functors
between these two categories may be described as follows. Starting with the crossed module X =
(∂ : S→ R) the group G is defined as the semidirect product G = R⋉S using the action from X , with
multiplication rule

(r1,s1)(r2,s2) = (r1r2,s1
r2s2).

The structural morphisms are given by

t(r,s) = r, h(r,s) = r(∂ s), er = (r,1).

On the other hand, starting with a cat1-group C = (e; t,h : G→ R), we define S = ker t, the range R is
unchanged, and ∂ = h |S. The action of R on S is conjugation in G via the embedding of R in G.

As from version 2.74, the attribute PreCat1GroupRecordOfPreXMod of a pre-crossed modute
X = (∂ : S→ R) returns a record with fields
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• .precat1, the pre-cat1-group C = (e; t,h : G→ R) of X , where G = R⋉S;

• .iscat1, true if C is a cat1-group;

• .xmodSourceEmbedding, the image S′ of S in G;

• .xmodSourceEmbeddingIsomorphism, the isomorphism S→ S′;

• .xmodRangeEmbedding, the image R′ of R in G;

• .xmodRangeEmbeddingIsomorphism, the isomorphism R→ R′;
Example

gap> X8 := XModOfCat1Group( C8 );;
gap> Display( X8 );

Crossed module X([G8=>d12]) :-
: Source group has generators:

[ f1, f4, f5, f7 ]
: Range group d12 has generators:

[ f1, f2, f3 ]
: Boundary homomorphism maps source generators to:

[ f1*f2*f3, f2*f3, <identity> of ..., f3^2 ]
: Action homomorphism maps range generators to automorphisms:

f1 --> { source gens --> [ f1*f5, f4*f5, f5, f7^2 ] }
f2 --> { source gens --> [ f1*f5*f7^2, f4, f5, f7 ] }
f3 --> { source gens --> [ f1*f7, f4, f5, f7 ] }
These 3 automorphisms generate the group of automorphisms.

: associated cat1-group is [G8=>d12]

gap> StructureDescription(X8);
[ "D24", "D12" ]

2.6 Enumerating cat1-groups with a given source

As the size of a group G increases, the number of cat1-groups with source G increases rapidly. How-
ever, one is usually only interested in the isomorphism classes of cat1-groups with source G. An
iterator AllCat1GroupsIterator is provided, which runs through the various cat1-groups. This
iterator finds, for each subgroup R of G, the cat1-groups with range R. It does this by running
through the AllSubgroupsIterator(G) provided by the Utils package, and then using the iterator
AllCat1GroupsWithImageIterator(G,R).

2.6.1 AllCat1GroupsWithImage

▷ AllCat1GroupsWithImage(G, R) (operation)

▷ AllCat1GroupsWithImageIterator(G, R) (operation)

▷ AllCat1GroupsWithImageNumber(G, R) (attribute)

▷ AllCat1GroupsWithImageUpToIsomorphism(G, R) (operation)
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The iterator AllCat1GroupsWithImageIterator(G,R) iterates through all the cat1-groups with
source G and range R. The attribute AllCat1GroupsWithImageNumber(G) runs through this iterator
to count the number nR of these cat1-groups. The operation AllCat1GroupsWithImage(G) returns
a list containing these nR cat1-groups. Since these lists can get very long, this operation should only
be used for simple cases. The operation AllCat1GroupsWithImageUpToIsomorphism(G) returns
representatives of the isomorphism classes of these cat1-groups.

Example

gap> d12 := DihedralGroup( IsPermGroup, 12 ); SetName( d12, "d12" );
Group([ (1,2,3,4,5,6), (2,6)(3,5) ])
gap> c2 := Subgroup( d12, [ (1,6)(2,5)(3,4) ] );;
gap> AllCat1GroupsWithImageNumber( d12, c2 );
1
gap> L12 := AllCat1GroupsWithImage( d12, c2 );
[ [d12=>Group( [ (), (1,6)(2,5)(3,4) ] )] ]

2.6.2 AllCat1GroupsMatrix

▷ AllCat1GroupsMatrix(G) (attribute)

The operation AllCat1GroupsMatrix(G) constructs a symmetric matrix M with rows and
columns labelled by the idempotent endomorphisms ei on G, where Mi j = 2 if ei,e j combine to
form a cat1-group; Mi j = 1 if they only form a pre-cat1-group; and Mi j = 0 otherwise. The matrix
is automatically printed out with dots in place of zeroes.

In the example we see that the group QD16 has 10 idempotent endomorphisms and 5 cat1-groups,
all of which are symmetric (t = h), and a further 9 pre-cat1-groups, 5 of which are symmetric. (A
cat1-group and its transpose are not counted twice.) This operation is intended to be used to illustrate
how cat1-groups are formed, and should only be used with groups of low order.

The attribute AllCat1GroupsNumber(G) returns the number n of these cat1-groups.
Example

gap> qd16 := SmallGroup( 16, 8 );;
gap> AllCat1GroupsMatrix( qd16 );;
number of idempotent endomorphisms found = 10
number of cat1-groups found = 5
number of additional pre-cat1-groups found = 9
1.........
.21.......
.11.......
...21.....
...11.....
.....21...
.....11...
.......21.
.......11.
.........2
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2.6.3 AllCat1GroupsIterator

▷ AllCat1GroupsIterator(G) (operation)

▷ AllCat1GroupsUpToIsomorphism(G) (operation)

▷ AllCat1Groups(G) (operation)

The iterator AllCat1GroupsIterator(G) iterates through all the cat1-groups with source G.
The operation AllCat1Groups(G) returns a list containing these n cat1-groups. Since these
lists can get very long, this operation should only be used for simple cases. The operation
AllCat1GroupsUpToIsomorphism(G) returns representatives of the isomorphism classes of these
subgroups.

Example

gap> iter := AllCat1GroupsIterator( d12 );;
gap> AllCat1GroupsNumber( d12 );
12
gap> iso12 := AllCat1GroupsUpToIsomorphism( d12 );
[ [d12=>Group( [ (), (2,6)(3,5) ] )],

[d12=>Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )],
[d12=>Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )],
[d12=>Group( [ (1,2,3,4,5,6), (2,6)(3,5) ] )] ]

2.6.4 CatnGroupNumbers (for cat1-groups)

▷ CatnGroupNumbers(G) (attribute)

▷ CatnGroupLists(G) (attribute)

▷ InitCatnGroupRecords(G) (operation)

The attribute CatnGroupNumbers for a group G is a mutable record which stores numbers of cat1-
groups, cat2-groups, etc. as they are calculated. The field CatnGroupNumbers(G).idem is the number
of idempotent endomorphisms of G. Similarly, CatnGroupNumbers(G).cat1 is the number of cat1-
groups on G, while CatnGroupNumbers(G).iso1 is the number of isomorphism classes of these
cat1-groups. Also CatnGroupNumbers(G).symm is the number of cat1-groups whose TailMap is the
same as the HeadMap, while CatnGroupNumbers(G).siso is the number of isomorphism classes of
these symmetric cat1-groups. Symmetric cat1-groups are in one-one correspondence with symmetric
cat2-groups. The attribute CatnGroupLists is used for storing results of cat2-group calculations.

Example

gap> CatnGroupNumbers( d12 );
rec( cat1 := 12, idem := 21, iso1 := 4, siso := 4, symm := 12 )

2.7 Selection of a small cat1-group

The Cat1Group function may also be used to select a cat1-group from a data file. All cat1-structures
on groups of size up to 60 (ordered according to the GAP 4 numbering of small groups) are stored in a
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list in file cat1data.g. Global variables CAT1_LIST_MAX_SIZE := 60, CAT1_LIST_CLASS_SIZES
and CAT1_LIST_NUMBERS are also stored. The second of these just stores the number of isomorphism
classes of groups of size size. The third stores the numbers of isomorphism classes of cat1-groups
for each of these groups. The data is read into the list CAT1_LIST only when this function is called.

This data was available in early versions of XMod with groups up to order 70 covered. More
recently a larger range of groups has become available in the package HAP. The authors are indebted
to Van Luyen Le in Galway for pointing out a number of errors in the version of this list distributed
up to version 2.24 of this package.

2.7.1 Cat1Select

▷ Cat1Select(size, gpnum, num) (operation)

The function Cat1Select returns the cat1-group numbered num whose source is the group G :=
SmallGroup(size,gpnum). When |G| ⩽ 60 the data file in this package is used. For larger groups
SmallCat1Group (see 13.1) is called, accessing the datafile in package HAP.

The example below is the first case in which t ̸= h and the associated conjugation crossed module
is given by the normal subgroup c3 of s3.

Example

gap> L18 := Cat1Select( 18 );
Usage: Cat1Select( size, gpnum, num ); where gpnum <= 5
fail
gap> ## check the number of cat1-structures on the fourth group of order 18
gap> Cat1Select( 18, 4 );
Usage: Cat1Select( size, gpnum, num ); where num <= 4
fail
gap> ## select the second of these cat1-structures
gap> B18 := Cat1Select( 18, 4, 2 );
[(C3 x C3) : C2=>Group( [ f1, <identity> of ..., f3 ] )]
gap> ## convert from a pc-cat1-group to a permutation cat1-group
gap> iso18 := IsomorphismPermObject( B18 );;
gap> PB18 := Image( iso18 );;
gap> Display( PB18 );
Cat1-group :-
: Source group has generators:

[ (4,5,6), (1,2,3), (2,3)(5,6) ]
: Range group has generators:

[ (1,2,3), (2,3)(5,6) ]
: tail homomorphism maps source generators to:

[ (), (1,2,3), (2,3)(5,6) ]
: head homomorphism maps source generators to:

[ (), (1,2,3), (2,3)(5,6) ]
: range embedding maps range generators to:

[ (1,2,3), (2,3)(5,6) ]
: kernel has generators:

[ (4,5,6) ]
: boundary homomorphism maps generators of kernel to:

[ () ]
: kernel embedding maps generators of kernel to:

[ (4,5,6) ]
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: associated crossed module is [Group( [ (4,5,6) ] ) -> Group(
[ (1,2,3), (2,3)(5,6) ] )]
gap> convert the result to the associated permutation crossed module
gap> Y18 := XModOfCat1Group( PB18 );;
gap> Display( Y18 );
Crossed module :-
: Source group has generators:

[ (4,5,6) ]
: Range group has generators:

[ (1,2,3), (2,3)(5,6) ]
: Boundary homomorphism maps source generators to:

[ () ]
: Action homomorphism maps range generators to automorphisms:

(1,2,3) --> { source gens --> [ (4,5,6) ] }
(2,3)(5,6) --> { source gens --> [ (4,6,5) ] }
These 2 automorphisms generate the group of automorphisms.

: associated cat1-group is [Group( [ (4,5,6), (1,2,3), (2,3)(5,6)
] ) => Group( [ (1,2,3), (2,3)(5,6) ] )]

2.8 More functions for crossed modules and cat1-groups

Chapter 4 contains functions for quotient crossed modules; centre of a crossed module; commutator
and derived subcrossed modules; etc.

Here we mention two functions for groups which have been extended to the two-dimensional case.

2.8.1 IdGroup (for 2d-groups)

▷ IdGroup(2DimensionalGroup) (operation)

▷ StructureDescription(2DimensionalGroup) (operation)

These functions return two-element lists formed by applying the function to the source and range
of the 2d-group.

Example

gap> IdGroup( X8 );
[ [ 24, 6 ], [ 12, 4 ] ]
gap> StructureDescription( C8 );
[ "(S3 x D24) : C2", "D12" ]

There are also a number of functions which test for sub-structures.

2.8.2 IsSubXMod

▷ IsSubXMod(X0, S0) (operation)

▷ IsSubPreXMod(X0, S0) (operation)

▷ IsSubCat1Group(G0, R0) (operation)

▷ IsSubPreCat1Group(G0, R0) (operation)
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▷ IsSub2DimensionalGroup(G0, R0) (operation)

These functions test whether the second argument is a sub-2d-group of the first argument. The
examples refer back to sub-2d-groups created in sections 2.2 and 2.4.

Example

gap> IsSubXMod( X4, Y4 );
true
gap> IsSubPreCat1Group( C, S );
true

2.9 The group groupoid associated to a cat1-group

A group groupoid is an algebraic object which is both a groupoid and a group. The category of group
groupoids is equivalent to the categories of precrossed modules and precat1-groups. Starting with a
(pre)cat1-group C = (e; t,h : G→ R), we form the groupoid G having the elements of R as objects and
the elements of G as arrows. The arrow g has tail tg and head hg. G has one connected component for
each coset of tG in R.

The groupoid (partial) multiplication ∗ on these arrows is defined by:

(g1 : r1→ r2)∗ (g2 : r2→ r3) = (g1(er−1
2 )g2 : r1→ r3).

2.9.1 GroupGroupoid

▷ GroupGroupoid(precat1) (attribute)

The operation GroupGroupoid implements this construction. In the example we start with a
crossed module (C2

3 → S3), form the associated cat1-group (S3 ⋉C2
3 ⇒ S3), and then form the group

groupoid gpd33. Since the image of the boundary of the crossed module is C3, with index 2 in the
range, the groupoid has two connected components, and the root objects are {(),(12,13)}. The size of
the vertex groups is |ker t∩kerh|= 3, and the generators at the root objects are ()→ (4,5,6)(7,9,8)→
() and (12,13)→ (2,3)(4,6)(7,8)→ (12,13).

Example

gap> s3 := Group( (11,12), (12,13) );;
gap> c3c3 := Group( [ (14,15,16), (17,18,19) ] );;
gap> bdy := GroupHomomorphismByImages( c3c3, s3,
> [(14,15,16),(17,18,19)], [(11,12,13),(11,12,13)] );;
gap> a := GroupHomomorphismByImages( c3c3, c3c3,
> [(14,15,16),(17,18,19)], [(14,16,15),(17,19,18)] );;
gap> aut := Group( [a] );;
gap> act := GroupHomomorphismByImages( s3, aut, [(11,12),(12,13)], [a,a] );;
gap> X33 := XModByBoundaryAndAction( bdy, act );;
gap> C33 := Cat1GroupOfXMod( X33 );;
gap> G33 := Source( C33 );;
gap> gpd33 := GroupGroupoid( C33 );
groupoid with 2 pieces:
1: single piece groupoid with rays: < Group( [ ()>-(4,5,6)(7,9,8)->() ] ),
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[ (), (11,12,13), (11,13,12) ], [ ()>-()->(), ()>-(7,8,9)->(11,12,13),
()>-(7,9,8)->(11,13,12) ] >

2: single piece groupoid with rays: < Group(
[ (12,13)>-(2,3)(4,6)(7,8)->(12,13) ] ), [ (12,13), (11,12), (11,13) ],
[ (12,13)>-(2,3)(5,6)(8,9)->(12,13), (12,13)>-(2,3)(5,6)(7,9)->(11,13),

(12,13)>-(2,3)(5,6)(7,8)->(11,12) ] >

2.9.2 GroupGroupoidElement

▷ GroupGroupoidElement(precat1, root, g) (operation)

Since we need to define a second multiplication on the elements of G, we have to convert g ∈ G
into a new type of object, GroupGroupoidElementType, a record e with fields:

• e!.precat1, the precat1-group from which G was formed;

• e!.root, the root object of the component containing e;

• e!.element, the element g ∈ G;

• e!.tail, the tail object of the element e;

• e!.head, the head object of the element e;

• e!.tailid, the identity element at the tail object;

• e!.headid, the identity element at the head object;

In the example we pick a particular pair of elements g1,g2 ∈ G, construct group groupoid elements
e1,e2 from them, and show that g1 ∗ g2 and e1 ∗ e2 give very different results. (Warning: at present
iterators for object groups and homsets do not work.)

Example

gap> piece2 := Pieces( gpd33 )[2];;
gap> obs2 := piece2!.objects;
[ (12,13), (11,12), (11,13) ]
gap> RaysOfGroupoid( piece2 );
[ (12,13)>-(2,3)(5,6)(8,9)->(12,13), (12,13)>-(2,3)(5,6)(7,9)->(11,13),

(12,13)>-(2,3)(5,6)(7,8)->(11,12) ]
gap> g1 := (1,2)(5,6)(7,9);;
gap> g2 := (2,3)(4,5)(7,8);;
gap> g1 * g2;
(1,3,2)(4,5,6)(7,9,8)
gap> e1 := GroupGroupoidElement( C33, (12,13), g1 );
(11,12)>-(1,2)(5,6)(7,9)->(12,13)
gap> e2 := GroupGroupoidElement( C33, (12,13), g2 );
(12,13)>-(2,3)(4,5)(7,8)->(11,13)
gap> e1*e2;
(11,12)>-(1,2)(4,5)(8,9)->(11,13)
gap> e2^-1;
(11,13)>-(1,3)(4,6)(7,9)->(12,13)
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gap> obgp := ObjectGroup( gpd33, (11,12) );;
gap> GeneratorsOfGroup( obgp )[1];
(11,13)>-( 1, 3)( 4, 6)( 7, 8)->(11,13)
gap> Homset( gpd33, (11,12), (11,13) );
<homset (11,12) -> (11,13) with head group Group(
[ (11,12)>-( 1, 2)( 4, 6)( 7, 8)->(11,12) ] )>



Chapter 3

2d-mappings

3.1 Morphisms of 2-dimensional groups

This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

3.1.1 Source (for 2d-group mappings)

▷ Source(map) (attribute)

▷ Range(map) (attribute)

▷ SourceHom(map) (attribute)

▷ RangeHom(map) (attribute)

Morphisms of 2-dimensional groups are implemented as 2-dimensional mappings. These have a
pair of 2-dimensional groups as source and range, together with two group homomorphisms mapping
between corresponding source and range groups. These functions return fail when invalid data is
supplied.

3.2 Morphisms of pre-crossed modules

3.2.1 IsXModMorphism

▷ IsXModMorphism(map) (property)

▷ IsPreXModMorphism(map) (property)

A morphism between two pre-crossed modules X1 = (∂1 : S1 → R1) and X2 = (∂2 : S2 → R2)
is a pair (σ ,ρ), where σ : S1 → S2 and ρ : R1 → R2 commute with the two boundary maps and are
morphisms for the two actions:

∂2 ◦σ = ρ ◦∂1, σ(sr) = (σs)ρr.

Here σ is the SourceHom (3.1.1) and ρ is the RangeHom (3.1.1) of the morphism. When X1 = X2
and σ ,ρ are automorphisms then (σ ,ρ) is an automorphism of X1. The group of automorphisms is
denoted by Aut(X1).

32
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3.2.2 IsInjective (for pre-xmod morphisms)

▷ IsInjective(map) (method)

▷ IsSurjective(map) (method)

▷ IsSingleValued(map) (method)

▷ IsTotal(map) (method)

▷ IsBijective(map) (method)

▷ IsEndo2DimensionalMapping(map) (property)

The usual properties of mappings are easily checked. It is usually sufficient to verify that both the
SourceHom (3.1.1) and the RangeHom (3.1.1) have the required property.

3.2.3 XModMorphism

▷ XModMorphism(args) (function)

▷ XModMorphismByGroupHomomorphisms(X1, X2, sigma, rho) (operation)

▷ PreXModMorphism(args) (function)

▷ PreXModMorphismByGroupHomomorphisms(P1, P2, sigma, rho) (operation)

▷ InclusionMorphism2DimensionalDomains(X1, S1) (operation)

▷ InnerAutomorphismXMod(X1, r) (operation)

▷ IdentityMapping(X1) (attribute)

These are the constructors for morphisms of pre-crossed and crossed modules.
In the following example we construct a simple automorphism of the crossed module X5 con-

structed in the previous chapter.
Example

gap> sigma5 := GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ]
[ (5,9,8,7,6) ] );;

gap> rho5 := IdentityMapping( Range( X1 ) );
IdentityMapping( PAut(c5) )
gap> mor5 := XModMorphism( X5, X5, sigma5, rho5 );
[[c5->Aut(c5))] => [c5->Aut(c5))]]
gap> Display( mor5 );
Morphism of crossed modules :-
: Source = [c5->Aut(c5)] with generating sets:

[ (5,6,7,8,9) ]
[ GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ], [ (5,7,9,6,8) ] ) ]

: Range = Source
: Source Homomorphism maps source generators to:

[ (5,9,8,7,6) ]
: Range Homomorphism maps range generators to:

[ GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ], [ (5,7,9,6,8) ] ) ]
gap> IsAutomorphism2DimensionalDomain( mor5 );
true
gap> Order( mor5 );
2
gap> RepresentationsOfObject( mor5 );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "Is2DimensionalMappingRep" ]
gap> KnownPropertiesOfObject( mor5 );
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[ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",
"IsSingleValued", "IsInjective", "IsSurjective", "RespectsMultiplication",
"IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2DimensionalDomain",
"IsAutomorphism2DimensionalDomain" ]

gap> KnownAttributesOfObject( mor5 );
[ "Name", "Order", "Range", "Source", "SourceHom", "RangeHom" ]

3.2.4 IsomorphismPerm2DimensionalGroup (for pre-xmod morphisms)

▷ IsomorphismPerm2DimensionalGroup(obj) (attribute)

▷ IsomorphismPc2DimensionalGroup(obj) (attribute)

▷ IsomorphismByIsomorphisms(D, list) (operation)

When D is a 2-dimensional domain with source S and range R and σ : S → S′, ρ : R → R′

are isomorphisms, then IsomorphismByIsomorphisms(D,[sigma,rho]) returns an isomorphism
(σ ,ρ) : D → D ′ where D ′ has source S′ and range R′. Be sure to test IsBijective for the two
functions σ ,ρ before applying this operation.

Using IsomorphismByIsomorphisms with a pair of isomorphisms obtained using
IsomorphismPermGroup or IsomorphismPcGroup, we may construct a crossed module or a
cat1-group of permutation groups or pc-groups.

Example

gap> q8 := SmallGroup(8,4);; ## quaternion group
gap> XAq8 := XModByAutomorphismGroup( q8 );
[Group( [ f1, f2, f3 ] )->Group( [ Pcgs([ f1, f2, f3 ]) -> [ f1*f2, f2, f3 ],

Pcgs([ f1, f2, f3 ]) -> [ f2, f1*f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1*f3, f2, f3 ],
Pcgs([ f1, f2, f3 ]) -> [ f1, f2*f3, f3 ] ] )]

gap> iso := IsomorphismPerm2DimensionalGroup( XAq8 );;
gap> YAq8 := Image( iso );
[Group( [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8)
] )->Group( [ (1,3,4,6), (1,2,3)(4,5,6), (1,4)(3,6), (2,5)(3,6) ] )]

gap> s4 := SymmetricGroup(4);;
gap> isos4 := IsomorphismGroups( Range(YAq8), s4 );;
gap> id := IdentityMapping( Source( YAq8 ) );;
gap> IsBijective( id );; IsBijective( isos4 );;
gap> mor := IsomorphismByIsomorphisms( YAq8, [id,isos4] );;
gap> ZAq8 := Image( mor );
[Group( [ (1,2,4,6)(3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8)
] )->SymmetricGroup( [ 1 .. 4 ] )]

3.2.5 MorphismOfPullback (for a crossed module by pullback)

▷ MorphismOfPullback(xmod) (attribute)

Let X1 = (λ : L→ N) be the pullback crossed module obtained from a crossed module X0 = (µ :
M→ P) and a group homomorphism ν : N → P. Then the associated crossed module morphism is
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(κ,ν) : X1→X0 where κ is the projection from L to M.

3.3 Morphisms of pre-cat1-groups

A morphism of pre-cat1-groups from C1 = (e1; t1,h1 : G1→ R1) to C2 = (e2; t2,h2 : G2→ R2) is a pair
(γ,ρ) where γ : G1→ G2 and ρ : R1→ R2 are homomorphisms satisfying

h2 ◦ γ = ρ ◦h1, t2 ◦ γ = ρ ◦ t1, e2 ◦ρ = γ ◦ e1.

3.3.1 IsCat1GroupMorphism

▷ IsCat1GroupMorphism(map) (property)

▷ IsPreCat1GroupMorphism(map) (property)

▷ Cat1GroupMorphism(args) (function)

▷ Cat1GroupMorphismByGroupHomomorphisms(C1, C2, gamma, rho) (operation)

▷ PreCat1GroupMorphism(args) (function)

▷ PreCat1GroupMorphismByGroupHomomorphisms(P1, P2, gamma, rho) (operation)

▷ InclusionMorphism2DimensionalDomains(C1, S1) (operation)

▷ InnerAutomorphismCat1(C1, r) (operation)

▷ IdentityMapping(C1) (attribute)

For an example we form a second cat1-group C2=[g18=>s3a], similar to C1 in 2.4.1, then con-
struct an isomorphism (γ,ρ) between them.

Example

gap> t3 := GroupHomomorphismByImages(g18,s3a,g18gens,[(),(7,8,9),(8,9)]);;
gap> e3 := GroupHomomorphismByImages(s3a,g18,s3agens,[(4,5,6),(2,3)(5,6)]);;
gap> C3 := Cat1Group( t3, h1, e3 );;
gap> imgamma := [ (4,5,6), (1,2,3), (2,3)(5,6) ];;
gap> gamma := GroupHomomorphismByImages( g18, g18, g18gens, imgamma );;
gap> rho := IdentityMapping( s3a );;
gap> phi3 := Cat1GroupMorphism( C18, C3, gamma, rho );;
gap> Display( phi3 );;
Morphism of cat1-groups :-
: Source = [g18=>s3a] with generating sets:

[ (1,2,3), (4,5,6), (2,3)(5,6) ]
[ (7,8,9), (8,9) ]

: Range = [g18=>s3a] with generating sets:
[ (1,2,3), (4,5,6), (2,3)(5,6) ]
[ (7,8,9), (8,9) ]

: Source Homomorphism maps source generators to:
[ (4,5,6), (1,2,3), (2,3)(5,6) ]

: Range Homomorphism maps range generators to:
[ (7,8,9), (8,9) ]

3.3.2 Cat1GroupMorphismOfXModMorphism

▷ Cat1GroupMorphismOfXModMorphism(IsXModMorphism) (attribute)

▷ XModMorphismOfCat1GroupMorphism(IsCat1GroupMorphism) (attribute)
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If (σ ,ρ) : X1 →X2 and C1,C2 are the cat1-groups accociated to X1,X2, then the associated
morphism of cat1-groups is (γ,ρ) where γ(r1,s1) = (ρr1,σs1).

Similarly, given a morphism (γ,ρ) : C1→ C2 of cat1-groups, the associated morphism of crossed
modules is (σ ,ρ) : X1→X2 where σs1 = γ(1,s1). .

Example

gap> phi5 := Cat1GroupMorphismOfXModMorphism( mor5 );
[[(Aut(c5) |X c5)=>Aut(c5)] => [(Aut(c5) |X c5)=>Aut(c5)]]
gap> mor3 := XModMorphismOfCat1GroupMorphism( phi3 );;
gap> Display( mor3 );
Morphism of crossed modules :-
: Source = xmod([g18=>s3a]) with generating sets:

[ (4,5,6) ]
[ (7,8,9), (8,9) ]

: Range = xmod([g18=>s3a]) with generating sets:
[ (1,2,3) ]
[ (7,8,9), (8,9) ]

: Source Homomorphism maps source generators to:
[ (1,2,3) ]

: Range Homomorphism maps range generators to:
[ (7,8,9), (8,9) ]

3.3.3 IsomorphismPermObject

▷ IsomorphismPermObject(obj) (function)

▷ IsomorphismPerm2DimensionalGroup(2DimensionalGroup) (attribute)

▷ IsomorphismFp2DimensionalGroup(2DimensionalGroup) (attribute)

▷ IsomorphismPc2DimensionalGroup(2DimensionalGroup) (attribute)

▷ RegularActionHomomorphism2DimensionalGroup(2DimensionalGroup) (attribute)

The global function IsomorphismPermObject calls IsomorphismPerm2DimensionalGroup,
which constructs a morphism whose SourceHom (3.1.1) and RangeHom (3.1.1) are calculated using
IsomorphismPermGroup on the source and range.

The global function RegularActionHomomorphism2DimensionalGroup is similar, but uses
RegularActionHomomorphism in place of IsomorphismPermGroup.

Example

gap> iso8 := IsomorphismPerm2DimensionalGroup( C8 );
[[G8=>d12] => [..]]

3.3.4 SmallerDegreePermutationRepresentation2DimensionalGroup (for perm 2d-
groups)

▷ SmallerDegreePermutationRepresentation2DimensionalGroup(Perm2DimensionalGroup)
(attribute)
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The attribute SmallerDegreePermutationRepresentation2DimensionalGroup is obtained
by calling SmallerDegreePermutationRepresentation on the source and range to obtain the an
isomorphism for the pre-xmod or pre-cat1-group.

Example

gap> G := Group( (1,2,3,4)(5,6,7,8) );;
gap> H := Subgroup( G, [ (1,3)(2,4)(5,7)(6,8) ] );;
gap> XG := XModByNormalSubgroup( G, H );
[Group( [ (1,3)(2,4)(5,7)(6,8) ] )->Group( [ (1,2,3,4)(5,6,7,8) ] )]
gap> sdpr := SmallerDegreePermutationRepresentation2DimensionalGroup( XG );;
gap> Range( sdpr );
[Group( [ (1,2) ] )->Group( [ (1,2,3,4) ] )]

3.4 Operations on morphisms

3.4.1 CompositionMorphism

▷ CompositionMorphism(map2, map1) (operation)

Composition of morphisms (written (<map1> * <map2>) when maps act on the right) calls the
CompositionMorphism function for maps (acting on the left), applied to the appropriate type of 2d-
mapping.

Example

gap> H8 := Subgroup(G8,[G8.3,G8.4,G8.6,G8.7]); SetName( H8, "H8" );
Group([ f3, f4, f6, f7 ])
gap> c6 := Subgroup( d12, [b,c] ); SetName( c6, "c6" );
Group([ f2, f3 ])
gap> SC8 := Sub2DimensionalGroup( C8, H8, c6 );
[H8=>c6]
gap> IsCat1Group( SC8 );
true
gap> inc8 := InclusionMorphism2DimensionalDomains( C8, SC8 );
[[H8=>c6] => [G8=>d12]]
gap> CompositionMorphism( iso8, inc );
[[H8=>c6] => P[G8=>d12]]

3.4.2 Kernel (for 2d-mappings)

▷ Kernel(map) (operation)

▷ Kernel2DimensionalMapping(map) (attribute)

The kernel of a morphism of crossed modules is a normal subcrossed module whose groups are
the kernels of the source and target homomorphisms. The inclusion of the kernel is a standard example
of a crossed square, but these have not yet been implemented.
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Example

gap> c2 := Group( (19,20) );
Group([ (19,20) ])
gap> X0 := XModByNormalSubgroup( c2, c2 ); SetName( X0, "X0" );
[Group( [ (19,20) ] )->Group( [ (19,20) ] )]
gap> SX8 := Source( X8 );;
gap> genSX8 := GeneratorsOfGroup( SX8 );
[ f1, f4, f5, f7 ]
gap> sigma0 := GroupHomomorphismByImages(SX8,c2,genSX8,[(19,20),(),(),()]);
[ f1, f4, f5, f7 ] -> [ (19,20), (), (), () ]
gap> rho0 := GroupHomomorphismByImages(d12,c2,[a1,a2,a3],[(19,20),(),()]);
[ f1, f2, f3 ] -> [ (19,20), (), () ]
gap> mor0 := XModMorphism( X8, X0, sigma0, rho0 );;
gap> K0 := Kernel( mor0 );;
gap> StructureDescription( K0 );
[ "C12", "C6" ]

3.5 Quasi-isomorphisms

A morphism of crossed modules φ : X = (∂ : S→R)→X ′= (∂ ′ : S′→R′) induces homomorphisms
π1(φ) : π1(∂ )→ π1(∂

′) and π2(φ) : π2(∂ )→ π2(∂
′). A morphism φ is a quasi-isomorphism if both

π1(φ) and π2(φ) are isomorphisms. Two crossed modules X ,X ′ are quasi-isomorphic is there exists
a sequence of quasi-isomorphisms

X = X1 ↔ X2 ↔ X3 ↔ ··· ←→ Xℓ = X ′

of length ℓ− 1. Here Xi↔X j means that either Xi→X j or X j →Xi. When X ,X ′ are quasi-
isomorphic we write X ≃X ′. Clearly ≃ is an equivalence relation. Mac\ Lane and Whitehead in
[MLW50] showed that there is a one-to-one correspondence between homotopy 2-types and quasi-
isomorphism classes. We say that X represents a trivial quasi-isomorphism class if ∂ = 0.

Two cat1-groups are quasi-isomorphic if their corresponding crossed modules are. The procedure
for constructing a representative for the quasi-isomorphism class of a cat1-group C , as described by
Ellis and Le in [EL14], is as follows. The quotient process consists of finding all normal sub-crossed
modules N of the crossed module X associated to C ; constructing the quotient crossed module
morphisms ν : X →X /N ; and converting these ν to morphisms from C .

The sub-crossed module process consists of finding all sub-crossed modules S of X such that
the inclusion ι : S →X is a quasi-isomorphism; then converting ι to a morphism to C .

The procedure for finding all quasi-isomorphism reductions consists of repeating the quotient
process, followed by the sub-crossed module process, until no further reductions are possible.

It may happen that C1 ≃ C2 without either having a quasi-isomorphism reduction. In this case it
is necessary to find a suitable C3 with reductions C3→ C1 and C3→ C2. No such automated process
is available in XMod.

Functions for these computations were first implemented in the package HAP and are available as
QuotientQuasiIsomorph, SubQuasiIsomorph and QuasiIsomorph.
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3.5.1 QuotientQuasiIsomorphism

▷ QuotientQuasiIsomorphism(cat1, bool) (operation)

This function implements the quotient process. The second parameter is a boolean which, when
true, causes the results of some intermediate calculations to be printed. The output shows the identity
of the reduced cat1-group, if there is one.

Example

gap> C18a := Cat1Select( 18, 4, 4 );;
gap> StructureDescription( C18a );
[ "(C3 x C3) : C2", "S3" ]
gap> QuotientQuasiIsomorphism( C18a, true );
quo: [ f2 ][ f3 ], [ "1", "C2" ]
[ [ 2, 1 ], [ 2, 1 ] ], [ 2, 1, 1 ]
[ [ 2, 1, 1 ] ]

3.5.2 SubQuasiIsomorphism

▷ SubQuasiIsomorphism(cat1, bool) (operation)

This function implements the sub-crossed module process.
Example

gap> SubQuasiIsomorphism( C18a, false );
[ [ 2, 1, 1 ], [ 2, 1, 1 ], [ 2, 1, 1 ] ]

3.5.3 QuasiIsomorphism

▷ QuasiIsomorphism(cat1, list, bool) (operation)

This function implements the general process.
Example

gap> L18a := QuasiIsomorphism( C18a, [18,4,4], false );
[ [ 2, 1, 1 ], [ 18, 4, 4 ] ]

The logs above show that C18a has just one normal sub-crossed module N leading to a reduction,
and that there are three sub-crossed modules S all giving the same reduction. The conclusion is that
C18a is quasi-isomorphic to the identity cat1-group on the cyclic group of order 2.
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Isoclinism of groups and crossed modules

This chapter describes some functions written by Alper Odabaş and Enver Uslu, and reported in their
paper [IOU16]. Section 4.1 contains some additional basic functions for crossed modules, constructing
quotients, centres, centralizers and normalizers. In Sections 4.2 and 4.3 there are functions dealing
specifically with isoclinism for groups and for crossed modules. Since these functions represent a
recent addition to the package (as of November 2015), the function names are liable to change in
future versions. The notion of isoclinism has been crucial to the enumeration of groups of prime
power order, see for example James, Newman and O’Brien, [JNO90].

4.1 More operations for crossed modules

4.1.1 FactorPreXMod

▷ FactorPreXMod(X1, X2) (operation)

▷ NaturalMorphismByNormalSubPreXMod(X1, X2) (operation)

When X2 = (∂2 : S2 → R2) is a normal sub-precrossed module of X1 = (∂1 : S1 → R1), then
the quotient precrossed module is (∂ : S2/S1→ R2/R1) with the induced boundary and action maps.
Quotienting a precrossed module by it’s Peiffer subgroup is a special case of this construction. (Per-
mutation representations vary between different versions of GAP.)

Example

gap> d24 := DihedralGroup( IsPermGroup, 24 );;
gap> SetName( d24, "d24" );
gap> Y24 := XModByAutomorphismGroup( d24 );;
gap> Size2d( Y24 );
[ 24, 48 ]
gap> X24 := Image( IsomorphismPerm2DimensionalGroup( Y24 ) );
[d24->Group([ (2,4), (1,2,3,4), (6,7), (5,6,7) ])]
gap> nsx := NormalSubXMods( X24 );;
gap> Length( nsx );
40
gap> ids := List( nsx, n -> IdGroup(n) );;
gap> pos1 := Position( ids, [ [4,1], [8,3] ] );;
gap> Xn1 := nsx[pos1];
[Group( [ f2*f4^2, f3*f4 ] )->Group( [ f3, f4, f5 ] )]

40
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gap> nat1 := NaturalMorphismByNormalSubPreXMod( X24, Xn1 );;
gap> Qn1 := FactorPreXMod( X24, Xn1 );;
gap> [ Size2d( Xn1 ), Size2d( Qn1 ) ];
[ [ 4, 8 ], [ 6, 6 ] ]

4.1.2 IntersectionSubXMods

▷ IntersectionSubXMods(X0, X1, X2) (operation)

When X1,X2 are subcrossed modules of X0, then the source and range of their intersection are the
intersections of the sources and ranges of X1 and X2 respectively.

Example

gap> pos2 := Position( ids, [ [24,6], [12,4] ] );;
gap> Xn2 := nsx[pos2];;
gap> IdGroup( Xn2 );
[ [ 24, 6 ], [ 12, 4 ] ]
gap> pos3 := Position( ids, [ [12,2], [24,5] ] );;
gap> Xn3 := nsx[pos3];;
gap> IdGroup( Xn3 );
[ [ 12, 2 ], [ 24, 5 ] ]
gap> Xn23 := IntersectionSubXMods( X24, Xn2, Xn3 );;
gap> IdGroup( Xn23 );
[ [ 12, 2 ], [ 6, 2 ] ]

4.1.3 Displacement

▷ Displacement(alpha, r, s) (operation)

▷ DisplacementGroup(X0, Q, T) (operation)

▷ DisplacementSubgroup(X0) (attribute)

Commutators may be written [r,q] = r−1q−1rq = (q−1)rq = r−1rq, and satisfy identities

[r,q]p = [rp,qp], [pr,q] = [p,q]r[r,q], [r, pq] = [r,q][r, p]q, [r,q]−1 = [q,r].

In a similar way, when a group R acts on a group S, the displacement of s ∈ S by r ∈ R is defined to
be ⟨r,s⟩ := (s−1)rs ∈ S. When X = (∂ : S→ R) is a pre-crossed module, the first crossed module
axiom requires ∂ ⟨r,s⟩= [r,∂ s]. When α is the action of X , the Displacement function may be used
to calculate ⟨r,s⟩. Displacements satisfy the following identities, where s, t ∈ S, p,q,r ∈ R:

⟨r,s⟩p = ⟨rp,sp⟩, ⟨qr,s⟩= ⟨q,s⟩r⟨r,s⟩, ⟨r,st⟩= ⟨r, t⟩⟨r,s⟩t , ⟨r,s⟩−1 = ⟨r−1,sr⟩.

The operation DisplacementGroup applied to X0,Q,T is the subgroup of S consisting of all the
displacements ⟨r,s⟩,r ∈ Q ⩽ R,s ∈ T ⩽ S. The DisplacementSubgroup of X is the subgroup
Disp(X ) of S given by DisplacementGroup(X0,R,S). The identities imply ⟨r,s⟩t = ⟨r,str−1⟩⟨r−1, t⟩,
so Disp(X ) is normal in S.
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Example

gap> pos4 := Position( ids, [ [6,2], [24,14] ] );;
gap> Xn4 := nsx[pos4];;
gap> bn4 := Boundary( Xn4 );;
gap> Sn4 := Source(Xn4);;
gap> Rn4 := Range(Xn4);;
gap> genRn4 := GeneratorsOfGroup( Rn4 );;
gap> L := List( genRn4, g -> ( Order(g) = 2 ) and
> not ( IsNormal( Rn4, Subgroup( Rn4, [g] ) ) ) );;
gap> pos := Position( L, true );;
gap> s := Sn4.1; r := genRn4[pos];
(1,3,5,7,9,11)(2,4,6,8,10,12)
(6,7)
gap> act := XModAction( Xn4 );;
gap> d := Displacement( act, r, s );
(1,5,9)(2,6,10)(3,7,11)(4,8,12)
gap> Image( bn4, d ) = Comm( r, Image( bn4, s ) );
true
gap> Qn4 := Subgroup( Rn4, [ (6,7), (1,3), (2,4) ] );;
gap> Tn4 := Subgroup( Sn4, [ (1,3,5,7,9,11)(2,4,6,8,10,12) ] );;
gap> DisplacementGroup( Xn4, Qn4, Tn4 );
Group([ (1,5,9)(2,6,10)(3,7,11)(4,8,12) ])
gap> DisplacementSubgroup( Xn4 );
Group([ (1,5,9)(2,6,10)(3,7,11)(4,8,12) ])

4.1.4 CommutatorSubXMod

▷ CommutatorSubXMod(X, X1, X2) (operation)

▷ CrossActionSubgroup(X, X1, X2) (operation)

When X1 =(N→Q),X2 =(M→P) are two normal subcrossed modules of X =(∂ : S→R), the
displacements ⟨p,n⟩ and ⟨q,m⟩ all map by ∂ into [Q,P]. These displacements form a normal subgroup
of S, called the CrossActionSubgroup. The CommutatorSubXMod [X1,X2] has this subgroup as
source and [P,Q] as range, and is normal in X .

Example

gap> CAn23 := CrossActionSubgroup( X24, Xn2, Xn3 );;
gap> IdGroup( CAn23 );
[ 12, 2 ]
gap> Cn23 := CommutatorSubXMod( X24, Xn2, Xn3 );;
gap> IdGroup( Cn23 );
[ [ 12, 2 ], [ 6, 2 ] ]
gap> Xn23 = Cn23;
true
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4.1.5 DerivedSubXMod

▷ DerivedSubXMod(X0) (attribute)

The DerivedSubXMod of X is the normal subcrossed module [X ,X ] = (∂ ′ : Disp(X )→ [R,R])
where ∂ ′ is the restriction of ∂ (see page 66 of Norrie’s thesis [Nor87]).

Example

gap> DXn4 := DerivedSubXMod( Xn4 );;
gap> IdGroup( DXn4 );
[ [ 3, 1 ], [ 3, 1 ] ]

4.1.6 FixedPointSubgroupXMod

▷ FixedPointSubgroupXMod(X0, T, Q) (operation)

▷ StabilizerSubgroupXMod(X0, T, Q) (operation)

The FixedPointSubgroupXMod(X,T,Q) for X = (∂ : S→ R) is the subgroup Fix(X ,T,Q) of
elements t ∈ T ⩽ S individually fixed under the action of Q ⩽ R.

The StabilizerSubgroupXMod(X,T,Q) for X is the subgroup Stab(X ,T,Q) of Q ⩽ R whose
elements act trivially on the whole of T ⩽ S (see page 19 of Norrie’s thesis [Nor87]).

Example

gap> fix := FixedPointSubgroupXMod( Xn4, Sn4, Rn4 );
Group([ (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) ])
gap> stab := StabilizerSubgroupXMod( Xn4, Sn4, Rn4 );;
gap> IdGroup( stab );
[ 12, 5 ]

4.1.7 CentreXMod

▷ CentreXMod(X0) (attribute)

▷ Centralizer(X, Y) (operation)

▷ Normalizer(X, Y) (operation)

The centre Z(X ) of X = (∂ : S→ R) has as source the fixed point subgroup Fix(X ,S,R). The
range is the intersection of the centre Z(R) with the stabilizer subgroup.

When Y = (T → Q) is a subcrossed module of X = (∂ : S→ R), the centralizer CX (Y ) of Y
has as source the fixed point subgroup Fix(X ,S,Q). The range is the intersection of the centralizer
CR(Q) with Stab(X ,T,R).

The normalizer NX (Y ) of Y has as source the subgroup of S consisting of the displacements
⟨s,q⟩ which lie in S.

Example

gap> ZXn4 := CentreXMod( Xn4 );
[Group( [ f3*f4 ] )->Group( [ f3, f5 ] )]
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gap> IdGroup( ZXn4 );
[ [ 2, 1 ], [ 4, 2 ] ]
gap> CDXn4 := Centralizer( Xn4, DXn4 );
[Group( [ f3*f4 ] )->Group( [ f2 ] )]
gap> IdGroup( CDXn4 );
[ [ 2, 1 ], [ 3, 1 ] ]
gap> NDXn4 := Normalizer( Xn4, DXn4 );
[Group( <identity> of ... )->Group( [ f5, f2*f3 ] )]
gap> IdGroup( NDXn4 );
[ [ 1, 1 ], [ 12, 5 ] ]

4.1.8 CentralQuotient

▷ CentralQuotient(G) (attribute)

The CentralQuotient of a group G is the crossed module (G→ G/Z(G)) with the natural ho-
momorphism as the boundary map. This is a special case of XModByCentralExtension (2.1.5).

Similarly, the central quotient of a crossed module X is the crossed square (X ⇒X /Z(X ))
(see section 8.2).

Example

gap> Q24 := CentralQuotient( d24); IdGroup( Q24 );
[d24->d24/Z(d24)]
[ [ 24, 6 ], [ 12, 4 ] ]

4.1.9 IsAbelian2DimensionalGroup

▷ IsAbelian2DimensionalGroup(X0) (property)

▷ IsAspherical2DimensionalGroup(X0) (property)

▷ IsSimplyConnected2DimensionalGroup(X0) (property)

▷ IsFaithful2DimensionalGroup(X0) (property)

A crossed module is abelian if it equal to its centre. This is the case when the range group is
abelian and the action is trivial.

A crossed module is aspherical if the boundary has trivial kernel.
A crossed module is simply connected if the boundary has trivial cokernel.
A crossed module is faithful if the action is faithful.

Example

gap> [ IsAbelian2DimensionalGroup(Xn4), IsAbelian2DimensionalGroup(X24) ];
[ false, false ]
gap> pos7 := Position( ids, [ [3,1], [6,1] ] );;
gap> [ IsAspherical2DimensionalGroup(nsx[pos7]), IsAspherical2DimensionalGroup(X24) ];
[ true, false ]
gap> [ IsSimplyConnected2DimensionalGroup(Xn4), IsSimplyConnected2DimensionalGroup(X24) ];
[ true, true ]
gap> [ IsFaithful2DimensionalGroup(Xn4), IsFaithful2DimensionalGroup(X24) ];
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[ false, true ]

4.1.10 LowerCentralSeriesOfXMod

▷ LowerCentralSeriesOfXMod(X0) (attribute)

▷ IsNilpotent2DimensionalGroup(X0) (property)

▷ NilpotencyClass2DimensionalGroup(X0) (attribute)

Let Y be a subcrossed module of X . A series of length n from X to Y has the form

X = X0 ⊵ X1 ⊵ · · · ⊵ Xi ⊵ · · · ⊵ Xn = Y (1 ⩽ i ⩽ n).

The quotients Fi = Xi/Xi−1 are the factors of the series.
A factor Fi is central if Xi−1 ⊴X and Fi is a subcrossed module of the centre of X /Xi−1.
A series is central if all its factors are central.
X is soluble if it has a series all of whose factors are abelian.
X is nilpotent is it has a series all of whose factors are central factors of X .
The lower central series of X is the sequence (see [Nor87], p.77):

X = Γ1(X ) ⊵ Γ2(X ) ⊵ · · · where Γ j(X ) = [Γ j−1(X ),X ].

If X is nilpotent, then its lower central series is its most rapidly descending central series.
The least integer c such that Γc+1(X ) is the trivial crossed module is the nilpotency class of X .

Example

gap> lcs := LowerCentralSeries( X24 );;
gap> List( lcs, g -> IdGroup(g) );
[ [ [ 24, 6 ], [ 48, 38 ] ], [ [ 12, 2 ], [ 6, 2 ] ], [ [ 6, 2 ], [ 3, 1 ] ],

[ [ 3, 1 ], [ 3, 1 ] ] ]
gap> IsNilpotent2DimensionalGroup( X24 );
false
gap> NilpotencyClassOf2DimensionalGroup( X24 );
0

4.1.11 IsomorphismXMods

▷ IsomorphismXMods(X1, X2) (operation)

The function IsomorphismXMods computes an isomorphism µ : X1→X2, provided one exists,
or else returns fail.

Example

gap> gend24 := GeneratorsOfGroup( d24 );;
gap> a := gend24[1];; b:= gend24[2];;
gap> J := Subgroup( d24, [a^2,b] );
Group([ (1,3,5,7,9,11)(2,4,6,8,10,12), (2,12)(3,11)(4,10)(5,9)(6,8) ])
gap> K := Subgroup( d24, [a^2,a*b] );
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Group([ (1,3,5,7,9,11)(2,4,6,8,10,12), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) ])
gap> XJ := XModByNormalSubgroup( d24, J );;
gap> XK := XModByNormalSubgroup( d24, K );;
gap> iso := IsomorphismXMods( XJ, XK );;
gap> SourceHom( iso );
[ (1,3,5,7,9,11)(2,4,6,8,10,12), (2,12)(3,11)(4,10)(5,9)(6,8) ] ->
[ (1,3,5,7,9,11)(2,4,6,8,10,12), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) ]
gap> RangeHom( iso );
[ (1,2,3,4,5,6,7,8,9,10,11,12), (2,12)(3,11)(4,10)(5,9)(6,8) ] ->
[ (1,2,3,4,5,6,7,8,9,10,11,12), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) ]

4.1.12 AllXMods

▷ AllXMods(args) (function)

▷ AllXModsWithGroups(src, rng) (operation)

▷ AllXModsUpToIsomorphism(src, rng) (operation)

▷ IsomorphismClassRepresentatives2dGroups(L) (operation)

The global function AllXMods may be called in three ways. Firstly, as AllXMods(S,R)
to compute all crossed modules with chosen source and range groups: this calls
AllXModsWithGroups(S,R). Secondly, AllXMods([n,m]) computes all crossed modules with
a given size [n,m]. Thirdly AllXMods(ord) to compute all crossed modules whose associated
cat1-groups have a given size ord.

The function AllXModsUpToIsomorphism(S,R) returns a list of representatives of the isomor-
phism classes of crossed modules with source S and range R.

If L is a list returned by, for example, AllXModsWithGroups(S,R), then the isomorphism class
representatives for this list is returned by IsomorphismClassRepresentatives2dGroups(L). This
result is the same as that given by AllXModsUpToIsomorphism(S,R).

In the example we see that there are 4 crossed modules, in 3 isomorphism classes, (C6 → S3);
forming a subset of the 17 crossed modules with size [6,6]; and that these form a subset of the 205
crossed modules whose cat1-group has size 36. There are 40 precrossed modules with size [6,6].

Example

gap> c6 := SmallGroup( 6, 2 );;
gap> s3 := SmallGroup( 6, 1 );;
gap> Ac6s3 := AllXMods( c6, s3 );;
gap> Length( Ac6s3 );
4
gap> Ic6s3 := AllXModsUpToIsomorphism( c6, s3 );;
gap> List( Ic6s3, obj -> IsTrivialAction2DimensionalGroup( obj ) );
[ true, false, false ]
gap> Kc6s3 := List( Ic6s3, obj -> KernelCokernelXMod( obj ) );;
gap> List( Kc6s3, obj -> IdGroup( obj ) );
[ [ [ 6, 2 ], [ 6, 1 ] ], [ [ 6, 2 ], [ 6, 1 ] ], [ [ 2, 1 ], [ 2, 1 ] ] ]
[ ]
gap> A66 := AllXMods( [6,6] );;
gap> Length( A66 );
17
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gap> IA66 := IsomorphismClassRepresentatives2dGroups( A66 );;
gap> Length( IA66 );
9
gap> x36 := AllXMods( 36 );;
gap> Length( x36 );
205
gap> size36 := List( x36, x -> Size2d( x ) );;
gap> Collected( size36 );
[ [ [ 1, 36 ], 14 ], [ [ 2, 18 ], 7 ], [ [ 3, 12 ], 21 ], [ [ 4, 9 ], 14 ],

[ [ 6, 6 ], 17 ], [ [ 9, 4 ], 102 ], [ [ 12, 3 ], 8 ], [ [ 18, 2 ], 18 ],
[ [ 36, 1 ], 4 ] ]

4.2 Isoclinism for groups

4.2.1 Isoclinism (for groups)

▷ Isoclinism(G, H) (operation)

▷ AreIsoclinicDomains(G, H) (operation)

Let G,H be groups with central quotients Q(G) and Q(H) and derived subgroups [G,G] and [H,H]
respectively. Let cG : G/Z(G)×G/Z(G)→ [G,G] and cH : H/Z(H)×H/Z(H)→ [H,H] be the two
commutator maps. An isoclinism G ∼ H is a pair of isomorphisms (η ,ξ ) where η : G/Z(G)→
H/Z(H) and ξ : [G,G]→ [H,H] such that cG ∗ξ = (η×η)∗cH . Isoclinism is an equivalence relation,
and all abelian groups are isoclinic to the trivial group.

Example

gap> G := SmallGroup( 64, 6 );; StructureDescription( G );
"(C8 x C4) : C2"
gap> QG := CentralQuotient( G );; IdGroup( QG );
[ [ 64, 6 ], [ 8, 3 ] ]
gap> H := SmallGroup( 32, 41 );; StructureDescription( H );
"C2 x Q16"
gap> QH := CentralQuotient( H );; IdGroup( QH );
[ [ 32, 41 ], [ 8, 3 ] ]
gap> Isoclinism( G, H );
[ [ f1, f2, f3 ] -> [ f1, f2*f3, f3 ], [ f3, f5 ] -> [ f4*f5, f5 ] ]
gap> K := SmallGroup( 32, 43 );; StructureDescription( K );
"(C2 x D8) : C2"
gap> QK := CentralQuotient( K );; IdGroup( QK );
[ [ 32, 43 ], [ 16, 11 ] ]
gap> AreIsoclinicDomains( G, K );
false

4.2.2 IsStemDomain (for groups)

▷ IsStemDomain(G) (property)

▷ IsoclinicStemDomain(G) (attribute)
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▷ AllStemGroupIds(n) (operation)

▷ AllStemGroupFamilies(n) (operation)

A group G is a stem group if Z(G)≤ [G,G]. Every group is isoclinic to a stem group, but distinct
stem groups may be isoclinic. For example, groups D8,Q8 are two isoclinic stem groups.

The function IsoclinicStemDomain returns a stem group isoclinic to G.
The function AllStemGroupIds returns the IdGroup list of the stem groups of a specified size,

while AllStemGroupFamilies splits this list into isoclinism classes.
Example

gap> DerivedSubgroup(G);
Group([ f3, f5 ])
gap> IsStemDomain( G );
false
gap> IsoclinicStemDomain( G );
<pc group of size 16 with 4 generators>
gap> AllStemGroupIds( 32 );
[ [ 32, 6 ], [ 32, 7 ], [ 32, 8 ], [ 32, 18 ], [ 32, 19 ], [ 32, 20 ],

[ 32, 27 ], [ 32, 28 ], [ 32, 29 ], [ 32, 30 ], [ 32, 31 ], [ 32, 32 ],
[ 32, 33 ], [ 32, 34 ], [ 32, 35 ], [ 32, 43 ], [ 32, 44 ], [ 32, 49 ],
[ 32, 50 ] ]

gap> AllStemGroupFamilies( 32 );
[ [ [ 32, 6 ], [ 32, 7 ], [ 32, 8 ] ], [ [ 32, 18 ], [ 32, 19 ], [ 32, 20 ] ],

[ [ 32, 27 ], [ 32, 28 ], [ 32, 29 ], [ 32, 30 ], [ 32, 31 ], [ 32, 32 ],
[ 32, 33 ], [ 32, 34 ], [ 32, 35 ] ], [ [ 32, 43 ], [ 32, 44 ] ],

[ [ 32, 49 ], [ 32, 50 ] ] ]

4.2.3 IsoclinicRank (for groups)

▷ IsoclinicRank(G) (attribute)

▷ IsoclinicMiddleLength(G) (attribute)

Let G be a finite p-group. Then logp |[G,G]/(Z(G)∩ [G,G])| is called the middle length of G.
Also logp |Z(G)∩ [G,G]|+ logp |G/Z(G)| is called the rank of G. These invariants appear in the tables
of isoclinism families of groups of order 128 in [JNO90].

Example

gap> IsoclinicMiddleLength( G );
1
gap> IsoclinicRank( G );
4
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4.3 Isoclinism for crossed modules

4.3.1 Isoclinism (for crossed modules)

▷ Isoclinism(X0, Y0) (operation)

▷ AreIsoclinicDomains(X0, Y0) (operation)

Let X ,Y be crossed modules with central quotients Q(X ) and Q(Y ), and derived subcrossed
modules [X ,X ] and [Y ,Y ] respectively. Let cX : Q(X )×Q(X )→ [X ,X ] and cY : Q(Y )×
Q(Y )→ [Y ,Y ] be the two commutator maps. An isoclinism X ∼Y is a pair of bijective morphisms
(η ,ξ ) where η : Q(X )→ Q(Y ) and ξ : [X ,X ]→ [Y ,Y ] such that cX ∗ ξ = (η ×η) ∗ cY . Iso-
clinism is an equivalence relation, and all abelian crossed modules are isoclinic to the trivial crossed
module.

Example

gap> C8 := Cat1Group( 16, 8, 2 );;
gap> X8 := XMod(C8); IdGroup( X8 );
[Group( [ f1*f2*f3, f3, f4 ] )->Group( [ f2, f2 ] )]
[ [ 8, 1 ], [ 2, 1 ] ]
gap> C9 := Cat1Group( 32, 9, 2 );
[(C8 x C2) : C2 => Group( [ f2, f2 ] )]
gap> X9 := XMod( C9 ); IdGroup( X9 );
[Group( [ f1*f2*f3, f3, f4, f5 ] )->Group( [ f2, f2 ] )]
[ [ 16, 5 ], [ 2, 1 ] ]
gap> AreIsoclinicDomains( X8, X9 );
true
gap> ism89 := Isoclinism( X8, X9 );;
gap> Display( ism89 );
[ [[Group( [ f1, f2, <identity> of ... ] ) -> Group( [ f2, f2 ] )] => [Group(

[ f1, f2, <identity> of ..., <identity> of ... ] ) -> Group(
[ f2, f2 ] )]],

[[Group( [ f3 ] ) -> Group( <identity> of ... )] => [Group(
[ f3 ] ) -> Group( <identity> of ... )]] ]

4.3.2 IsStemDomain (for crossed modules of groups)

▷ IsStemDomain(X0) (property)

▷ IsoclinicStemDomain(X0) (attribute)

A crossed module X is a stem crossed module if Z(X ) ≤ [X ,X ]. Every crossed module is
isoclinic to a stem crossed module, but distinct stem crossed modules may be isoclinic.

A method for IsoclinicStemDomain has yet to be implemented.
Example

gap> IsStemDomain(X8);
true
gap> IsStemDomain(X9);
false
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4.3.3 IsoclinicRank (for crossed modules of groups)

▷ IsoclinicRank(X0) (attribute)

▷ IsoclinicMiddleLength(X0) (attribute)

The formulae in subsection 4.2.3 are applied to the crossed module.
Example

gap> IsoclinicMiddleLength(X8);
[ 1, 0 ]
gap> IsoclinicRank(X8);
[ 3, 1 ]
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Whitehead group of a crossed module

5.1 Derivations and Sections

The Whitehead monoid Der(X ) of X was defined in [Whi48] to be the monoid of all derivations
from R to S, that is the set of all maps χ : R→ S, with Whitehead multiplication ⋆ (on the right)
satisfying:

Der 1 : χ(qr) = (χq)r (χr), Der 2 : (χ1 ⋆χ2)(r) = (χ2r)(χ1r)(χ2∂ χ1r).

The zero map is the identity for this composition. Invertible elements in the monoid are called regular.
The Whitehead group of X is the group of regular derivations in Der(X ). In the next chapter the
actor of X is defined as a crossed module whose source and range are permutation representations of
the Whitehead group and the automorphism group of X .

The construction for cat1-groups equivalent to the derivation of a crossed module is the section.
The monoid of sections of C = (e; t,h : G→ R) is the set of group homomorphisms ξ : R→ G, with
Whitehead multiplication ⋆ (on the right) satisfying:

Sect 1 : t ◦ξ = idR, Sect 2 : (ξ1 ⋆ξ2)(r) = (ξ1r)(ehξ1r)−1(ξ2hξ1r) = (ξ2hξ1r)(ehξ1r)−1(ξ1r).

The embedding e is the identity for this composition, and h(ξ1 ⋆ξ2) = (hξ1)(hξ2). A section is regular
when hξ is an automorphism, and the group of regular sections is isomorphic to the Whitehead group.

If ε denotes the inclusion of S = ker t in G then ∂ = hε : S→ R and

ξ r = (er)(eχr), which equals (r,χr) ∈ R⋉S,

determines a section ξ of C in terms of the corresponding derivation χ of X , and conversely.

5.1.1 DerivationByImages

▷ DerivationByImages(X0, ims) (operation)

▷ IsDerivation(map) (property)

▷ IsUp2DimensionalMapping(chi) (property)

▷ UpGeneratorImages(chi) (attribute)

▷ UpImagePositions(chi) (attribute)

▷ DerivationImage(chi, r) (operation)

51
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A derivation χ is stored like a group homomorphisms by specifying the images of the generating
set StrongGeneratorsStabChain( StabChain(R) ) of the range R. This set of images is stored
as the attribute UpGeneratorImages of χ . The function IsDerivation is automatically called to
check that this procedure is well-defined.

Images of the remaining elements may be obtained using axiom Der 1. UpImagePositions(chi)
is the list of the images under χ of Elements(R) and DerivationImage(chi,r) returns χr.

In the following example a cat1-group C3 and the associated crossed module X3 are constructed,
where X3 is isomorphic to the inclusion of the normal cyclic group c3 in the symmetric group s3. The
derivation χ1 maps c3 to the identity and the other 3 elements to (1,2,3)(4,6,5).

Example

gap> g18 := Group( (1,2,3), (4,5,6), (2,3)(5,6) );;
gap> SetName( g18, "g18" );
gap> gen18 := GeneratorsOfGroup( g18 );;
gap> g1 := gen18[1];; g2 := gen18[2];; g3 := gen18[3];;
gap> s3 := Subgroup( g18, gen18{[2..3]} );;
gap> SetName( s3, "s3" );;
gap> t := GroupHomomorphismByImages( g18, s3, gen18, [g2,g2,g3] );;
gap> h := GroupHomomorphismByImages( g18, s3, gen18, [(),g2,g3] );;
gap> e := GroupHomomorphismByImages( s3, g18, [g2,g3], [g2,g3] );;
gap> C3 := Cat1Group( t, h, e );
[g18=>s3]
gap> SetName( Kernel(t), "c3" );;
gap> X3 := XModOfCat1Group( C3 );
[c3->s3]
gap> R3 := Range( X3 );;
gap> StrongGeneratorsStabChain( StabChain( R3 ) );
[ (4,5,6), (2,3)(5,6) ]
gap> chi1 := DerivationByImages( X3, [ (), (1,2,3)(4,6,5) ] );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (), (1,2,3)(4,6,5) ] )
gap> [ IsUp2DimensionalMapping( chi1 ), IsDerivation( chi1 ) ];
[ true, true ]
gap> UpGeneratorImages( chi1 );
[ (), (1,2,3)(4,6,5) ]
gap> UpImagePositions( chi1 );
[ 1, 1, 1, 2, 2, 2 ]
gap> DerivationImage( chi1, (2,3)(4,5) );
(1,2,3)(4,6,5)

5.1.2 PrincipalDerivation

▷ PrincipalDerivation(X0, s) (operation)

The principal derivation determined by s ∈ S is the derivation ηs : R→ S, r 7→ (s−1)rs.
Example

gap> eta := PrincipalDerivation( X3, (1,2,3)(4,6,5) );
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DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ], [ (), (1,3,2)(4,5,6) ] )

5.1.3 SectionByHomomorphism

▷ SectionByHomomorphism(C, hom) (operation)

▷ IsSection(hom) (property)

▷ SectionByDerivation(chi) (operation)

▷ DerivationBySection(xi) (operation)

Sections are group homomorphisms, so do not need a special representation. Operations
SectionByDerivation and DerivationBySection convert derivations to sections, and vice-versa,
calling Cat1GroupOfXMod (2.5.3) and XModOfCat1Group (2.5.3) automatically.

Two strategies for calculating derivations and sections are implemented, see [AW00]. The default
method for AllDerivations (5.2.1) is to search for all possible sets of images using a backtracking
procedure, and when all the derivations are found it is not known which are regular. In early versions
of this package, the default method for AllSections( <C> ) was to compute all endomorphisms on
the range group R of C as possibilities for the composite hξ . A backtrack method then found possible
images for such a section. In the current version the derivations of the associated crossed module are
calculated, and these are all converted to sections using SectionByDerivation.

Example

gap> hom2 := GroupHomomorphismByImages( s3, g18, [ (4,5,6), (2,3)(5,6) ],
> [ (1,3,2)(4,6,5), (1,2)(4,6) ] );;
gap> xi2 := SectionByHomomorphism( C3, hom2 );
SectionByHomomorphism( s3, g18, [ (4,5,6), (2,3)(5,6) ],
[ (1,3,2)(4,6,5), (1,2)(4,6) ] )
gap> [ IsUp2DimensionalMapping( xi2 ), IsSection( xi2 ) ];
[ true, true ]
gap> chi2 := DerivationBySection( xi2 );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (1,3,2)(4,5,6), (1,2,3)(4,6,5) ] )
gap> xi1 := SectionByDerivation( chi1 );
SectionByHomomorphism( s3, g18, [ (4,5,6), (2,3)(5,6) ],
[ (1,2,3), (1,2)(4,6) ] )

5.1.4 IdentityDerivation

▷ IdentityDerivation(X0) (attribute)

▷ IdentitySection(C0) (attribute)

The identity derivation maps the range group to the identity subgroup of the source, while the
identity section is just the range embedding considered as a section.

Example

gap> IdentityDerivation( X3 );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ], [ (), () ] )
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gap> IdentitySection(C3);
SectionByHomomorphism( s3, g18, [ (4,5,6), (2,3)(5,6) ],
[ (4,5,6), (2,3)(5,6) ] )

5.1.5 WhiteheadProduct

▷ WhiteheadProduct(chi1, chi2) (operation)

▷ WhiteheadOrder(chi) (operation)

The WhiteheadProduct may be applied to two derivations to form χ1 ⋆ χ2, or to two sections to
form ξ1 ⋆ ξ2. The WhiteheadOrder of a regular derivation χ is the smallest power of χ , using this
product, equal to the IdentityDerivation (5.1.4).

Example

gap> chi12 := WhiteheadProduct( chi1, chi2 );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ], [ (1,2,3)(4,6,5), () ] )
gap> xi12 := WhiteheadProduct( xi1, xi2 );
SectionByHomomorphism( s3, g18, [ (4,5,6), (2,3)(5,6) ],
[ (1,2,3), (2,3)(5,6) ] )
gap> xi12 = SectionByDerivation( chi12 );
true
gap> [ WhiteheadOrder( chi2 ), WhiteheadOrder( xi2 ) ];
[ 2, 2 ]

5.2 Whitehead Groups and Monoids

As mentioned at the beginning of this chapter, the Whitehead monoid Der(X ) of X is
the monoid of all derivations from R to S. Monoids of derivations have representation
IsMonoidOfUp2DimensionalMappingsObj. Multiplication tables for Whitehead monoids enable
the construction of transformation representations.

5.2.1 AllDerivations

▷ AllDerivations(X0) (attribute)

▷ ImagesTable(obj) (attribute)

▷ DerivationClass(mon) (attribute)

▷ WhiteheadMonoidTable(X0) (attribute)

▷ WhiteheadTransformationMonoid(X0) (attribute)

Using our example X3 we find that there are just nine derivations.
Example

gap> all3 := AllDerivations( X3 );
monoid of derivations with images list:
[ (), () ]
[ (), (1,3,2)(4,5,6) ]
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[ (), (1,2,3)(4,6,5) ]
[ (1,3,2)(4,5,6), () ]
[ (1,3,2)(4,5,6), (1,3,2)(4,5,6) ]
[ (1,3,2)(4,5,6), (1,2,3)(4,6,5) ]
[ (1,2,3)(4,6,5), () ]
[ (1,2,3)(4,6,5), (1,3,2)(4,5,6) ]
[ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ]
gap> DerivationClass( all3 );
"all"
gap> Perform( ImagesTable( all3 ), Display );
[ 1, 1, 1, 1, 1, 1 ]
[ 1, 1, 1, 3, 3, 3 ]
[ 1, 1, 1, 2, 2, 2 ]
[ 1, 3, 2, 1, 3, 2 ]
[ 1, 3, 2, 3, 2, 1 ]
[ 1, 3, 2, 2, 1, 3 ]
[ 1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3, 3, 1, 2 ]
[ 1, 2, 3, 2, 3, 1 ]
gap> wmt3 := WhiteheadMonoidTable( X3 );;
gap> Perform( wmt3, Display );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
[ 2, 3, 1, 5, 6, 4, 8, 9, 7 ]
[ 3, 1, 2, 6, 4, 5, 9, 7, 8 ]
[ 4, 6, 5, 1, 3, 2, 7, 9, 8 ]
[ 5, 4, 6, 2, 1, 3, 8, 7, 9 ]
[ 6, 5, 4, 3, 2, 1, 9, 8, 7 ]
[ 7, 7, 7, 7, 7, 7, 7, 7, 7 ]
[ 8, 8, 8, 8, 8, 8, 8, 8, 8 ]
[ 9, 9, 9, 9, 9, 9, 9, 9, 9 ]
gap> wtm3 := WhiteheadTransformationMonoid( X3 );
<transformation monoid of degree 9 with 3 generators>
gap> GeneratorsOfMonoid( wtm3 );
[ Transformation( [ 2, 3, 1, 5, 6, 4, 8, 9, 7 ] ),

Transformation( [ 4, 6, 5, 1, 3, 2, 7, 9, 8 ] ),
Transformation( [ 7, 7, 7, 7, 7, 7, 7, 7, 7 ] ) ]

5.2.2 RegularDerivations

▷ RegularDerivations(X0) (attribute)

▷ ImagesList(obj) (attribute)

▷ WhiteheadGroupTable(X0) (attribute)

▷ WhiteheadPermGroup(X0) (attribute)

RegularDerivations are those derivations which are invertible in the monoid. Multiplication
tables for the Whitehead group enable the construction of permutation representations.

Of the nine derivations of X3 just six are regular. The associated group is isomorphic to the
symmetric group s3.

Example
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gap> reg3 := RegularDerivations( X3 );
monoid of derivations with images list:
[ (), () ]
[ (), (1,3,2)(4,5,6) ]
[ (), (1,2,3)(4,6,5) ]
[ (1,3,2)(4,5,6), () ]
[ (1,3,2)(4,5,6), (1,3,2)(4,5,6) ]
[ (1,3,2)(4,5,6), (1,2,3)(4,6,5) ]
gap> wgt3 := WhiteheadGroupTable( X3 );;
gap> Perform( wgt3, Display );
[ [ 1, 2, 3, 4, 5, 6 ],

[ 2, 3, 1, 5, 6, 4 ],
[ 3, 1, 2, 6, 4, 5 ],
[ 4, 6, 5, 1, 3, 2 ],
[ 5, 4, 6, 2, 1, 3 ],
[ 6, 5, 4, 3, 2, 1 ] ]

gap> wpg3 := WhiteheadPermGroup( X3 );
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])

5.2.3 PrincipalDerivations

▷ PrincipalDerivations(X0) (attribute)

The principal derivations form a subgroup of the Whitehead group.
Example

gap> PDX3 := PrincipalDerivations( X3 );
monoid of derivations with images list:
[ (), () ]
[ (), (1,3,2)(4,5,6) ]
[ (), (1,2,3)(4,6,5) ]

5.2.4 AllSections

▷ AllSections(C0) (attribute)

▷ RegularSections(C0) (attribute)

These operations have been declared but are not yet implemented. The interested user should,
instead, work with the corresponding derivations.



Chapter 6

Actors of 2d-groups

6.1 Actor of a crossed module

The actor of X is a crossed module Act(X ) = (∆ : W (X )→ Aut(X )) which was shown by Lue
and Norrie, in [Nor87] and [Nor90] to give the automorphism object of a crossed module X . In this
implementation, the source of the actor is a permutation representation W of the Whitehead group of
regular derivations, and the range of the actor is a permutation representation A of the automorphism
group Aut(X ) of X .

6.1.1 AutomorphismPermGroup

▷ AutomorphismPermGroup(xmod) (attribute)

▷ GeneratingAutomorphisms(xmod) (attribute)

▷ PermAutomorphismAsXModMorphism(xmod, perm) (operation)

The automorphisms (σ ,ρ) of X form a group Aut(X ) of crossed module isomorphisms. The
function AutomorphismPermGroup finds a set of GeneratingAutomorphisms for Aut(X ), and then
constructs a permutation representation of this group, which is used as the range of the actor crossed
module of X . The individual automorphisms can be constructed from the permutation group using
the function PermAutomorphismAsXModMorphism. The example below uses the crossed module
X3=[c3->s3] constructed in section 5.1.

Example

gap> APX3 := AutomorphismPermGroup( X3 );
Group([ (5,7,6), (1,2)(3,4)(6,7) ])
gap> Size( APX3 );
6
gap> genX3 := GeneratingAutomorphisms( X3 );
[ [[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]] ]
gap> e6 := Elements( APX3 )[6];
(1,2)(3,4)(5,7)
gap> m6 := PermAutomorphismAsXModMorphism( X3, e6 );;
gap> Display( m6 );
Morphism of crossed modules :-
: Source = [c3->s3] with generating sets:

[ (1,2,3)(4,6,5) ]
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[ (4,5,6), (2,3)(5,6) ]
: Range = Source
: Source Homomorphism maps source generators to:

[ (1,3,2)(4,5,6) ]
: Range Homomorphism maps range generators to:

[ (4,6,5), (2,3)(4,5) ]

6.1.2 WhiteheadXMod

▷ WhiteheadXMod(xmod) (attribute)

▷ LueXMod(xmod) (attribute)

▷ NorrieXMod(xmod) (attribute)

▷ ActorXMod(xmod) (attribute)

An automorphism (σ ,ρ) of X acts on the Whitehead monoid by χ(σ ,ρ) = σ ◦ χ ◦ ρ−1, and
this determines the action for the actor. In fact the four groups S,W,R,A, the homomorphisms
between them, and the various actions, give five crossed modules forming a crossed square (see
ActorCrossedSquare (8.2.5)).

• W (X ) = (η : S→W ), the Whitehead crossed module of X , at the top,

• X = (∂ : S→ R), the initial crossed module, on the left,

• Act(X ) = (∆ : W → A), the actor crossed module of X , on the right,

• N (X) = (α : R→ A), the Norrie crossed module of X , on the bottom, and

• L (X ) = (∆◦η = α ◦∂ : S→ A), the Lue crossed module of X , along the top-left to bottom-
right diagonal.

Example

gap> WGX3 := WhiteheadPermGroup( X3 );
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])
gap> WX3 := WhiteheadXMod( X3 );;
gap> Display( WX3 );
Crossed module Whitehead[c3->s3] :-
: Source group has generators:

[ (1,2,3)(4,6,5) ]
: Range group has generators:

[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
: Boundary homomorphism maps source generators to:

[ (1,2,3)(4,5,6) ]
: Action homomorphism maps range generators to automorphisms:

(1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> LX3 := LueXMod( X3 );;
gap> Display( LX3 );
Crossed module Lue[c3->s3] :-
: Source group has generators:
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[ (1,2,3)(4,6,5) ]
: Range group has generators:

[ (5,7,6), (1,2)(3,4)(6,7) ]
: Boundary homomorphism maps source generators to:

[ (5,7,6) ]
: Action homomorphism maps range generators to automorphisms:

(5,7,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> NX3 := NorrieXMod( X3 );;
gap> Display( NX3 );
Crossed module Norrie[c3->s3] :-
: Source group has generators:

[ (4,5,6), (2,3)(5,6) ]
: Range group has generators:

[ (5,7,6), (1,2)(3,4)(6,7) ]
: Boundary homomorphism maps source generators to:

[ (5,6,7), (1,2)(3,4)(6,7) ]
: Action homomorphism maps range generators to automorphisms:

(5,7,6) --> { source gens --> [ (4,5,6), (2,3)(4,5) ] }
(1,2)(3,4)(6,7) --> { source gens --> [ (4,6,5), (2,3)(5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> AX3 := ActorXMod( X3 );;
gap> Display( AX3);
Crossed module Actor[c3->s3] :-
: Source group has generators:

[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
: Range group has generators:

[ (5,7,6), (1,2)(3,4)(6,7) ]
: Boundary homomorphism maps source generators to:

[ (5,7,6), (1,2)(3,4)(6,7) ]
: Action homomorphism maps range generators to automorphisms:

(5,7,6) --> { source gens --> [ (1,2,3)(4,5,6), (1,6)(2,5)(3,4) ] }
(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }
These 2 automorphisms generate the group of automorphisms.

The main methods for these operations are written for permutation crossed modules. For other crossed
modules an isomorphism to a permutation crodssed module is found first, and then the main method
is applied to the image. In the example the crossed module XAq8 is the automorphism crossed module
of the quaternion group.

Example

gap> StructureDescription( WhiteheadXMod( XAq8 ) );
[ "Q8", "C2 x C2 x C2" ]
gap> StructureDescription( LueXMod( XAq8 ) );
[ "Q8", "S4" ]
gap> StructureDescription( NorrieXMod( XAq8 ) );
[ "S4", "S4" ]
gap> StructureDescription( ActorXMod( XAq8 ) );
[ "C2 x C2 x C2", "S4" ]
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6.1.3 XModCentre

▷ XModCentre(xmod) (attribute)

▷ InnerActorXMod(xmod) (attribute)

▷ InnerMorphism(xmod) (attribute)

Pairs of boundaries or identity mappings provide six morphisms of crossed modules. In particular,
the boundaries of W (X ) and N (X ) form the inner morphism of X , mapping source elements
to principal derivations and range elements to inner automorphisms. The image of X under this
morphism is the inner actor of X , while the kernel is the centre of X . In the example which follows,
the inner morphism of X3=(c3->s3), from Chapter 5, is an inclusion of crossed modules.

Note that we appear to have defined two sorts of centre for a crossed module: XModCentre here,
and CentreXMod (4.1.7) in the chapter on isoclinism. We suspect that these two definitions give the
same answer, but this remains to be resolved.

Example

gap> IMX3 := InnerMorphism( X3 );;
gap> Display( IMX3 );
Morphism of crossed modules :-
: Source = [c3->s3] with generating sets:

[ (1,2,3)(4,6,5) ]
[ (4,5,6), (2,3)(5,6) ]

: Range = Actor[c3->s3] with generating sets:
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
[ (5,7,6), (1,2)(3,4)(6,7) ]

: Source Homomorphism maps source generators to:
[ (1,2,3)(4,5,6) ]

: Range Homomorphism maps range generators to:
[ (5,6,7), (1,2)(3,4)(6,7) ]

gap> IsInjective( IMX3 );
true
gap> ZX3 := XModCentre( X3 );
[Group( () )->Group( () )]
gap> IAX3 := InnerActorXMod( X3 );;
gap> Display( IAX3 );
Crossed module InnerActor[c3->s3] :-
: Source group has generators:

[ (1,2,3)(4,5,6) ]
: Range group has generators:

[ (5,6,7), (1,2)(3,4)(6,7) ]
: Boundary homomorphism maps source generators to:

[ (5,7,6) ]
: Action homomorphism maps range generators to automorphisms:

(5,6,7) --> { source gens --> [ (1,2,3)(4,5,6) ] }
(1,2)(3,4)(6,7) --> { source gens --> [ (1,3,2)(4,6,5) ] }
These 2 automorphisms generate the group of automorphisms.
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Induced constructions

Before describing general functions for computing induced structures, we consider coproducts of
crossed modules which provide induced crossed modules in certain cases.

7.1 Coproducts of crossed modules

Need to add here a reference (or two) for coproducts.

7.1.1 CoproductXMod

▷ CoproductXMod(X1, X2) (operation)

▷ CoproductInfo(X0) (attribute)

This function calculates the coproduct crossed module of two or more crossed modules which
have a common range R. The standard method applies to X1 = (∂1 : S1→ R) and X2 = (∂2 : S2→ R).
See below for the case of three or more crossed modules.

The source S2 of X2 acts on S1 via ∂2 and the action of X1, so we can form a precrossed module
(∂ ′ : S1⋉S2→R) where ∂ ′(s1,s2)= (∂1s1)(∂2s2). The action of this precrossed module is the diagonal
action (s1,s2)

r = (sr
1,s

r
2). Factoring out by the Peiffer subgroup, we obtain the coproduct crossed

module X1 ◦X2.
In the example the structure descriptions of the precrossed module, the Peiffer subgroup, and the

resulting coproduct are printed out when InfoLevel(InfoXMod) is at least 1. The coproduct comes
supplied with attribute CoproductInfo, which includes the embedding morphisms of the two factors.

Example

gap> q8 := Group( (1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8) );;
gap> XAq8 := XModByAutomorphismGroup( q8 );;
gap> s4b := Range( XAq8 );;
gap> SetName( q8, "q8" ); SetName( s4b, "s4b" );
gap> a := q8.1;; b := q8.2;;
gap> alpha := GroupHomomorphismByImages( q8, q8, [a,b], [a^-1,b] );;
gap> beta := GroupHomomorphismByImages( q8, q8, [a,b], [a,b^-1] );;
gap> k4b := Subgroup( s4b, [ alpha, beta ] );; SetName( k4b, "k4b" );
gap> Z8 := XModByNormalSubgroup( s4b, k4b );;
gap> SetName( XAq8, "XAq8" ); SetName( Z8, "Z8" );
gap> SetInfoLevel( InfoXMod, 1 );
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gap> XZ8 := CoproductXMod( XAq8, Z8 );
#I prexmod is [ [ 32, 47 ], [ 24, 12 ] ]
#I peiffer subgroup is C2, [ 2, 1 ]
#I the coproduct is [ "C2 x C2 x C2 x C2", "S4" ], [ [ 16, 14 ], [ 24, 12 ] ]
[Group( [ f1, f2, f3, f4 ] )->s4b]
gap> SetName( XZ8, "XZ8" );
gap> info := CoproductInfo( XZ8 );
rec( embeddings := [ [XAq8 => XZ8], [Z8 => XZ8] ], xmods := [ XAq8, Z8 ] )
gap> SetInfoLevel( InfoXMod, 0 );

Given a list of more than two crossed modules with a common range R, then an iterated coproduct is
formed:

⃝ [X1,X2, . . . ,Xn] = X1 ◦ (X2 ◦ (. . .(Xn−1 ◦Xn) . . .)).

The embeddings field of the CoproductInfo of the resulting crossed module Y contains the n mor-
phisms εi : Xi→ Y (1 ⩽ i ⩽ n).

Example

gap> Y := CoproductXMod( [ XAq8, XAq8, Z8, Z8 ] );
[Group( [ f1, f2, f3, f4, f5, f6, f7, f8 ] )->s4b]
gap> StructureDescription( Y );
[ "C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2", "S4" ]
gap> CoproductInfo( Y );
rec(

embeddings :=
[ [XAq8 => [Group( [ f1, f2, f3, f4, f5, f6, f7, f8 ] ) -> s4b]],

[XAq8 => [Group( [ f1, f2, f3, f4, f5, f6, f7, f8 ] ) -> s4b]],
[Z8 => [Group( [ f1, f2, f3, f4, f5, f6, f7, f8 ] ) -> s4b]],
[Z8 => [Group( [ f1, f2, f3, f4, f5, f6, f7, f8 ] ) -> s4b]] ],

xmods := [ XAq8, XAq8, Z8, Z8 ] )

7.2 Induced crossed modules

7.2.1 InducedXMod

▷ InducedXMod(args) (function)

▷ IsInducedXMod(xmod) (property)

▷ InducedXModBySurjection(xmod, hom) (operation)

▷ InducedXModByCopower(xmod, hom, list) (operation)

▷ MorphismOfInducedXMod(xmod) (attribute)

A morphism of crossed modules (σ ,ρ) : X1→X2 factors uniquely through an induced crossed
module ρ∗X1 = (δ : ρ∗S1 → R2). Similarly, a morphism of cat1-groups factors through an induced
cat1-group. Calculation of induced crossed modules of X also provides an algebraic means of deter-
mining the homotopy 2-type of homotopy pushouts of the classifying space of X . For more back-
ground from algebraic topology see references in [BH78], [BW95], [BW96]. Induced crossed modules
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and induced cat1-groups also provide the building blocks for constructing pushouts in the categories
XMod and Cat1.

Data for the cases of algebraic interest is provided by a crossed module X = (∂ : S→ R) and a
homomorphism ι : R→Q. The output from the calculation is a crossed module ι∗X = (δ : ι∗S→Q)
together with a morphism of crossed modules X → ι∗X . When ι is a surjection with kernel K then
ι∗S = S/[K,S] where [K,S] is the subgroup of S generated by elements of the form s−1sk,s ∈ S,k ∈ K
(see [BH78], Prop.9). (For many years, up until June 2018, this manual has stated the result to be
[K,S], though the correct quotient had been calculated.) When ι is an inclusion the induced crossed
module may be calculated using a copower construction [BW95] or, in the case when R is normal in Q,
as a coproduct of crossed modules ([BW96], but not yet implemented). When ι is neither a surjection
nor an inclusion, ι is factored as the composite of the surjection onto the image and the inclusion of
the image in Q, and then the composite induced crossed module is constructed. These constructions
use Tietze transformation routines in the library file tietze.gi.

As a first, surjective example, we take for X the normal inclusion crossed module of a4 in s4,
and for ι the surjection from s4 to s3 with kernel k4. The induced crossed module is isomorphic to
X3 = [c3->s3].

Example

gap> s4gens := GeneratorsOfGroup( s4 );
[ (1,2), (2,3), (3,4) ]
gap> a4gens := GeneratorsOfGroup( a4 );
[ (1,2,3), (2,3,4) ]
gap> s3b := Group( (5,6),(6,7) );; SetName( s3b, "s3b" );
gap> epi := GroupHomomorphismByImages( s4, s3b, s4gens, [(5,6),(6,7),(5,6)] );;
gap> X4 := XModByNormalSubgroup( s4, a4 );;
gap> indX4 := InducedXModBySurjection( X4, epi );
[a4/ker->s3b]
gap> Display( indX4 );

Crossed module [a4/ker->s3b] :-
: Source group a4/ker has generators:

[ (1,3,2), (1,2,3) ]
: Range group s3b has generators:

[ (5,6), (6,7) ]
: Boundary homomorphism maps source generators to:

[ (5,6,7), (5,7,6) ]
: Action homomorphism maps range generators to automorphisms:

(5,6) --> { source gens --> [ (1,2,3), (1,3,2) ] }
(6,7) --> { source gens --> [ (1,2,3), (1,3,2) ] }
These 2 automorphisms generate the group of automorphisms.

gap> morX4 := MorphismOfInducedXMod( indX4 );
[[a4->s4] => [a4/ker->s3b]]

For a second, injective example we take for X the automorphism crossed module XAq8 of
CoproductXMod (7.1.1), and for ι an inclusion of s4b in s5. The resulting source group is SL(2,5).

Example

gap> iso4 := IsomorphismGroups( s4b, s4 );;
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gap> s5 := Group( (1,2,3,4,5), (4,5) );;
gap> SetName( s5, "s5" );
gap> inc45 := InclusionMappingGroups( s5, s4 );;
gap> iota45 := iso4 * inc45;;
gap> indXAq8 := InducedXMod( XAq8, iota45 );
i*(XAq8)
gap> Size2d( indXAq8 );
[ 120, 120 ]
gap> StructureDescription( indXAq8 );
[ "SL(2,5)", "S5" ]

For a third example we use the version InducedXMod(Q,R,S) of this global function, with Q ⩾ R⊵S.
We take the identity mapping on s3c as boundary, and the inclusion of s3c in s4 as ι . The induced
group is a general linear group GL(2,3).

Example

gap> s3c := Subgroup( s4, [ (2,3), (3,4) ] );;
gap> SetName( s3c, "s3c" );
gap> indXs3c := InducedXMod( s4, s3c, s3c );
i*([s3c->s3c])
gap> StructureDescription( indXs3c );
[ "GL(2,3)", "S4" ]

7.2.2 AllInducedXMods

▷ AllInducedXMods(Q) (operation)

This function calculates all the induced crossed modules InducedXMod(Q,R,S), where R runs
over all conjugacy classes of subgroups of Q and S runs over all non-trivial normal subgroups of R.

Example

gap> all := AllInducedXMods( q8 );;
gap> ids := List( all, x -> IdGroup(x) );;
gap> Sort( ids );
gap> ids;
[ [ [ 1, 1 ], [ 8, 4 ] ], [ [ 1, 1 ], [ 8, 4 ] ], [ [ 1, 1 ], [ 8, 4 ] ],

[ [ 1, 1 ], [ 8, 4 ] ], [ [ 4, 2 ], [ 8, 4 ] ], [ [ 4, 2 ], [ 8, 4 ] ],
[ [ 4, 2 ], [ 8, 4 ] ], [ [ 16, 2 ], [ 8, 4 ] ], [ [ 16, 2 ], [ 8, 4 ] ],
[ [ 16, 2 ], [ 8, 4 ] ], [ [ 16, 14 ], [ 8, 4 ] ] ]

7.3 Induced cat1-groups

7.3.1 InducedCat1Group

▷ InducedCat1Group(args) (function)

▷ InducedCat1GroupByFreeProduct(grp, hom) (property)
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This area awaits development.



Chapter 8

Crossed squares and Cat2-groups

The term 3d-group refers to a set of equivalent categories of which the most common are the cate-
gories of crossed squares and cat2-groups. A 3d-mapping is a function between two 3d-groups which
preserves all the structure.

The material in this chapter should be considered experimental. A major overhaul took place in
time for XMod version 2.73, with the names of a number of operations being changed.

8.1 Definition of a crossed square and a crossed n-cube of groups

Crossed squares were introduced by Guin-Waléry and Loday (see, for example, [BL87]) as funda-
mental crossed squares of commutative squares of spaces, but are also of purely algebraic interest. We
denote by [n] the set {1,2, . . . ,n}. We use the n = 2 version of the definition of crossed n-cube as given
by Ellis and Steiner [ES87].

A crossed square S consists of the following:

• groups SJ for each of the four subsets J ⊆ [2] (we often find it convenient to write L = S[2], M =
S{1}, N = S{2} and P = S /0);

• a commutative diagram of group homomorphisms:

∂̈1 : S[2]→ S{2}, ∂̈2 : S[2]→ S{1}, ∂̇2 : S{2}→ S /0, ∂̇1 : S{1}→ S /0

(again we often write κ = ∂̈1, λ = ∂̈2, µ = ∂̇2 and ν = ∂̇1);

• actions of S /0 on S{1},S{2} and S[2] which determine actions of S{1} on S{2} and S[2] via ∂̇1 and
actions of S{2} on S{1} and S[2] via ∂̇2 ;

• a function ⊠ : S{1}×S{2}→ S[2].

Here is a picture of the situation:

S[2]
∂̈1 //

∂̈2

��

S{2}

∂̇2

��

L κ //

λ

��

M

µ

��

S = =

S{1}
∂̇1

// S /0 N
ν

// P
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The following axioms must be satisfied for all l ∈ L, m,m1,m2 ∈M, n,n1,n2 ∈ N, p ∈ P.

• The homomorphisms κ,λ preserve the action of P .

• Each of the upper, left-hand, right-hand and lower sides of the square,

S̈1 = (κ : L→M), S̈2 = (λ : L→ N), Ṡ2 = (µ : M→ P), Ṡ1 = (ν : N→ P),

and the diagonal
S12 = (∂12 := µ ◦κ = ν ◦λ : L→ P)

are crossed modules (with actions via P).

These will be called the up, left, right, down and diagonal crossed modules of S .

• ⊠ is a crossed pairing:

– (n1n2 ⊠m) = (n1 ⊠m)n2 (n2 ⊠m),

– (n⊠m1m2) = (n⊠m2) (n⊠m1)
m2 ,

– (n⊠m)p = (np ⊠mp).

• κ(n⊠m) = (m−1)n m and λ (n⊠m) = n−1 nm.

• (n⊠κl) = (l−1)n l and (λ l ⊠m) = l−1 lm.

Note that the actions of M on N and N on M via P are compatible since

n1
(mn) = n1

µ(mn) = n1
n−1(µm)n = ((n1

n−1
)m)n.

(A precrossed square is a similar structure which satisfies some subset of these axioms. This
notion needs to be clarified.)

Crossed squares are the k = 2 case of a crossed k-cube of groups, defined as follows. (This is
an attempt to translate Definition 2.1 in Ronnie Brown’s Computing homotopy types using crossed
n-cubes of groups into right actions – but this definition is not yet completely understood!)

A crossed k-cube of groups consists of the following:

• groups SA for every subset A⊆ [k];

• a commutative diagram of group homomorphisms ∂i : SA → SA\{i}, i ∈ [k]; with composites
∂B : SA→ SA\B, B⊆ [k];

• actions of S /0 on each SA; and hence actions of SB on SA via ∂B for each B⊆ [k];

• functions ⊠A,B : SA×SB→ SA∪B,(A,B⊆ [k]).

There is then a long list of axioms which must be satisfied.

8.2 Constructions for crossed squares

Analogously to the data structure used for crossed modules, crossed squares are implemented as
3d-groups. There are also experimental implementations of cat2-groups, with conversion between
the two types of structure. Some standard constructions of crossed squares are listed below. At
present, a limited number of constructions is implemented. Morphisms of crossed squares have also
been implemented, though there is still a great deal to be done.
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8.2.1 CrossedSquareByXMods

▷ CrossedSquareByXMods(up, left, right, down, diag, pairing) (operation)

▷ PreCrossedSquareByPreXMods(up, left, right, down, diag, pairing) (operation)

If up,left,right,down,diag are five (pre-)crossed modules whose sources and ranges agree, as above,
then we just have to add a crossed pairing to complete the data for a (pre-)crossed square.

The Display function is used to print details of 3d-groups.
We take as our example a simple, but significant case. We start with five crossed modules formed

from subgroups of D8 with generators [(1,2,3,4),(3,4). The result is a pre-crossed square which is
not a crossed square.

Example

gap> b := (2,4);; c := (1,2)(3,4);; p := (1,2,3,4);;
gap> d8 := Group( b, c );;
gap> SetName( d8, "d8" );;
gap> L := Subgroup( d8, [p^2] );;
gap> M := Subgroup( d8, [b] );;
gap> N := Subgroup( d8, [c] );;
gap> P := TrivialSubgroup( d8 );;
gap> kappa := GroupHomomorphismByImages( L, M, [p^2], [b] );;
gap> lambda := GroupHomomorphismByImages( L, N, [p^2], [c] );;
gap> delta := GroupHomomorphismByImages( L, P, [p^2], [()] );;
gap> mu := GroupHomomorphismByImages( M, P, [b], [()] );;
gap> nu := GroupHomomorphismByImages( N, P, [c], [()] );;
gap> up := XModByTrivialAction( kappa );;
gap> left := XModByTrivialAction( lambda );;
gap> diag := XModByTrivialAction( delta );;
gap> right := XModByTrivialAction( mu );;
gap> down := XModByTrivialAction( nu );;
gap> xp := CrossedPairingByCommutators( N, M, L );;
gap> Print( "xp([c,b]) = ", ImageElmCrossedPairing( xp, [c,b] ), "\n" );
xp([c,b]) = (1,3)(2,4)
gap> PXS := PreCrossedSquareByPreXMods( up, left, right, down, diag, xp );;
gap> Display( PXS );
(pre-)crossed square with (pre-)crossed modules:

up = [Group( [ (1,3)(2,4) ] ) -> Group( [ (2,4) ] )]
left = [Group( [ (1,3)(2,4) ] ) -> Group( [ (1,2)(3,4) ] )]

right = [Group( [ (2,4) ] ) -> Group( () )]
down = [Group( [ (1,2)(3,4) ] ) -> Group( () )]

gap> IsCrossedSquare( PXS );
false

8.2.2 Size3d (for 3d-objects)

▷ Size3d(XS) (attribute)

Just as Size2d was used in place of Size for crossed modules, so Size3d is used for crossed
squares: Size3d( XS ) returns a four-element list containing the sizes of the four groups at the
corners of the square.
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Example

gap> Size3d( PXS );
[ 2, 2, 2, 1 ]

8.2.3 CrossedSquareByNormalSubgroups

▷ CrossedSquareByNormalSubgroups(L, M, N, P) (operation)

▷ CrossedPairingByCommutators(N, M, L) (operation)

If L,M,N are normal subgroups of a group P, and [M,N] ⩽ L ⩽ M∩N, then the four inclusions
L→M, L→ N, M→ P, N→ P, together with the actions of P on M,N and L given by conjugation,
form a crossed square with crossed pairing

⊠ : N×M→ L, (n,m) 7→ [n,m] = n−1m−1nm = (m−1)nm = n−1nm .

This construction is implemented as CrossedSquareByNormalSubgroups(L,M,N,P) (note that the
parent group comes last).

Example

gap> d20 := DihedralGroup( IsPermGroup, 20 );;
gap> gend20 := GeneratorsOfGroup( d20 );
[ (1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7) ]
gap> p1 := gend20[1];; p2 := gend20[2];; p12 := p1*p2;
(1,10)(2,9)(3,8)(4,7)(5,6)
gap> d10a := Subgroup( d20, [ p1^2, p2 ] );;
gap> d10b := Subgroup( d20, [ p1^2, p12 ] );;
gap> c5d := Subgroup( d20, [ p1^2 ] );;
gap> SetName( d20, "d20" ); SetName( d10a, "d10a" );
gap> SetName( d10b, "d10b" ); SetName( c5d, "c5d" );
gap> XSconj := CrossedSquareByNormalSubgroups( c5d, d10a, d10b, d20 );
[ c5d -> d10a ]
[ | | ]
[ d10b -> d20 ]
gap> xpc := CrossedPairing( XSconj );;
gap> ImageElmCrossedPairing( xpc, [ p2, p12 ] );
(1,9,7,5,3)(2,10,8,6,4)

8.2.4 CrossedSquareByNormalSubXMod

▷ CrossedSquareByNormalSubXMod(X0, X1) (operation)

▷ CrossedPairingBySingleXModAction(X0, X1) (operation)

If X1 = (∂1 : S1→ R1) is a normal sub-crossed module of X0 = (∂0 : S0→ R0) then the inclusion
morphism gives a crossed square with crossed pairing

⊠ : R1×S0→ S1, (r1,s0) 7→ (s−1
0 )r1s0.

The example constructs the same crossed square as in the previous subsection.
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Example

gap> X20 := XModByNormalSubgroup( d20, d10a );;
gap> X10 := XModByNormalSubgroup( d10b, c5d );;
gap> ok := IsNormalSub2DimensionalDomain( X20, X10 );
true
gap> XS20 := CrossedSquareByNormalSubXMod( X20, X10 );
[ c5d -> d10a ]
[ | | ]
[ d10b -> d20 ]
gap> xp20 := CrossedPairing( XS20 );;
gap> ImageElmCrossedPairing( xp20, [ p1^2, p2 ] );
(1,7,3,9,5)(2,8,4,10,6)

8.2.5 ActorCrossedSquare

▷ ActorCrossedSquare(X0) (attribute)

▷ CrossedPairingByDerivations(X0) (operation)

The actor A (X0) of a crossed module X0 has been described in Chapter 5 (see ActorXMod
(6.1.2)). The crossed pairing is given by

⊠ : R×W → S, (r,χ) 7→ χr .

This is implemented as ActorCrossedSquare(X0);.
Example

gap> XSact := ActorCrossedSquare( X20 );
crossed square with:

up = Whitehead[d10a->d20]
left = [d10a->d20]

right = Actor[d10a->d20]
down = Norrie[d10a->d20]

gap> W := Range( Up2DimensionalGroup( XSact ) );
c5:c4
gap> w1 := GeneratorsOfGroup( W )[1];
(1,2)(3,4)(5,18)(6,17)(7,20)(8,19)(9,14)(10,13)(11,16)(12,15)
gap> xpa := CrossedPairing( XSact );;
gap> ImageElmCrossedPairing( xpa, [ p1, w1 ] );
(1,9,7,5,3)(2,10,8,6,4)

8.2.6 CrossedSquareByAutomorphismGroup

▷ CrossedSquareByAutomorphismGroup(G) (operation)

▷ CrossedPairingByConjugators(G) (operation)

For G a group let Inn(G) be its inner automorphism group and Aut(G) its full automorphism
group. Then there is a crossed square with groups [G, Inn(G), Inn(G),Aut(G)] where the upper and
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left boundaries are the maps g 7→ ιg, where ιg is conjugation of G by g, and the right and down
boundaries are inclusions. The crossed pairing is gived by ιg ⊠ ιh = [g,h].

Example

gap> AXS20 := CrossedSquareByAutomorphismGroup( d20 );
[ d20 -> Inn(d20) ]
[ | | ]
[ Inn(d20) -> Aut(d20) ]

gap> StructureDescription( AXS20 );
[ "D20", "D10", "D10", "C2 x (C5 : C4)" ]
gap> I20 := Range( Up2DimensionalGroup( AXS20 ) );;
gap> genI20 := GeneratorsOfGroup( I20 );
[ ^(1,2,3,4,5,6,7,8,9,10), ^(2,10)(3,9)(4,8)(5,7) ]
gap> xpi := CrossedPairing( AXS20 );;
gap> ImageElmCrossedPairing( xpi, [ genI20[1], genI20[2] ] );
(1,9,7,5,3)(2,10,8,6,4)

8.2.7 CrossedSquareByPullback

▷ CrossedSquareByPullback(X1, X2) (operation)

If crossed modules X1 = (ν : N → P) and X2 = (µ : M → P) have a common range P, let
L be the pullback of {ν ,µ}. Then N acts on L by (n,m)n′ = (nn′ ,mνn′), and M acts on L by
(n,m)m′ = (nµm′ ,mm′). So (π1 : L→ N) and (π2 : L→ M) are crossed modules, where π1,π2 are
the two projections. The crossed pairing is given by:

⊠ : N×M→ L, (n,m) 7→ (n−1nµm,(m−1)νnm).

The second example below uses the central extension crossed module X12=(D12->S3) which was
constructed in subsection (XModByCentralExtension (2.1.5)), with pullback group D12xC2.

Example

gap> dn := Down2DimensionalGroup( XSconj );;
gap> rt := Right2DimensionalGroup( XSconj );;
gap> XSP := CrossedSquareByPullback( dn, rt );
[ (d10b x_d20 d10a) -> d10a ]
[ | | ]
[ d10b -> d20 ]
gap> StructureDescription( XSP );
[ "C5", "D10", "D10", "D20" ]
gap> XS12 := CrossedSquareByPullback( X12, X12 );;
gap> StructureDescription( XS12 );
[ "C2 x C2 x S3", "D12", "D12", "S3" ]
gap> xp12 := CrossedPairing( XS12 );;
gap> ImageElmCrossedPairing( xp12, [ (1,2,3,4,5,6), (2,6)(3,5) ] );
(1,5,3)(2,6,4)(7,11,9)(8,12,10)
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8.2.8 CrossedSquareByXModSplitting

▷ CrossedSquareByXModSplitting(X0) (attribute)

▷ CrossedPairingByPreImages(X1, X2) (operation)

For X = (∂ : S→ R) let Q be the image of ∂ . Then ∂ = ∂ ′ ◦ ι where ∂ ′ : S→ Q and ι is the
inclusion of Q in R. The diagonal of the square is then the initial X , and the crossed pairing is given
by commutators of preimages.

A particular case is when S is an R-module A and ∂ is the zero map.

S ∂ ′ //

∂ ′

��

Q

ι

��

A 0 //

0

��

1

ι

��
Q

ι
// R 1

ι
// R

Example

gap> k4 := Group( (1,2), (3,4) );;
gap> AX4 := XModByAutomorphismGroup( k4 );;
gap> X4 := Image( IsomorphismPermObject( AX4 ) );;
gap> XSS4 := CrossedSquareByXModSplitting( X4 );;
gap> StructureDescription( XSS4 );
[ "C2 x C2", "1", "1", "S3" ]
gap> XSS20 := CrossedSquareByXModSplitting( X20 );;
gap> up20 := Up2DimensionalGroup( XSS20 );;
gap> Range( up20 ) = d10a;
true
gap> SetName( Range( up20 ), "d10a" );
gap> Name( XSS20 );
"[d10a->d10a,d10a->d20]"
gap> xp12 := CrossedPairing( XS12 );;
gap> ImageElmCrossedPairing( xp12, [ (1,2,3,4,5,6), (2,6)(3,5) ] );
(1,5,3)(2,6,4)(7,11,9)(8,12,10)
gap> XSS20;
[d10a->d10a,d10a->d20]
gap> xps := CrossedPairing( XSS20 );;
gap> ImageElmCrossedPairing( xps, [ p1^2, p2 ] );
(1,7,3,9,5)(2,8,4,10,6)

8.2.9 CrossedSquare

▷ CrossedSquare(args) (function)

The function CrossedSquare may be used to call some of the constructions described in the
previous subsections.

• CrossedSquare(X0) calls CrossedSquareByXModSplitting.
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• CrossedSquare(C0) calls CrossedSquareOfCat2Group.

• CrossedSquare(X0,X1) calls CrossedSquareByPullback when there is a common range.

• CrossedSquare(X0,X1) calls CrossedSquareByNormalXMod when X1 is normal in X0 .

• CrossedSquare(L,M,N,P) calls CrossedSquareByNormalSubgroups.
Example

gap> diag := Diagonal2DimensionalGroup( AXS20 );
[d20->Aut(d20)]
gap> XSdiag := CrossedSquare( diag );;
gap> StructureDescription( XSdiag );
[ "D20", "D10", "D10", "C2 x (C5 : C4)" ]

8.2.10 Transpose3DimensionalGroup (for crossed squares)

▷ Transpose3DimensionalGroup(S0) (attribute)

The transpose of a crossed square S is the crossed square S̃ obtained by interchanging M with
N, κ with λ , and ν with µ . The crossed pairing is given by

⊠̃ : M×N→ L, (m,n) 7→ m⊠̃n := (n⊠m)−1 .

Example

gap> XStrans := Transpose3DimensionalGroup( XSconj );
[ c5d -> d10b ]
[ | | ]
[ d10a -> d20 ]

8.2.11 CentralQuotient (for crossed modules)

▷ CentralQuotient(X0) (attribute)

The central quotient of a crossed module X = (∂ : S→ R) is the crossed square where:

• the left crossed module is X ;

• the right crossed module is the quotient X /Z(X ) (see CentreXMod (4.1.7));

• the up and down homomorphisms are the natural homomorphisms onto the quotient groups;

• the crossed pairing ⊠ : (R× F)→ S, where F = Fix(X ,S,R), is the displacement element
⊠(r,Fs) = ⟨r,s⟩= (s−1)rs (see Displacement (4.1.3) and section 4.3).

This is the special case of an intended function CrossedSquareByCentralExtension which has not
yet been implemented. In the example Xn7 ⊴ X24, constructed in section 4.1.
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Example

gap> pos7 := Position( ids, [ [12,2], [24,5] ] );;
gap> Xn7 := nsx[pos7];;
gap> IdGroup( Xn7 );
[ [ 12, 2 ], [ 24, 5 ] ]
gap> IdGroup( CentreXMod( Xn7 ) );
[ [ 4, 1 ], [ 4, 1 ] ]
gap> CQXn7 := CentralQuotient( Xn7 );;
gap> StructureDescription( CQXn7 );
[ "C12", "C3", "C4 x S3", "S3" ]

8.2.12 IsCrossedSquare

▷ IsCrossedSquare(obj) (property)

▷ IsPreCrossedSquare(obj) (property)

▷ Is3dObject(obj) (property)

▷ IsPerm3dObject(obj) (property)

▷ IsPc3dObject(obj) (property)

▷ IsFp3dObject(obj) (property)

These are the basic properties for 3d-groups, and crossed squares in particular.

8.2.13 Up2DimensionalGroup

▷ Up2DimensionalGroup(XS) (attribute)

▷ Left2DimensionalGroup(XS) (attribute)

▷ Down2DimensionalGroup(XS) (attribute)

▷ Right2DimensionalGroup(XS) (attribute)

▷ CrossDiagonalActions(XS) (attribute)

▷ Diagonal2DimensionalGroup(XS) (attribute)

▷ Name(S0) (method)

These are the basic attributes of a crossed square S . The six objects used in the construction of
S are the four crossed modules (2d-groups) on the sides of the square (up; left; right and down); the
diagonal action of P on L; and the crossed pairing {M,N}→ L (see the next subsection). The diagonal
crossed module (L→ P) is an additional attribute.

Example

gap> Up2DimensionalGroup( XSconj );
[c5d->d10a]
gap> Right2DimensionalGroup( XSact );
Actor[d10a->d20]
gap> Name( XSconj );
"[c5d->d10a,d10b->d20]"
gap> cross1 := CrossDiagonalActions( XSconj )[1];;
gap> gensa := GeneratorsOfGroup( d10a );;
gap> gensb := GeneratorsOfGroup( d10a );;
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gap> act1 := ImageElm( cross1, gensb[1] );;
gap> gensa[2]; ImageElm( act1, gensa[2] );
(2,10)(3,9)(4,8)(5,7)
(1,5)(2,4)(6,10)(7,9)

8.2.14 IsSymmetric3DimensionalGroup

▷ IsSymmetric3DimensionalGroup(obj) (property)

▷ IsAbelian3DimensionalGroup(obj) (property)

▷ IsTrivialAction3DimensionalGroup(obj) (property)

▷ IsNormalSub3DimensionalGroup(obj) (property)

▷ IsCentralExtension3DimensionalGroup(obj) (property)

▷ IsAutomorphismGroup3DimensionalGroup(obj) (property)

These are further properties for 3d-groups, and crossed squares in particular. A 3d-group is sym-
metric if its Up2DimensionalGroup is equal to its Left2DimensionalGroup.

8.2.15 CrossedPairing

▷ CrossedPairing(XS) (attribute)

▷ CrossedPairingMap(xpair) (attribute)

▷ ImageElmCrossedPairing(XS, pair) (operation)

▷ Mapping2ArgumentsByFunction(MxN, L, map) (operation)

Crossed pairings have been implemented using an operation Mapping2ArgumentsByFunction.
This encodes a map {M,N}→ L as a map M×N→ L.

The operation ImageElmCrossedPairing returns the image when a crossed pairing {M,N}→ L
is applied to the pair [m,n] with m ∈M, n ∈ N.

The first example shows the crossed pairing in the crossed square XSconj.
Example

gap> xp := CrossedPairing( XSconj );
crossed pairing: Group( [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10),

( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6), (11,13,15,17,19)(12,14,16,18,20),
(12,20)(13,19)(14,18)(15,17) ] ) -> c5d

gap> ImageElmCrossedPairing( xp,
> [ (1,6)(2,5)(3,4)(7,10)(8,9), (1,5)(2,4)(6,9)(7,8) ] );
(1,7,8,5,3)(2,9,10,6,4)

The second example shows how to construct a crossed pairing.
Example

gap> F := FreeGroup(1);;
gap> x := GeneratorsOfGroup(F)[1];;
gap> z := GroupHomomorphismByImages( F, F, [x], [x^0] );;
gap> id := GroupHomomorphismByImages( F, F, [x], [x] );;
gap> map := Mapping2ArgumentsByFunction( [F,F], F, function(c)
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> return x^(ExponentSumWord(c[1],x)*ExponentSumWord(c[2],x)); end );;
gap> h := CrossedPairingObj( [F,F], F, map );;
gap> ImageElmCrossedPairing( h, [x^3,x^4] );
f1^12
gap> A := AutomorphismGroup( F );;
gap> a := GeneratorsOfGroup(A)[1];;
gap> act := GroupHomomorphismByImages( F, A, [x], [a^2] );;
gap> X0 := XModByBoundaryAndAction( z, act );;
gap> X1 := XModByBoundaryAndAction( id, act );;
gap> XSF := PreCrossedSquareByPreXMods( X0, X0, X1, X1, X0, h );;
gap> IsCrossedSquare( XSF );
true

8.3 Morphisms of crossed squares

This section describes an initial implementation of morphisms of (pre-)crossed squares.

8.3.1 CrossedSquareMorphism

▷ CrossedSquareMorphism(args) (function)

▷ CrossedSquareMorphismByXModMorphisms(src, rng, mors) (operation)

▷ CrossedSquareMorphismByGroupHomomorphisms(src, rng, homs) (operation)

▷ PreCrossedSquareMorphismByPreXModMorphisms(src, rng, mors) (operation)

▷ PreCrossedSquareMorphismByGroupHomomorphisms(src, rng, homs) (operation)

8.3.2 Source

▷ Source(map) (attribute)

▷ Range(map) (attribute)

▷ Up2DimensionalMorphism(map) (attribute)

▷ Left2DimensionalMorphism(map) (attribute)

▷ Down2DimensionalMorphism(map) (attribute)

▷ Right2DimensionalMorphism(map) (attribute)

Morphisms of 3dObjects are implemented as 3dMappings. These have a pair of 3d-groups
as source and range, together with four 2d-morphisms mapping between the four pairs of crossed
modules on the four sides of the squares. These functions return fail when invalid data is supplied.

8.3.3 IsCrossedSquareMorphism

▷ IsCrossedSquareMorphism(map) (property)

▷ IsPreCrossedSquareMorphism(map) (property)

▷ IsBijective(mor) (method)

▷ IsEndomorphism3dObject(mor) (property)

▷ IsAutomorphism3dObject(mor) (property)
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A morphism mor between two pre-crossed squares S1 and S2 consists of four crossed
module morphisms Up2DimensionalMorphism(mor), mapping the Up2DimensionalGroup of
S1 to that of S2, Left2DimensionalMorphism(mor), Right2DimensionalMorphism(mor)
and Down2DimensionalMorphism(mor). These four morphisms are required to commute with
the four boundary maps and to preserve the rest of the structure. The current version of
IsCrossedSquareMorphism does not perform all the required checks.

Example

gap> ad20 := GroupHomomorphismByImages( d20, d20, [p1,p2], [p1,p2^p1] );;
gap> ad10a := GroupHomomorphismByImages( d10a, d10a, [p1^2,p2], [p1^2,p2^p1] );;
gap> ad10b := GroupHomomorphismByImages( d10b, d10b, [p1^2,p12], [p1^2,p12^p1] );;
gap> idc5d := IdentityMapping( c5d );;
gap> up := Up2DimensionalGroup( XSconj );;
gap> lt := Left2DimensionalGroup( XSconj );;
gap> rt := Right2DimensionalGroup( XSconj );;
gap> dn := Down2DimensionalGroup( XSconj );;
gap> mup := XModMorphismByGroupHomomorphisms( up, up, idc5d, ad10a );
[[c5d->d10a] => [c5d->d10a]]
gap> mlt := XModMorphismByGroupHomomorphisms( lt, lt, idc5d, ad10b );
[[c5d->d10b] => [c5d->d10b]]
gap> mrt := XModMorphismByGroupHomomorphisms( rt, rt, ad10a, ad20 );
[[d10a->d20] => [d10a->d20]]
gap> mdn := XModMorphismByGroupHomomorphisms( dn, dn, ad10b, ad20 );
[[d10b->d20] => [d10b->d20]]
gap> autoconj := CrossedSquareMorphism( XSconj, XSconj, [mup,mlt,mrt,mdn] );;
gap> ord := Order( autoconj );;
gap> Display( autoconj );
Morphism of crossed squares :-
: Source = [c5d->d10a,d10b->d20]
: Range = [c5d->d10a,d10b->d20]
: order = 5
: up-left: [ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) ],

[ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10) ] ]
: up-right:
[ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 2,10)( 3, 9)( 4, 8)( 5, 7) ],

[ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1, 3)( 4,10)( 5, 9)( 6, 8) ] ]
: down-left:
[ [ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6) ],

[ ( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10), ( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7) ] ]
: down-right:
[ [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10), ( 2,10)( 3, 9)( 4, 8)( 5, 7) ],

[ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10), ( 1, 3)( 4,10)( 5, 9)( 6, 8) ] ]
gap> IsAutomorphismHigherDimensionalDomain( autoconj );
true
gap> KnownPropertiesOfObject( autoconj );
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",

"IsSingleValued", "IsInjective", "IsSurjective",
"IsPreCrossedSquareMorphism", "IsCrossedSquareMorphism",
"IsEndomorphismHigherDimensionalDomain",
"IsAutomorphismHigherDimensionalDomain" ]
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8.3.4 InclusionMorphismHigherDimensionalDomains

▷ InclusionMorphismHigherDimensionalDomains(obj, sub) (operation)

8.4 Definitions and constructions for cat2-groups and their morphisms

We give here three equivalent definitions of cat2-groups. When we come to define catn-groups we
shall give a similar set of definitions.

Firstly, we take the definition of a cat2-group from Section 5 of Brown and Loday [BL87], suitably
modified. A cat2-group C = (C[2],C{2},C{1},C/0) comprises four groups (one for each of the subsets
of [2]) and 15 homomorphisms, as shown in the following diagram:

C[2]

��

ẗ2,ḧ2

��

//
ẗ1,ḧ1 //

��

t[2],h[2]

��

C{2}ë1

oo

��

ṫ2,ḣ2

��

C =

C{1}

ë2

OO

//

ṫ1,ḣ1

//
C/0

ė2

OO

ė1oo

e[2]

__

The following axioms are satisfied by these homomorphisms:

• the four sides of the square (up, left, right, down) are cat1-groups, denoted C̈1, C̈2, Ċ1, Ċ2;

• ṫ1◦ ḧ2 = ḣ2◦ ẗ1, ṫ2◦ ḧ1 = ḣ1◦ ẗ2, ė1◦ ṫ2 = ẗ2◦ ë1, ė2◦ ṫ1 = ẗ1◦ ë2, ė1◦ ḣ2 = ḧ2◦ ë1, ė2◦ ḣ1 = ḧ1◦ ë2;

• ṫ1 ◦ ẗ2 = ṫ2 ◦ ẗ1 = t[2], ḣ1 ◦ ḧ2 = ḣ2 ◦ ḧ1 = h[2], ė1 ◦ ë2 = ė2 ◦ ë1 = e[2], making the diagonal a
pre-cat1-group (e[2]; t[2],h[2] : C[2]→C/0).

It follows from these identities that (ẗ1, ṫ1), (ḧ1, ḣ1) and (ë1, ė1) are morphisms of cat1-groups, and
similarly in the vertical direction.

Secondly, we give the simplest of the three definitions, adapted from Ellis-Steiner [ES87]. A cat2-
group C consists of groups G,R1,R2 and six homomorphisms t1,h1 : G→ R2, e1 : R2 → G, t2,h2 :
G→ R1, e2 : R1→ G, satisfying the following axioms for all 1 ⩽ i ⩽ 2,

• (ti ◦ ei)r = r, (hi ◦ ei)r = r, ∀r ∈ R[2]\{i}, [ker ti,kerhi] = 1,

• (e1 ◦ t1)◦ (e2 ◦ t2) = (e2 ◦ t2)◦ (e1 ◦ t1), (e1 ◦h1)◦ (e2 ◦h2) = (e2 ◦h2)◦ (e1 ◦h1),

• (e1 ◦ t1)◦ (e2 ◦h2) = (e2 ◦h2)◦ (e1 ◦ t1), (e2 ◦ t2)◦ (e1 ◦h1) = (e1 ◦h1)◦ (e2 ◦ t2).

Our third definition defines a cat2-group as a "cat1-group of cat1-groups". A cat2-group C consists
of two cat1-groups C1 = (e1; t1,h1 : G1 → R1) and C2 = (e2; t2,h2 : G2 → R2) and cat1-morphisms
t = (ẗ, ṫ), h = (ḧ, ḣ) : C1→ C2, e = (ë, ė) : C2→ C1, subject to the following conditions:

(t ◦ e) and (h◦ e) are the identity mapping on C2, [ker t,kerh] = {1C1},
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where ker t = (ker ẗ, ker ṫ), and similarly for kerh.
A recent paper Computing 3-Dimensional Groups :L Crossed Squares and Cat2-Groups, by Ar-

vasi, Odabas and Wensley [AOWar], contains tables listing the numbers of isomorphism classes of
cat2-groups on groups of order at most 30 – a total of 1007 cat2-groups.

8.4.1 Cat2Group

▷ Cat2Group(args) (function)

▷ PreCat2Group(args) (function)

▷ IsCat2Group(C) (property)

▷ PreCat2GroupByPreCat1Groups(L) (operation)

The global functions Cat2Group and PreCat2Group are normally called with two arguments - the
generating up and left cat1-groups - or with a single argument which is a crossed square. The operation
PreCat2GroupByPreCat1Groups has five arguments - the up, left, right, down and diagonal cat1-
groups.

The two cat2-groups C2a, C2b constructed in the following example are isomorphic. They differ
in the down-left group P.

Example

gap> a := (1,2,3,4,5,6);; b := (2,6)(3,5);;
gap> G := Group( a, b );; SetName( G, "d12" );
gap> t1 := GroupHomomorphismByImages( G, G, [a,b], [a^3,b] );;
gap> up := PreCat1GroupByEndomorphisms( t1, t1 );;
gap> t2 := GroupHomomorphismByImages( G, G, [a,b], [a^4,b] );;
gap> left := PreCat1GroupByEndomorphisms( t2, t2 );;
gap> C2a := Cat2Group( up, left );
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )]
gap> IsCat2Group( C2a );
true
gap> genR := [ (1,4)(2,5)(3,6), (2,6)(3,5) ];;
gap> R := Subgroup( G, genR );;
gap> genQ := [ (1,3,5)(2,4,6), (2,6)(3,5) ];;
gap> Q := Subgroup( G, genQ );;
gap> Pa := Group( b );; SetName( Pa, "c2a" );
gap> Pb := Group( (7,8) );; SetName( Pb, "c2b" );
gap> t3 := GroupHomomorphismByImages( R, P, genR, [(),(7,8)] );;
gap> e3 := GroupHomomorphismByImages( P, R, [(7,8)], [(2,6)(3,5)] );;
gap> right := PreCat1GroupByTailHeadEmbedding( t3, t3, e3 );;
gap> t4 := GroupHomomorphismByImages( Q, P, genQ, [(),(7,8)] );;
gap> e4 := GroupHomomorphismByImages( P, Q, [(7,8)], [(2,6)(3,5)] );;
gap> down := PreCat1GroupByTailHeadEmbedding( t4, t4, e4 );;
gap> t0 := t1 * t3;;
gap> e0 := GroupHomomorphismByImages( P, G, [(7,8)], [(2,6)(3,5)] );;
gap> diag := PreCat1GroupByTailHeadEmbedding( t0, t0, e0 );;
gap> C2b := PreCat2GroupByPreCat1Groups( up, left, right, down, diag );
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )]
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gap> IsPreCatnGroupWithIdentityEmbeddings( C2b );
false

8.4.2 DirectProduct

▷ DirectProduct(C2a, C2b) (operation)

The direct product C1×C2 has as its four up, left, right and down cat1-groups the direct products
of those in C1 and C2. The embeddings and projections are constructed automatically, and placed in
the DirectProductInfo attribute, together with the two objects C1 and C2.

Example

gap> C2ab := DirectProductOp( [ C2a, C2b ], C2a );
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [Group( [ (1,2,3,4,5,6), (2,6)(3,5), ( 7, 8, 9,10,11,12), ( 8,12)( 9,11)
] ) => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5), ( 7,10)( 8,11)( 9,12),
( 8,12)( 9,11) ] )]

2 : [Group( [ (1,2,3,4,5,6), (2,6)(3,5), ( 7, 8, 9,10,11,12), ( 8,12)( 9,11)
] ) => Group( [ (1,5,3)(2,6,4), (2,6)(3,5), ( 7, 9,11)( 8,10,12),
( 8,12)( 9,11) ] )]

gap> StructureDescription( C2ab );
[ "C2 x C2 x S3 x S3", "C2 x C2 x C2 x C2", "S3 x S3", "C2 x C2" ]
gap> SetName( C2ab, "C2ab" );
gap> Embedding( C2ab, 1 );
<mapping: (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )] -> C2ab >
gap> Projection( C2ab, 2 );
<mapping: C2ab -> (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )] >

8.4.3 DisplayLeadMaps

▷ DisplayLeadMaps(C0) (operation)

This operation provides an alternative to Display giving a shorter output. Generators of the up-
left group are output, together with their images under the up and left tail and head maps.

Example

gap> DisplayLeadMaps( C2b );
(pre-)cat2-group with up-left group: [ (1,2,3,4,5,6), (2,6)(3,5) ]

up tail=head images: [ (1,4)(2,5)(3,6), (2,6)(3,5) ]
left tail=head images: [ (1,5,3)(2,6,4), (2,6)(3,5) ]
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8.4.4 Transpose3DimensionalGroup (for cat2-groups)

▷ Transpose3DimensionalGroup(S0) (attribute)

The transpose of a cat2-group C with groups [G,R,Q,P] is the cat2-group C̃ with groups
[G,Q,R,P].

Example

gap> TC2a := Transpose3DimensionalGroup( C2a );
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]

8.4.5 Cat2GroupMorphism

▷ Cat2GroupMorphism(args) (function)

▷ Cat2GroupMorphismByCat1GroupMorphisms(src, rng, upmor, ltmor) (operation)

▷ Cat2GroupMorphismByGroupHomomorphisms(src, rng, homs) (operation)

▷ PreCat2GroupMorphism(args) (function)

▷ PreCat2GroupMorphismByPreCat1GroupMorphisms(src, rng, upmor, ltmor) (operation)

▷ PreCat2GroupMorphismByGroupHomomorphisms(src, rng, homs) (operation)

A (pre-)cat2-group morphism µ : C = (G,R,Q,P)→ C ′ = (G′,R′,Q′,P′) is a list of four group
homomorphisms γ : G→G′, ρ : R→ R′, ξ : Q→Q′ and π : P→ P′ which commute with all the tail,
head and embedding maps so that (γ,ρ),(γ,ξ ),(ρ,π) and (ξ ,π) are all (pre-)cat1-group morphisms.

For the operations (Pre)Cat2GroupMorphismByPreCat1GroupMorphisms the third and fourth
parameters upmor, ltmor are two cat1-group morphisms with source the up and left cat1-groups in
C .

For the operations (Pre)Cat2GroupMorphismByGroupHomomorphisms the third parameter mors
is the list [γ,ρ,ξ ,π].

The example constructs an automorphism of c2a is two ways, using the two methods described
above, an d verifies that the result is the same in each case.

Example

gap> gamma := GroupHomomorphismByImages( G, G, [a,b], [a^-1,b] );;
gap> rho := IdentityMapping( R );;
gap> xi := GroupHomomorphismByImages( Q, Q, [a^2,b], [a^-2,b] );;
gap> pi := IdentityMapping( Pa );;
gap> homs := [ gamma, rho, xi, pi ];;
gap> mor1 := Cat2GroupMorphismByGroupHomomorphisms( C2a, C2a, homs );
<mapping: (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )] -> (pre-)cat
2-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
2 : [d12 => Group( [ (1,5,3)(2,6,4), (2,6)(3,5) ] )] >
gap> upmor := Cat1GroupMorphism( up, up, gamma, rho );;
gap> ltmor := Cat1GroupMorphism( left, left, gamma, xi );;
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gap> mor2 := Cat2GroupMorphismByCat1GroupMorphisms( C2a, C2a, upmor, ltmor );;
gap> mor1 = mor2;
true

8.4.6 Cat2GroupOfCrossedSquare

▷ Cat2GroupOfCrossedSquare(xsq) (attribute)

▷ CrossedSquareOfCat2Group(CC) (attribute)

These functions provide for conversion between crossed squares and cat2-groups. (They are the
3-dimensional equivalents of Cat1GroupOfXMod (2.5.3) and XModOfCat1Group (2.5.3).) The actor
crossed square XSact was constructed in section ActorCrossedSquare (8.2.5).

Example

gap> xsC2a := CrossedSquareOfCat2Group( C2a );
crossed square with crossed modules:

up = [Group( () ) -> Group( [ (1,4)(2,5)(3,6) ] )]
left = [Group( () ) -> Group( [ (1,3,5)(2,4,6) ] )]

right = [Group( [ (1,4)(2,5)(3,6) ] ) -> Group( [ (2,6)(3,5) ] )]
down = [Group( [ (1,3,5)(2,4,6) ] ) -> Group( [ (2,6)(3,5) ] )]

gap> IdGroup( xsC2a );
[ [ 1, 1 ], [ 2, 1 ], [ 3, 1 ], [ 2, 1 ] ]

gap> SetName( Source( Right2DimensionalGroup( XSact ) ), "c5:c4" );
gap> SetName( Range( Right2DimensionalGroup( XSact ) ), "c5:c4" );
gap> Name( XSact );
"[d10a->c5:c4,d20->c5:c4]"

gap> C2act := Cat2GroupOfCrossedSquare( XSact );
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [((c5:c4 |X c5:c4) |X (d20 |X d10a))=>(c5:c4 |X c5:c4)]
2 : [((c5:c4 |X c5:c4) |X (d20 |X d10a))=>(c5:c4 |X d20)]
gap> Size3d( C2act );
[ 80000, 400, 400, 20 ]

8.4.7 Subdiagonal2DimensionalGroup

▷ Subdiagonal2DimensionalGroup(obj) (attribute)

The diagonal of a crossed square is always a crossed module, but the diagonal of a cat2-group need
only be a pre-cat1-group. There is, however, a sub-cat1-group of this diagonal which, in the case of a
cat2-group constructed from a crossed square, is (P⋉L => P). (The name of this operation is very
provisional.)

Example

gap> G24 := SmallGroup( 24, 10 );;
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gap> w := G24.1;; x := G24.2;; y := G24.3;; z := G24.4;; o := One(G24);;
gap> R := Subgroup( G24, [x,y] );;
gap> txy := GroupHomomorphismByImages( G24, R, [w,x,y,z], [o,x,y,o] );;
gap> exy := GroupHomomorphismByImages( R, G24, [x,y], [x,y] );;
gap> C1xy := PreCat1GroupByTailHeadEmbedding( txy, txy, exy );;
gap> Q := Subgroup( G24, [w,y] );;
gap> twy := GroupHomomorphismByImages( G24, Q, [w,x,y,z], [w,o,y,o] );;
gap> ewy := GroupHomomorphismByImages( Q, G24, [w,y], [w,y] );;
gap> C1wy := PreCat1GroupByTailHeadEmbedding( twy, twy, ewy );;
gap> C2wxy := PreCat2Group( C1xy, C1xy );;
gap> dg := Diagonal2DimensionalGroup( C2wxy );;
gap> IsCat1Group( dg );
false
gap> C1sub := Subdiagonal2DimensionalGroup( C2wxy );;
gap> IsCat1Group( C1sub );
true
gap> IsSub2DimensionalGroup( dg, C1sub );
true

8.5 Enumerating cat2-groups with a given source

This section mirrors that for cat1-groups (2.6). As the size of a group G increases, the num-
ber of cat2-groups with source G increases rapidly. However, one is usually only interested in
the isomorphism classes of cat2-groups with source G. An iterator AllCat2GroupsIterator
is provided, which runs through the various cat2-groups. This iterator finds, for each un-
ordered pair of subgroups R,Q of G, the cat2-groups whose Up2DimensionalGroup has range
R, and whose Left2DimensionalGroup has range Q. It does this by running through
UnoderedPairsIterator(AllSubgroupsIterator(G)) provided by the Utils package, and then
using the iterator AllCat2GroupsWithImagesIterator(G,R,Q).

8.5.1 AllCat2GroupsWithImagesIterator

▷ AllCat2GroupsWithImagesIterator(G, R, Q) (operation)

▷ AllCat2GroupsWithImagesNumber(G, R, Q) (attribute)

▷ AllCat2GroupsWithImages(G, R, Q) (operation)

▷ AllCat2GroupsWithImagesUpToIsomorphism(G, R, Q) (operation)

The iterator AllCat2GroupsWithImagesIterator(G) iterates through all the cat2-
groups with source G and generating cat1-groups (G=>R) and (G=>Q). The attribute
AllCat2GroupsWithImagesNumber(G) runs through this iterator to determine the number n
of these cat2-groups. The operation AllCat2GroupsWithImages(G) returns a list containing these
n cat2-groups. Since these lists can get very long, this operation should only be used for simple
cases. The operation AllCat2GroupsWithImagesUpToIsomorphism(G) returns representatives of
the isomorphism classes of these cat2-groups.

Example

gap> G8 := Group( (1,2), (3,4), (5,6) );;
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gap> A := Subgroup( G8, [ (1,2) ] );;
gap> B := Subgroup( G8, [ (3,4) ] );;
gap> AllCat2GroupsWithImagesNumber( G8, A, A );
4
gap> all := AllCat2GroupsWithImages( G8, A, A );;
gap> for C2 in all do DisplayLeadMaps( C2 ); od;
(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]

up tail=head images: [ (1,2), (1,2), () ]
left tail=head images: [ (1,2), (1,2), () ]

(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]
up tail=head images: [ (1,2), (), () ]

left tail=head images: [ (1,2), (), () ]
(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]

up tail=head images: [ (1,2), (), (1,2) ]
left tail=head images: [ (1,2), (), (1,2) ]

(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]
up tail=head images: [ (1,2), (1,2), (1,2) ]

left tail=head images: [ (1,2), (1,2), (1,2) ]
gap> AllCat2GroupsWithImagesNumber( G8, A, B );
16
gap> iso := AllCat2GroupsWithImagesUpToIsomorphism( G8, A, B );;
gap> for C2 in iso do DisplayLeadMaps( C2 ); od;
(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]

up tail=head images: [ (1,2), (), () ]
left tail=head images: [ (), (3,4), () ]

(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]
up tail=head images: [ (1,2), (), () ]

left tail/head images: [ (), (3,4), () ], [ (), (3,4), (3,4) ]
(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]

up tail/head images: [ (1,2), (), () ], [ (1,2), (), (1,2) ]
left tail/head images: [ (), (3,4), () ], [ (), (3,4), (3,4) ]

8.5.2 AllCat2GroupsWithFixedUp

▷ AllCat2GroupsWithFixedUp(C) (operation)

▷ AllCat2GroupsWithFixedUpAndLeftRange(C, R) (operation)

The operation AllCat2GroupsWithFixedUp(C) constructs all the cat2-groups with a fixed
Up2DimensionalGroup C. In the second operation the user may also specify the range of the
Left2DimensionalGroup.

Example

gap> up := Up2DimensionalGroup( iso[1] );
[Group( [ (1,2), (3,4), (5,6) ] )=>Group( [ (1,2), (), () ] )]
gap> AllCat2GroupsWithFixedUp( up );;
gap> Length(last);
28
gap> L := AllCat2GroupsWithFixedUpAndLeftRange( up, B );;
gap> for C in L do DisplayLeadMaps( C ); od;
(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]
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up tail=head images: [ (1,2), (), () ]
left tail=head images: [ (), (3,4), () ]

(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]
up tail=head images: [ (1,2), (), () ]

left tail/head images: [ (), (3,4), () ], [ (), (3,4), (3,4) ]
(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]

up tail=head images: [ (1,2), (), () ]
left tail/head images: [ (), (3,4), (3,4) ], [ (), (3,4), () ]

(pre-)cat2-group with up-left group: [ (1,2), (3,4), (5,6) ]
up tail=head images: [ (1,2), (), () ]

left tail=head images: [ (), (3,4), (3,4) ]

8.5.3 AllCat2GroupsMatrix

▷ AllCat2GroupsMatrix(G) (attribute)

The operation AllCat2GroupsMatrix(G) constructs a symmetric matrix M with rows and
columns labelled by the cat1-groups Ci on G, where Mi j is 1 if Ci,C j combine to form a cat2-group,
and 0 otherwise. The matrix is automatically printed out with dots in place of zeroes.

In the example we see that the dihedral group D12 has 12 cat1-groups and 41 cat2-groups, 12 of
which are symmetric. This operation is intended to be used to illustrate how cat2-groups are formed,
and should only be used with groups of low order.

The attribute AllCat2GroupsNumber(G) returns the number n of these cat2-groups.
Example

gap> AllCat2GroupsMatrix(d12);;
number of cat2-groups found = 41
1.....1..1.1
.1.....1.1.1
..1.....11.1
...1....1.11
....1.1...11
.....1.1..11
1...1.1..111
.1...1.1.111
..11....1111
111...1111.1
...111111.11
111111111111
gap> AllCat2GroupsNumber(d12);
41

8.5.4 AllCat2GroupsIterator

▷ AllCat2GroupsIterator(G) (operation)

▷ AllCat2Groups(G) (operation)

▷ AllCat2GroupsUpToIsomorphism(G) (operation)
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▷ AllCat2GroupFamilies(G) (operation)

▷ CatnGroupNumbers(G) (attribute)

▷ CatnGroupLists(G) (attribute)

The iterator AllCat2GroupsIterator(G) iterates through all the cat2-groups with source G.
The operation AllCat2Groups(G) returns a list containing these n cat2-groups. Since these
lists can get very long, this operation should only be used for simple cases. The operation
AllCat2GroupsUpToIsomorphism(G) returns representatives of the isomorphism classes of these
subgroups. The operation AllCat2GroupFamilies(G) returns a list of lists. The k-th list con-
tains the positions of the cat2-groups in AllCat2Groups(G) which are isomorphic to the k-th rep-
resentative. So, for d12, the 41 cat2-groups form 10 classes, and the sizes of these classes are
[6,6,6,6,3,6,3,2,2,1]. Four of these classes contain symmetric cat2-groups.

The field CatnGroupNumbers(G).cat2 is the number of cat2-groups on G, while
CatnGroupNumbers(G).iso2 is the number of isomorphism classes of these cat2-groups. Also
CatnGroupNumbers(G).symm is the number of cat2-groups whose Up2DimensionalGroup is the
same as the Left2DimensionalGroup, while CatnGroupNumbers(G).siso is the number of iso-
morphism classes of these symmetric cat2-groups.

Provided that CatnGroupLists(G).omit is not set to true, sorted lists of generating pairs, and
of the classes they belong to, are added to the record CatnGroupLists. For example [5,7] in these
lists for d12 indicates that there is a cat2-group generated by the fifth and seventh cat1-groups and
that this is in the second class whose representative is [1,7]. Classes [1,5,8,10] contain symmetric
cat2-groups.

Example

gap> AllCat2GroupsNumber( d12 );
41
gap> reps2 := AllCat2GroupsUpToIsomorphism( d12 );;
gap> Length( reps2 );
10
gap> List( reps2, C -> StructureDescription( C ) );
[ [ "D12", "C2", "C2", "C2" ], [ "D12", "C2", "C2 x C2", "C2" ],

[ "D12", "C2", "S3", "C2" ], [ "D12", "C2", "D12", "C2" ],
[ "D12", "C2 x C2", "C2 x C2", "C2 x C2" ], [ "D12", "C2 x C2", "S3", "C2" ]

, [ "D12", "C2 x C2", "D12", "C2 x C2" ], [ "D12", "S3", "S3", "S3" ],
[ "D12", "S3", "D12", "S3" ], [ "D12", "D12", "D12", "D12" ] ]

gap> fams := AllCat2GroupFamilies( d12 );
[ [ 1, 2, 3, 4, 5, 6 ], [ 7, 8, 10, 11, 13, 14 ], [ 16, 17, 18, 23, 24, 25 ],

[ 30, 31, 32, 33, 34, 35 ], [ 9, 12, 15 ], [ 19, 20, 21, 26, 27, 28 ],
[ 36, 37, 38 ], [ 22, 29 ], [ 39, 40 ], [ 41 ] ]

gap> CatnGroupNumbers( d12 );
rec( cat1 := 12, cat2 := 41, idem := 21, iso1 := 4, iso2 := 10,

isopredg := 0, predg := 0, siso := 4, symm := 12 )
gap> CatnGroupLists( d12 );
rec( allcat2pos := [ 1, 7, 9, 16, 19, 22, 30, 36, 39, 41 ],

cat2classes :=
[ [ [ 1, 1 ], [ 2, 2 ], [ 3, 3 ], [ 4, 4 ], [ 5, 5 ], [ 6, 6 ] ],

[ [ 1, 7 ], [ 5, 7 ], [ 2, 8 ], [ 6, 8 ], [ 3, 9 ], [ 4, 9 ] ],
[ [ 1, 10 ], [ 2, 10 ], [ 3, 10 ], [ 4, 11 ], [ 5, 11 ], [ 6, 11 ] ],
[ [ 1, 12 ], [ 2, 12 ], [ 3, 12 ], [ 4, 12 ], [ 5, 12 ], [ 6, 12 ] ],
[ [ 7, 7 ], [ 8, 8 ], [ 9, 9 ] ],
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[ [ 7, 10 ], [ 8, 10 ], [ 9, 10 ], [ 7, 11 ], [ 8, 11 ], [ 9, 11 ] ],
[ [ 7, 12 ], [ 8, 12 ], [ 9, 12 ] ], [ [ 10, 10 ], [ 11, 11 ] ],
[ [ 10, 12 ], [ 11, 12 ] ], [ [ 12, 12 ] ] ],

cat2pairs := [ [ 1, 1 ], [ 1, 7 ], [ 1, 10 ], [ 1, 12 ], [ 2, 2 ],
[ 2, 8 ], [ 2, 10 ], [ 2, 12 ], [ 3, 3 ], [ 3, 9 ], [ 3, 10 ],
[ 3, 12 ], [ 4, 4 ], [ 4, 9 ], [ 4, 11 ], [ 4, 12 ], [ 5, 5 ],
[ 5, 7 ], [ 5, 11 ], [ 5, 12 ], [ 6, 6 ], [ 6, 8 ], [ 6, 11 ],
[ 6, 12 ], [ 7, 7 ], [ 7, 10 ], [ 7, 11 ], [ 7, 12 ], [ 8, 8 ],
[ 8, 10 ], [ 8, 11 ], [ 8, 12 ], [ 9, 9 ], [ 9, 10 ], [ 9, 11 ],
[ 9, 12 ], [ 10, 10 ], [ 10, 12 ], [ 11, 11 ], [ 11, 12 ], [ 12, 12 ] ],

omit := false, pisopos := [ ], sisopos := [ 1, 5, 8, 10 ] )



Chapter 9

Crossed cubes and Cat3-groups

The term 4d-group refers to a set of equivalent categories of which the most common are the categories
of crossed cubes and cat3-groups. A 4d-mapping is a function between two 4d-groups which preserves
all the structure.

The material in this chapter should be considered very experimental. As yet there are no functions
for crossed cubes.

9.1 Functions for (pre-)cat3-groups

We shall use the following standard orientation of a cat3-group E on a group G. E contains 8 groups;
12 cat1-groups and 6 cat2-groups forming the vertices; edges and faces of a cube, as shown in the
following diagram.

H

����

////

  

Noo

����

��
G

����

////

`` ``

Roo

����

__ __

M

OO

////

��

L

OO

oo

��
Q

OO

////

__ __

P

OO

oo

__ __

By definition, E is generated by three commuting cat1-groups (G⇒ R),(G⇒ Q) and (G⇒ H),
but it is more convenient to think of E as generated by two cat2-groups

• front(E ), generated by (G⇒ R) and (G⇒ Q);

• left(E ), generated by (G⇒ Q) and (G⇒ H).

Because the tail, head and embedding maps all commute, it follows that up(E ), generated by (G⇒H)
and (G⇒ R), is a third cat2-group. The three remaining faces (cat2-groups) right(E ), down(E ) and

88
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back(E ) are then easily constructed. We shall always use the order [front,up,left,right,down,back] for
the six faces.

9.1.1 Cat3Group

▷ Cat3Group(args) (function)

▷ PreCat3Group(args) (function)

▷ IsCat3Group(C) (property)

▷ PreCat3GroupByPreCat2Groups(L) (operation)

The global functions Cat3Group and PreCat3Group are normally take as arguments a pair of
cat2-groups or a trio of cat1-groups. In subsection AllCat2GroupsIterator (8.5.4) the list of pairs
CatnGroupLists(d12).pairs contains the three entries [6,8],[8,11] and [6,11]. It follows that
the sixth, eighth and eleventh cat1-groups for d12 generate a cat3-group.

Example

gap> all1 := AllCat1Groups( d12 );;
gap> C68 := Cat2Group( all1[6], all1[8] );;
gap> C811 := Cat2Group( all1[8], all1[11] );;
gap> C3Ga := Cat3Group( C68, C811 );
cat3-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,6)(2,5)(3,4) ] )]
2 : [d12 => Group( [ (1,4)(2,5)(3,6), (1,3)(4,6) ] )]
3 : [d12 => Group( [ (1,5,3)(2,6,4), (1,4)(2,3)(5,6) ] )]
gap> C3Gb := Cat3Group( all1[6], all1[8], all1[11] );
cat3-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,6)(2,5)(3,4) ] )]
2 : [d12 => Group( [ (1,4)(2,5)(3,6), (1,3)(4,6) ] )]
3 : [d12 => Group( [ (1,5,3)(2,6,4), (1,4)(2,3)(5,6) ] )]
gap> C3Ga = C3Gb;
true

9.1.2 Front3DimensionalGroup

▷ Front3DimensionalGroup(C3) (attribute)

▷ Up3DimensionalGroup(C3) (attribute)

▷ Left3DimensionalGroup(C3) (attribute)

▷ Right3DimensionalGroup(C3) (attribute)

▷ Down3DimensionalGroup(C3) (attribute)

▷ Back3DimensionalGroup(C3) (attribute)

The six faces of a cat3-group are stored as these attributes.
Example

gap> C116 := Cat2Group( all1[11], all1[6] );;
gap> Up3DimensionalGroup( C3Ga ) = C116;
true
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9.2 Enumerating cat3-groups with a given source

Once the list CatnGroupLists(G).pairs has been obtained we may seek all triples [i, j], [ j,k] and
[k, i] or [i,k] of pairs in this list and then, for each such triple, construct a cat3-group generated by the
i-th, j-th and k-th cat1-group on G.

9.2.1 AllCat3GroupTriples

▷ AllCat3GroupTriples(G) (operation)

▷ AllCat3GroupsNumber(G) (attribute)

▷ AllCat3Groups(G) (operation)

The list of triples returned by the operation AllCat3GroupTriples is saved as
CatnGroupLists(G).cat3triples. The length of this list is the number of cat3-groups on
G, and is saved as CatnGroupNumbers(G).cat3.

As yet there is no operation AllCat3GroupsUpToIsomorphism(G).
Example

gap> triples := AllCat3GroupTriples( d12 );;
gap> CatnGroupNumbers( d12 ).cat3;
94
gap> triples[46];
[ 5, 7, 11 ]
gap> all1 := AllCat1Groups( d12 );;
gap> Cat3Group( all1[5], all1[7], all1[11] );
cat3-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,4)(2,3)(5,6) ] )]
2 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
3 : [d12 => Group( [ (1,5,3)(2,6,4), (1,4)(2,3)(5,6) ] )]

9.3 Definition and constructions for catn-groups and their morphisms

In this chapter and the previous one we are interested in cat2-groups and cat3-groups, and it is conve-
nient in this section to give the more general definition. There are three equivalent descriptions of a
catn-group.

A catn-group consists of the following.

• 2n groups GA, one for each subset A of [n], the vertices of an n-cube.

• Group homomorphisms forming n2n−1 commuting cat1-groups,

CA,i = (eA,i; tA,i, hA,i : GA→ GA\{i}), for all A⊆ [n], i ∈ A,

the edges of the cube.

• These cat1-groups combine (in sets of 4) to form n(n−1)2n−3 cat2-groups CA,{i, j} for all {i, j}⊆
A⊆ [n], i ̸= j, the faces of the cube.
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Note that, since the tA,i,hA,i and eA,i commute, composite homomorphisms tA,B,hA,B : GA→ GA\B and
eA,B : GA\B→ GA are well defined for all B⊆ A⊆ [n].

Secondly, we give the simplest of the three descriptions, again adapted from Ellis-Steiner [ES87].
A catn-group C consists of 2n groups GA, one for each subset A of [n], and 3n homomorphisms

t[n],i,h[n],i : G[n]→ G[n]\{i}, e[n],i : G[n]\{i}→ G[n],

satisfying the following axioms for all 1 ⩽ i ⩽ n,}

• the C[n],i = (e[n],i; t[n],i, h[n],i : G[n]→ G[n]\{i}) are commuting cat1-groups, so that:

• (e1 ◦ t1)◦ (e2 ◦ t2) = (e2 ◦ t2)◦ (e1 ◦ t1), (e1 ◦h1)◦ (e2 ◦h2) = (e2 ◦h2)◦ (e1 ◦h1),

• (e1 ◦ t1)◦ (e2 ◦h2) = (e2 ◦h2)◦ (e1 ◦ t1), (e2 ◦ t2)◦ (e1 ◦h1) = (e1 ◦h1)◦ (e2 ◦ t2).

Our third description defines a catn-group as a "cat1-group of cat(n−1)-groups".
A catn-group C consists of two cat(n−1)-groups:

• A with groups GA, A⊆ [n−1], and homomorphisms ẗA,i, ḧA,i, ëA,i,

• B with groups HB, B⊆ [n−1], and homomorphisms ṫB,i, ḣB,i, ėB,i, and

• cat(n−1)-morphisms t,h : A →B and e : B→A subject to the following conditions:

(t ◦ e) and (h◦ e) are the identity mapping on B, [ker t,kerh] = {1A }.

9.3.1 PreCatnGroup

▷ PreCatnGroup(L) (operation)

▷ CatnGroup(L) (operation)

The operation (Pre)CatnGroup expects as input a list of cat1-groups.
Example

gap> PC4 := PreCatnGroup( [ all1[5], all1[7], all1[11], all1[12] ] );
(pre-)cat4-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,4)(2,3)(5,6) ] )]
2 : [d12 => Group( [ (1,4)(2,5)(3,6), (2,6)(3,5) ] )]
3 : [d12 => Group( [ (1,5,3)(2,6,4), (1,4)(2,3)(5,6) ] )]
4 : [d12 => Group( [ (1,2,3,4,5,6), (2,6)(3,5) ] )]
gap> IsCatnGroup( PC4 );
true
gap> HigherDimension( PC4 );
5



Chapter 10

Crossed modules of groupoids

The material documented in this chapter is experimental, and is likely to be changed in due course.

10.1 Constructions for crossed modules of groupoids

A typical example of a crossed module X over a groupoid has for its range a connected groupoid.
This is a direct product of a group with a complete graph, and we call the vertices of the graph the
objects of the crossed module. The source of X is a groupoid, with the same objects, which is either
discrete or connected. The boundary morphism is constant on objects. For details and other references
see [AW10].

10.1.1 SinglePiecePreXModWithObjects

▷ SinglePiecePreXModWithObjects(pxmod, obs, isdisc) (operation)

At present the experimental operation SinglePiecePreXModWithObjects accepts a precrossed
module pxmod, a set of objects obs, and a boolean isdisc which is true when the source groupoid is
homogeneous and discrete and false when the source groupoid is connected. Other operations will
be added as time permits.

In the example the crossed module DX4 has discrete source, while the crossed module CX4 has
connected source. These are groupoid equivalents of XModByNormalSubgroup (2.1.2).

Example

gap> s4 := Group( (1,2,3,4), (3,4) );;
gap> SetName( s4, "s4" );
gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4) ] );;
gap> SetName( a4, "a4" );
gap> X4 := XModByNormalSubgroup( s4, a4 );;
gap> DX4 := SinglePiecePreXModWithObjects( X4, [-9,-8,-7], true );
single piece crossed module with objects

source groupoid:
homogeneous, discrete groupoid: < a4, [ -9, -8, -7 ] >

and range groupoid:
single piece groupoid: < s4, [ -9, -8, -7 ] >

gap> Da4 := Source( DX4 );;
gap> Ds4 := Range( DX4 );;
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gap> CX4 := SinglePiecePreXModWithObjects( X4, [-9,-8,-7], false );
single piece crossed module with objects

source groupoid:
single piece groupoid: < a4, [ -9, -8, -7 ] >

and range groupoid:
single piece groupoid: < s4, [ -9, -8, -7 ] >

gap> Ca4 := Source( CX4 );;
gap> Cs4 := Range( CX4 );;

10.1.2 IsXModWithObjects

▷ IsXModWithObjects(pxmod) (property)

▷ IsPreXModWithObjects(pxmod) (property)

▷ IsDirectProductWithCompleteDigraphDomain(pxmod) (property)

The precrossed module DX4 belongs to the category Is2DimensionalGroupWithObjects and is,
of course, a crossed module.

Example

gap> Set( KnownPropertiesOfObject( DX4 ) );
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsAssociative",

"IsDirectProductWithCompleteDigraphDomain", "IsDuplicateFree",
"IsGeneratorsOfSemigroup", "IsPreXModWithObjects", "IsSinglePieceDomain",

10.1.3 IsPermPreXModWithObjects

▷ IsPermPreXModWithObjects(pxmod) (property)

▷ IsPcPreXModWithObjects(pxmod) (property)

▷ IsFpPreXModWithObjects(pxmod) (property)

To test these properties we test the precrossed modules from which they were constructed.
Example

gap> IsPermPreXModWithObjects( CX4 );
true
gap> IsPcPreXModWithObjects( CX4 );
false
gap> IsFpPreXModWithObjects( CX4 );
false

10.1.4 Root2dGroup

▷ Root2dGroup(pxmod) (attribute)

▷ XModAction(pxmod) (attribute)
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The attributes of a precrossed module with objects include the standard Source; Range; Boundary
(2.1.9); and XModAction (2.1.9) as with precrossed modules of groups. There is also ObjectList,
as in the groupoids package. Additionally there is Root2dGroup which is the underlying precrossed
module used in the construction.

Note that XModAction is now a groupoid homomorphism from the source groupoid to a one-object
groupoid (with object 0) where the group is the automorphism group of the range groupoid.

Example

gap> Set( KnownAttributesOfObject( CX4 ) );
[ "Boundary", "ObjectList", "Range", "Root2dGroup", "Source", "XModAction" ]
gap> Root2dGroup( CX4 );
[a4->s4]
gap> act := XModAction( CX4 );;
gap> Size( Range( act ) );
20736
gap> r := Arrow( Cs4, (1,2,3,4), -4, -5 );;
gap> ImageElm( act, r );
[groupoid homomorphism :
[ [ [(1,2,3) : -6 -> -6], [(2,3,4) : -6 -> -6], [() : -6 -> -5],

[() : -6 -> -4] ],
[ [(2,3,4) : -6 -> -6], [(1,3,4) : -6 -> -6], [() : -6 -> -4],

[() : -6 -> -5] ] ] : 0 -> 0]
gap> s := Arrow( Ca4, (1,2,4), -5, -5 );;
gap> ## calculate s^r
gap> ims := ImageElmXModAction( CX4, s, r );
[(1,2,3) : -4 -> -4]

There is much more to be done with these constructions.



Chapter 11

Double Groupoids

A double groupoid is a double category in which all the category structures are groupoids. There
is also a pre-crossed module associated to the double groupoid. In a double groupoid, as well as
objects and arrows we need a set of squares. A square is bounded by four arrows, two horizantal and
two vertical, and there is a horizantal groupoid structure and a vertical groupoid structure on these
squares. An element of the source of the pre-crossed module is located at the centre of the square, and
its image under the boundary map is equal to the boundary of the square.

The double groupoids constructed here are special in that all four arrows come from the same
groupoid. We call these edge-symmetric double groupoids.

It is assumed in this chapter that the reader is familiar with constructions for groupoids given in
the Groupoids package, such as SinglePieceBasicDoubleGroupoid. Such groupoids are basic, in
that there is no pre-crossed module involvement.

This chapter is experimental, and will be extended as soon as possible.

11.1 Double groupoid squares

Let G be a groupoid with object set Ω. Let □ be the set of squares with objects from Ω at each corner;
plus two vertical arrows and two horizantal arrows from Arr(G). Further, let P = (∂ : S→ R) be
a pre-crossed module, and let m1 ∈ S be placed at the centre of the square. The following picture
illustrates the situation:

u1
a1 //

d1

��

m1

u2

e1

��
v1 b1

// v2

We think of the square being based at the bottom, right-hand corner, v2. The boundary of the square
is the loop (v2,b−1

1 d−1
1 a1e1,v2) = (v2, p1,v2). The boundary condition which m1 has to satisfy is that
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∂m1 = p1. When defining a horizantal composition, as illustrated by

u1
a1 //

d1

��

m1

u2
a2 //

e1

��

m2

u3

f1

��

=

u1
a1a2 //

d1

��

mb2
1 m2

u3

f1

��
v1 b1

// v2 b2

// v3 v1 b1b2

// v3

we have to move m1, based at v2, to the new base v3, and we do this by using the action of the pre-
crossed module of b2 on m1. Notice that the boundary condition is satisfied, since the first pre-crossed
module axiom applies:

∂ (mb2
1 m2) = ∂ (mb2

1 )(∂m2) = b−1
2 (b−1

1 d−1
1 a1e1)b2(b−1

2 e−1
1 a2 f1) = (b1b2)

−1d−1
1 (a1a2) f1.

Similarly, vertical composition is illustrated by

u1
a1 //

d1

��

m1

u2

e1

��

u1
a1 //

d1d2

��

m3me2
1

u2

e1e2

��

v1 b1

//

d2

��

m3

v2

e2

��

=

w1 c1
// w2

w1 c1
// w2

Again the boundary condition is satisfied:

∂ (m3me2
1 ) = (∂m3)∂ (m

e2
1 ) = (c−1

1 d−1
2 b1e2)e−1

2 (b−1
1 d−1

1 a1e1)e2 = c−1
1 (d1d2)

−1a1(e1e2).

These two compositions commute, so we may construct products such as:

u1
a1 //

d1

��

m1

u2
a2 //

e1

��

m2

u3

f1

��

u1
a1a2 //

d1d2

��

mc2
3 m4

(
mb2

1 m2

) f2

u3

f1 f2

��

v1 b1 //

d2

��

m3

v2 b2 //

e2

��

m4

v3

f2

��

=

w1 c1c2
// w3

w1 c1
// w2 c2

// w3
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where
mc2

3 m4(m
b2
1 m2)

f2 = (m3me2
1 )c2m4m f2

2 = (c1c2)
−1(d1d2)

−1(a1a2)( f1 f2).

For an example we take for our groupoid the product of the group S3 = ⟨(7,8),(7,9)⟩ with the
complete graph on [−6 . . .− 1] and, for our pre-crossed module, the X12, isomorphic to (D12 →
S3), constructed using XModByCentralExtension (2.1.5). The source of X12 has generating set
{g = (11,12,13,14,15,16), h = (12,16)(13,15)}. We check that the two ways of computing the
product of four squares below agree.

−6
(7,8) //

(7,9)

��

gh

−5
(8,9) //

(8,9)

��

g2

−4

(7,8)

��

−6
(7,9,8) //

(7,8,9)

��

(11,15,13)(12,16,14)

−4

(7,9,8)

��

−1 (7,8,9) //

(8,9)

��

g

−3 (7,9) //

(7,9,8)

��

h

−4

(8,9)

��

=

−2
(7,9,8)

// −3

−2
(7,9)

// −2
(7,8)

// −3

Example

gap> g := (11,12,13,14,15,16);; h := (12,16)(13,15);;
gap> gend12 := [ g, h ];;
gap> d12 := Group( gend12 );;
gap> SetName( d12, "d12" );
gap> gens3 := [ (7,8,9), (8,9) ];;
gap> s3 := Group( gens3 );;
gap> SetName( s3, "s3" );
gap> pr12 := GroupHomomorphismByImages( d12, s3, gend12, gens3 );;
gap> X12 := XModByCentralExtension( pr12 );;
gap> SetName( X12, "X12" );
gap> Display( X12 );

Crossed module X12 :-
: Source group d12 has generators:

[ (11,12,13,14,15,16), (12,16)(13,15) ]
: Range group s3 has generators:

[ (7,8,9), (8,9) ]
: Boundary homomorphism maps source generators to:

[ (7,8,9), (8,9) ]
: Action homomorphism maps range generators to automorphisms:

(7,8,9) --> { source gens --> [ (11,12,13,14,15,16), (11,13)(14,16) ] }
(8,9) --> { source gens --> [ (11,16,15,14,13,12), (12,16)(13,15) ] }
These 2 automorphisms generate the group of automorphisms.

gap> Gs3 := Groupoid( s3, [-6..-1] );;
gap> SetName( Gs3, "Gs3" );
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gap> D1 := SinglePieceDoubleGroupoid( Gs3, X12 );;
gap> D1!.groupoid;
Gs3
gap> D1!.prexmod;
X12
gap> a1 := Arrow(Gs3,(7,8),-6,-5);; a2 := Arrow(Gs3,(8,9),-5,-4);;
gap> b1 := Arrow(Gs3,(7,8,9),-1,-3);; b2 := Arrow(Gs3,(7,9),-3,-4 );;
gap> c1 := Arrow(Gs3,(7,9),-2,-2);; c2 := Arrow(Gs3,(7,8),-2,-3);;
gap> d1 := Arrow(Gs3,(7,9),-6,-1);; d2 := Arrow(Gs3,(8,9),-1,-2);;
gap> e1 := Arrow(Gs3,(8,9),-5,-3);; e2 := Arrow(Gs3,(7,9,8),-3,-2);;
gap> f1 := Arrow(Gs3,(7,8),-4,-4);; f2 := Arrow(Gs3,(8,9),-4,-3);;
gap> ## now define four squares
gap> sq1 := SquareOfArrows( D1, g*h, a1, d1, e1, b1 );
[-6] ---- (7,8) ---> [-5]

| |
(7,9) (11,16)(12,15)(13,14) (8,9)

V V
[-1] ---- (7,8,9) ---> [-3]
gap> sq2 := SquareOfArrows( D1, g^2, a2, e1, f1, b2 );;
gap> sq3 := SquareOfArrows( D1, g, b1, d2, e2, c1 );;
gap> sq4 := SquareOfArrows( D1, h, b2, e2, f2, c2 );;
gap> ## then form two horizontal and two vertical products:
gap> sq12 := LeftRightProduct( D1, sq1, sq2 );;
gap> sq34 := LeftRightProduct( D1, sq3, sq4 );;
gap> sq13 := UpDownProduct( D1, sq1, sq3 );;
gap> sq24 := UpDownProduct( D1, sq2, sq4 );;
gap> ## combine in two ways to get a single square:
gap> sq1324 := LeftRightProduct( D1, sq13, sq24 );
[-6] ---- (7,9,8) ---> [-4]

| |
(7,8,9) (11,15,13)(12,16,14) (7,9,8)

V V
[-2] ---- (7,9,8) ---> [-3]
gap> sq1234 := UpDownProduct( D1, sq12, sq34 );;
gap> sq1324 = sq1234;
true

11.2 Basic double groupoids

As mentioned earlier, double groupoids were introduced in the Groupoids package, but these were
basic double groupoids, without any pre-crossed module. The element of a square was simply its
boundary. Here we introduce an operation which converts such a basic double groupoid into the more
general case considered in this package.

11.2.1 EnhancedBasicDoubleGroupoid

▷ EnhancedBasicDoubleGroupoid(bdg) (operation)
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We need to add a pre-crossed module to the definition of such a double groupoid. We choose
(G→ G) where G is the root group of the underlying groupoid. (This is only valid for groupoids
which are the direct product with a complete graph.) The example is taken from section 7.1 of the
Groupoids package, converting basic B0 to D0, and we check that the same square is produced in each
case.

Example

gap> g := (1,2,3,4);; h := (1,3);;
gap> gend8 := [ g, h ];;
gap> d8 := Group( gend8 );;
gap> SetName( d8, "d8" );
gap> Gd8 := Groupoid( d8, [-9..-7] );;
gap> SetName( Gd8, "Gd8" );
gap> B0 := SinglePieceBasicDoubleGroupoid( Gd8 );;
gap> B0!.groupoid;
Gd8
gap> B0!.objects;
[ -9 .. -7 ]
gap> a0 := Arrow(Gd8,(),-9,-7);; b0 := Arrow(Gd8,(2,4),-9,-8);;
gap> d0 := Arrow(Gd8,g,-9,-9);; e0 := Arrow(Gd8,(1,3),-7,-8);;
gap> bdy0 := b0![1]^-1 * d0![1]^-1 * a0![1] * e0![1];;
gap> bsq0 := SquareOfArrows( B0, bdy0, a0, d0, e0, b0 );
[-9] ---- () ---> [-7]

| |
(1,2,3,4) (1,4,3,2) (1,3)

V V
[-9] ---- (2,4) ---> [-8]

gap> D0 := EnhancedBasicDoubleGroupoid( B0 );;
gap> D0!.prexmod;
[d8->d8]
gap> bsq0 = SquareOfArrows( D0, bdy0, a0, d0, e0, b0 );
true

11.3 Commutative double groupoids

A double groupoid square

u1
a1 //

d1

��

1

u2

e1

��
v1 b1

// v2

is commutative if a1e1 = d1b1, which means that its boundary is the identity. So a double groupoid
which consists only of commutative squares must have a pre-crossed module with zero boundary.
Commutative squares compose horizantally and vertically provided only that they have the correct
common arrow.
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11.3.1 DoubleGroupoidWithZeroBoundary

▷ DoubleGroupoidWithZeroBoundary(gpd, src) (operation)

The data for a double groupoid of commutative squares therefore consists of a groupoid and a
source group. We may use the operation PreXModWithTrivialRange (2.3.1) to provide a pre-crossed
module. We take for our example the groupoid Gd8 and the pre-crossed module Q16 of section 2.3.
We introduce a new right arrow to construct a square which commutes.

Example

gap> D16 := DoubleGroupoidWithZeroBoundary( Gs3, d16 );;
gap> D16!.prexmod;
[d16->Group( [ () ] )]
gap> e16 := Arrow( Gs3, (7,9,8), -5, -3 );;
gap> sq16 := SquareOfArrows( D16, (), a1, d1, e16, b1 );
[-6] ---- (7,8) ---> [-5]

| |
(7,9) () (7,9,8)

V V
[-1] ---- (7,8,9) ---> [-3]
gap> D16 := DoubleGroupoidWithZeroBoundary( Gs3, d16 );;
gap> D16!.prexmod;
[d16->Group( [ () ] )]
gap> e16 := Arrow( Gs3, (7,9,8), -5, -3 );;
gap> sq16 := SquareOfArrows( D16, (), a1, d1, e16, b1 );
[-6] ---- (7,8) ---> [-5]

| |
(7,9) () (7,9,8)

V V
[-1] ---- (7,8,9) ---> [-3]
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Applications

This chapter was added in April 2018 for version 2.66 of XMod. Initially it describes crossed modules
for free loop spaces. Further applications may arise in due course.

12.1 Free Loop Spaces

These functions have been used to produce examples for Ronald Brown’s paper Crossed modules, and
the homotopy 2-type of a free loop space [Bro18]. The relevant theorem in that paper is as follows.

THEOREM 2.1 Let M = (∂ : M → P) be a crossed module of groups and let X = BM be the
classifying space of M . Then the components of LX, the free loop space on X, are determined by
equivalence classes of elements a ∈ P where a,a′ are equivalent if and only if there are elements
m ∈M, p ∈ P such that a′ = p+a−∂m− p.

Further the homotopy 2-type of a component of LX given by a ∈ P is determined by the crossed
module of groups LM [a] = (∂a : M→ P(a)) where:

• P(a) is the subgroup of the cat1-group G = P⋉M such that ∂m = [p,a] =−p−a+ p+a;

• ∂a(m) = (∂m,m−1ma) for m ∈M;

• the action of P(a) on M is given by n(p,m) = np for n ∈M, (p,m) ∈ P(a).

In particular π1(LX ,a) is isomorphic to cokernel(∂a), and π2(LX ,a)∼= π2(X ,∗)ā, the elements of
π2(X ,∗) fixed under the action of ā, the class of a in π1(X ,∗).

There is an exact sequence π
φ→ π→ π1(LX ,a)→Cā(π1(X ,∗))→ 1, in which π = π2(X ,∗), and

φ is the morphism m 7→ m−1ma.

12.1.1 LoopClasses

▷ LoopClasses(M) (operation)

▷ LoopsXMod(M, a) (operation)

▷ AllLoopsXMod(M) (operation)

The operation LoopClasses computes the equivalence classes [a] described above. These are all
unions of conjugacy classes.

The operation LoopsXMod(M,a) calculates the crossed module LM [a] described in the theorem.
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The operation AllLoopsXMod(M) returns a list of crossed modules, one for each equivalence class
of elements [a]⊆ P.

In the example below the automorphism crossed module X8 has M ∼=C3
2 and P = PSL(3,2) is the

automorphism group of M. There are 6 equivalence classes which, in this case, are identical with the
conjugacy classes. For each LX calculated, the IdGroup (2.8.1) is printed out.

Example

gap> SetName( k8, "k8" );
gap> Y8 := XModByAutomorphismGroup( k8 );;
gap> X8 := Image( IsomorphismPerm2DimensionalGroup( Y8 ) );;
gap> SetName( X8, "X8" );
gap> Print( "X8: ", Size( X8 ), " : ", StructureDescription( X8 ), "\n" );
X8: [ 8, 168 ] : [ "C2 x C2 x C2", "PSL(3,2)" ]
gap> classes := LoopClasses( X8 );;
gap> List( classes, c -> Length(c) );
[ 1, 21, 56, 42, 24, 24 ]
gap> LX := LoopsXMod( X8, (1,2)(5,6) );;
gap> Size2d( LX );
[ 8, 64 ]
gap> IdGroup( LX );
[ [ 8, 5 ], [ 64, 138 ] ]
gap> SetInfoLevel( InfoXMod, 1 );
gap> LX8 := AllLoopsXMod( X8 );;
#I LoopsXMod with a = (), IdGroup = [ [ 8, 5 ], [ 1344, 11686 ] ]
#I LoopsXMod with a = (4,5)(6,7), IdGroup = [ [ 8, 5 ], [ 64, 138 ] ]
#I LoopsXMod with a = (2,3)(4,6,5,7), IdGroup = [ [ 8, 5 ], [ 32, 6 ] ]
#I LoopsXMod with a = (2,4,6)(3,5,7), IdGroup = [ [ 8, 5 ], [ 24, 13 ] ]
#I LoopsXMod with a = (1,2,4,3,6,7,5), IdGroup = [ [ 8, 5 ], [ 56, 11 ] ]
#I LoopsXMod with a = (1,2,4,5,7,3,6), IdGroup = [ [ 8, 5 ], [ 56, 11 ] ]
gap> iso := IsomorphismGroups( Range( LX ), Range( LX8[2] ) );;
gap> iso = fail;
false
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Interaction with HAP

This chapter describes functions which allow functions in the package HAP to be called from XMod.

13.1 Calling HAP functions

In HAP a cat1-group is called a CatOneGroup and the traditional terms source and target are used
for the TailMap and HeadMap. A CatOneGroup is a record C with fields C!.sourceMap and
C!.targetMap.

13.1.1 SmallCat1Group

▷ SmallCat1Group(n, i, j) (operation)

This operation calls the HAP function SmallCatOneGroup(n,i,j) which returns a
CatOneGroup from the HAP database. This is then converted into an XMod cat1-group. Note that the
numbering is not the same as that used by the XMod operation Cat1Select. In the example C12 is
the converted form of H12.

Example

gap> H12 := SmallCatOneGroup( 12, 4, 3 );
Cat-1-group with underlying group Group( [ f1, f2, f3 ] ) .
gap> C12 := SmallCat1Group( 12, 4, 3 );
[Group( [ f1, f2, f3 ] )=>Group( [ f1, f2, <identity> of ... ] )]

13.1.2 CatOneGroupToXMod

▷ CatOneGroupToXMod(C) (operation)

▷ Cat1GroupToHAP(C) (operation)

These two functions convert between the two alternative implementations.
Example

gap> C12 := CatOneGroupToXMod( H12 );
[Group( [ f1, f2, f3 ] )=>Group( [ f1, f2, <identity> of ... ] )]
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gap> C18 := Cat1Select( 18, 4, 3 );
[(C3 x C3) : C2=>Group( [ f1, <identity> of ..., f3 ] )]
gap> H18 := Cat1GroupToHAP( C18 );
Cat-1-group with underlying group (C3 x C3) : C2 .

13.1.3 IdCat1Group

▷ IdCat1Group(C) (operation)

This function calls the HAP function IdCatOneGroup on a cat1-group C. This returns [n, i, j] if
the cat1-group is the j-th structure on the SmallGroup(n,i).

Example

gap> IdCatOneGroup( H18 );
[ 18, 4, 4 ]
gap> IdCat1Group( C18 );
[ 18, 4, 4 ]



Chapter 14

Utility functions

By a utility function we mean a GAP function which is

• needed by other functions in this package,

• not (as far as we know) provided by the standard GAP library,

• more suitable for inclusion in the main library than in this package.

Sections on Printing Lists and Distinct and Common Representatives were moved to the Utils package
with version 2.56.

14.1 Mappings

The following two functions have been moved to the gpd package, but are still documented here.

14.1.1 InclusionMappingGroups

▷ InclusionMappingGroups(G, H) (operation)

▷ MappingToOne(G, H) (operation)

This set of utilities concerns mappings. The map incd8 is the inclusion of d8 in d16 used in
Section 3.4. MappingToOne(G,H) maps the whole of G to the identity element in H.

Example

gap> Print( incd8, "\n" );
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ] ->
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ]
gap> imd8 := Image( incd8 );;
gap> MappingToOne( c4, imd8 );
[ (11,13,15,17)(12,14,16,18) ] -> [ () ]
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14.1.2 InnerAutomorphismsByNormalSubgroup

▷ InnerAutomorphismsByNormalSubgroup(G, N) (operation)

Inner automorphisms of a group G by the elements of a normal subgroup N are calculated, often
with G = N.

Example

gap> autd8 := AutomorphismGroup( d8 );;
gap> innd8 := InnerAutomorphismsByNormalSubgroup( d8, d8 );;
gap> GeneratorsOfGroup( innd8 );
[ ^(1,2,3,4), ^(1,3) ]

14.1.3 IsGroupOfAutomorphisms

▷ IsGroupOfAutomorphisms(A) (property)

Tests whether the elements of a group are automorphisms.
Example

gap> IsGroupOfAutomorphisms( innd8 );
true

14.2 Abelian Modules

14.2.1 AbelianModuleObject

▷ AbelianModuleObject(grp, act) (operation)

▷ IsAbelianModule(obj) (property)

▷ AbelianModuleGroup(obj) (attribute)

▷ AbelianModuleAction(obj) (attribute)

An abelian module is an abelian group together with a group action. These are used by the crossed
module constructor XModByAbelianModule (2.1.7).

The resulting Xabmod is isomorphic to the output from XModByAutomorphismGroup( k4 );.
Example

gap> x := (6,7)(8,9);; y := (6,8)(7,9);; z := (6,9)(7,8);;
gap> k4a := Group( x, y );; SetName( k4a, "k4a" );
gap> gens3a := [ (1,2), (2,3) ];;
gap> s3a := Group( gens3a );; SetName( s3a, "s3a" );
gap> alpha := GroupHomomorphismByImages( k4a, k4a, [x,y], [y,x] );;
gap> beta := GroupHomomorphismByImages( k4a, k4a, [x,y], [x,z] );;
gap> auta := Group( alpha, beta );;
gap> acta := GroupHomomorphismByImages( s3a, auta, gens3a, [alpha,beta] );;
gap> abmod := AbelianModuleObject( k4a, acta );;
gap> Xabmod := XModByAbelianModule( abmod );
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[k4a->s3a]
gap> Display( Xabmod );

Crossed module [k4a->s3a] :-
: Source group k4a has generators:

[ (6,7)(8,9), (6,8)(7,9) ]
: Range group s3a has generators:

[ (1,2), (2,3) ]
: Boundary homomorphism maps source generators to:

[ (), () ]
: Action homomorphism maps range generators to automorphisms:

(1,2) --> { source gens --> [ (6,8)(7,9), (6,7)(8,9) ] }
(2,3) --> { source gens --> [ (6,7)(8,9), (6,9)(7,8) ] }
These 2 automorphisms generate the group of automorphisms.
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Development history

This chapter, which contains details of the major changes to the package as it develops, was first
created in April 2002. Details of the changes from XMod 1 to XMod 2.001 are far from complete.
Starting with version 2.009 the file CHANGES lists the minor changes as well as the more fundamental
ones.

The inspiration for this package was the need, in the mid-1990’s, to calculate induced crossed
modules (see [BW95], [BW96], [BW03]). GAP was chosen over other computational group theory
systems because the code was freely available, and it was possible to modify the Tietze transformation
code so as to record the images of the original generators of a presentation as words in the simplified
presentation. (These modifications are now a standard part of the Tietze transformation package in
GAP.)

15.1 Changes from version to version

15.1.1 Version 1 for GAP 3

The first version of XMod became an accepted package for GAP 3.4.3 in December 1996.

15.1.2 Version 2

Conversion of XMod 1 from GAP 3.4.3 to the new GAP syntax began soon after GAP 4 was released,
and had a lengthy gestation. The new GAP syntax encouraged a re-naming of many of the function
names. An early decision was to introduce generic categories 2dDomain for (pre-)crossed modules
and (pre-)cat1-groups, and 2dMapping for the various types of morphism. In 2.009 3dDomain was
used for crossed squares and cat2-groups, and 3dMapping for their morphisms. A generic name for
derivations and sections is also required, and Up2dMapping is currently used.

15.1.3 Version 2.001 for GAP 4

This was the first version of XMod for GAP 4, completed in April 2002 in time for the release of GAP
4.3. Functions for actors and induced crossed modules were not included, nor many of the functions
for derivations and sections, for example InnerDerivation.
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15.1.4 Induced crossed modules

During May 2002 converted the code for induced crossed modules. (Induced cat1-groups may be
converted one day.)

15.1.5 Versions 2.002 – 2.006

Version 2.004 of April 14th 2004 added the Cat1Select (2.7.1) functionality of version 1 to the
Cat1Group (2.4.1) function.

A significant addition in Version 2.005 was the conversion of the actor crossed module func-
tions from the 3.4.4 version. This included AutomorphismPermGroup (6.1.1) for a crossed module;
WhiteheadXMod (6.1.2); NorrieXMod (6.1.2); LueXMod (6.1.2); ActorXMod (6.1.2); CentreXMod
(4.1.7) of a crossed module; InnerMorphism (6.1.3); and InnerActorXMod (6.1.3).

15.1.6 Versions 2.007 – 2.010

These versions contain changes made between September 2004 and October 2007.

• Added basic functions for crossed squares, considered as 3dObjects with crossed pairings,
and their morphisms. Groups with two normal subgroups, and the actor of a crossed module,
provide standard examples of crossed squares. (Cat2-groups are not yet implemented.)

• Converted the documentation to the format of the GAPDoc package.

• Improved AutomorphismPermGroup (6.1.1) for crossed modules, and introduced a special
method for conjugation crossed modules.

• Substantial revisons made to XModByCentralExtension (2.1.5); NorrieXMod (6.1.2);
LueXMod (6.1.2); ActorXMod (6.1.2); and InducedXModByCopower (7.2.1).

• Version 2.010, of October 2007, was timed to coincide with the release of GAP 4.4.10, and
included a change of filenames; and correct file protection codes.

15.2 Versions for GAP [4.5 .. 4.12]

Version 2.19, released on 9th June 2012, included the following changes:

• The file makedocrel.g was copied, with appropriate changes, from GAPDoc, and now pro-
vides the correct way to update the documentation.

• The first functions for crossed modules of groupoids were introduced.

• A GNU General Public License declaration was added.

15.2.1 AllCat1s

Version 2.21 contained major changes to the Cat1Select (2.7.1) operation: the list CAT1_LIST of
cat1-structures in the data file cat1data.g was changed from permutation groups to pc-groups, with
the generators of subgroups; images of the tail map; and images of the head map being given as
ExtRepOfObj of words in the generators.
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The AllCat1s function was reintroduced from the GAP3 version, and renamed as the operation
AllCat1DataGroupsBasic.

In version 2.25 the data in cat1data.g was extended from groups of size up to 48 to groups of
size up to 70. In particular, the 267 groups of size 64 give rise to a total of 1275 cat1-groups. The
authors are indebted to Van Luyen Le in Galway for pointing out a number of errors in the version of
this list distributed with version 2.24 of this package.

15.2.2 Versions 2.43 - 2.56

Version 2.43, released on 11th November 2015, included the following changes:

• The material on isoclinism in Chapter 4 was added.

• The package webpage has moved to https://github.com/cdwensley.

• A GitHub repository was started at: https://github.com/gap-packages/xmod.

• The section on Distinct and Common Representatives was moved to the Utils package.

15.2.3 Version 2.61

Major changes in names took place, with 2dDomain, 2dGroup, 2dMapping, etc. becoming
2DimensionalDomain, 2DimensionalGroup, 2DimensionalMapping, etc., and similarly for 3-
dimensional versions. Also HigherDimensionalDomain and related categories, domains, properties,
attributes and operations were introduced. At the same time, functions for cat2-groups were intro-
duced by Alper Odabas.

15.2.4 Versions 2.63 - 2.74

• Added an implementation of crossed modules of groupoids.

• Lots more work on crossed squares and cat2-groups.

• Added an implementation of group groupoids.

15.2.5 Versions 2.75 - 2.85

• Added conversion functions between XMod and Hap and a new chapter in the manual about
these functions.

• Added functions for quasi-isomorphisms.

15.2.6 Versions 2.86 - 2.91

• Added attributes Size2d for 2d-objects and Size3d for 3d-objects since lists are inappropriate
values for the standard function Size.

• Added PreXModWithTrivialRange and started work on double groupoids.

https://github.com/cdwensley
https://github.com/gap-packages/xmod
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15.3 What needs doing next?

• Speed up the calculation of Whitehead groups.

• Add more functions for 3dObjects and implement cat2-groups.

• Improve interaction with the package groupoids implementing the group groupoid version of a
crossed module, and adding more functions for crossed modules of groupoids.

• Add interaction with IdRel (and possibly XRes and natp) .

• Need InverseGeneralMapping for morphisms and more features for FpXMods, PcXMods, etc.

• Implement actions of a crossed module.

• Implement FreeXMods and an operation Isomorphism2dDomains.

• Allow the construction of a group of morphisms of crossed modules.

• Complete the conversion from Version 1 of the calculation of sections using EndoClasses.

• More crossed square constructions:

– If M,N are ordinary P-modules and A is an arbitrary abelian group on which P acts triv-
ially, then there is a crossed square with sides

0 : A→ N, 0 : A→M, 0 : M→ P, 0 : N→ P.

– For a group L, the automorphism crossed module Act L = (ι : L→ Aut L) splits to form
the square with (ι1 : L→ Inn L) on two sides, and (ι2 : Inn L→ Aut L) on the other two
sides, where ι1 maps l ∈ L to the inner automorphism βl : L→ L, l′ 7→ l−1l′l, and ι2 is the
inclusion of Inn L in Aut L. The actions are standard, and the crossed pairing is

⊠ : Inn L× Inn L→ L, (βl,βl′) 7→ [l, l′] .

• Improve the interaction with the HAP package.

• Implement cat1-groups with objects.

• Lots more work on double groupoids.
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for precat1-morphisms, 35
IdentitySection, 53
IdGroup

for 2d-groups, 28
for crossed modules, 13
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ImageElmXModAction, 12
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InclusionMorphism2DimensionalDomains

for cat1-groups, 35
for crossed modules, 33

InclusionMorphismHigherDimensional-
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induced cat1-groups, 64
induced crossed module, 62
InducedCat1Group, 64
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InducedXMod, 62
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InfoXMod, 6
InitCatnGroupRecords, 26
InnerActorXMod, 60
InnerAutomorphismCat1, 35
InnerAutomorphismsByNormalSubgroup, 106
InnerAutomorphismXMod, 33
InnerMorphism, 60
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Is2DimensionalDomain, 14
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Is3dObject, 74
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IsAbelianModule, 106
IsAbelianModule2DimensionalGroup, 14
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IsAutomorphism3dObject, 76
IsAutomorphismGroup2DimensionalGroup, 14
IsAutomorphismGroup3DimensionalGroup,

75
IsBijective, 76

for pre-xmod morphisms, 33

IsCat1Group, 22
IsCat1GroupMorphism, 35
IsCat2Group, 79
IsCat3Group, 89
IsCentralExtension2DimensionalGroup, 14
IsCentralExtension3DimensionalGroup, 75
IsCrossedSquare, 74
IsCrossedSquareMorphism, 76
IsDerivation, 51
IsDirectProductWithCompleteDigraph-

Domain, 93
IsEndo2DimensionalMapping, 33
IsEndomorphism3dObject, 76
IsFaithful2DimensionalGroup, 44
IsFp2DimensionalGroup, 14
IsFp3dObject, 74
IsFpPreXModWithObjects, 93
IsGroupOfAutomorphisms, 106
IsIdentityCat1Group, 22
IsInducedXMod, 62
IsInjective

for pre-xmod morphisms, 33
IsMonoidOfUp2DimensionalMappingsObj, 54
IsNilpotent2DimensionalGroup, 45
IsNormal for crossed modules, 14
IsNormalSub3DimensionalGroup, 75
IsNormalSubgroup2DimensionalGroup, 14
IsoclinicMiddleLength

for crossed modules of groups, 50
for groups, 48

IsoclinicRank
for crossed modules of groups, 50
for groups, 48

IsoclinicStemDomain
for crossed modules of groups, 49
for groups, 47

Isoclinism
for crossed modules, 49
for groups, 47

IsomorphicPreCat1GroupWithIdentity-
Embedding, 23

IsomorphismByIsomorphisms, 34
IsomorphismClassRepresentatives2d-

Groups, 46
IsomorphismFp2DimensionalGroup

for pre-cat1 morphisms, 36
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IsomorphismPc2DimensionalGroup
for pre-cat1 morphisms, 36
for pre-xmod morphisms, 34

IsomorphismPerm2DimensionalGroup
for pre-cat1 morphisms, 36
for pre-xmod morphisms, 34

IsomorphismPermObject, 36
IsomorphismToPreCat1GroupWithIdentity-

Embedding, 23
IsomorphismXMods, 45
IsPc2DimensionalGroup, 14
IsPc3dObject, 74
IsPcPreXModWithObjects, 93
IsPerm2DimensionalGroup, 14
IsPerm3dObject, 74
IsPermPreXModWithObjects, 93
IsPreCat1GroupMorphism, 35
IsPreCat1GroupWithIdentityEmbedding, 23
IsPreCrossedSquare, 74
IsPreCrossedSquareMorphism, 76
IsPreXCat1Group, 22
IsPreXMod, 14
IsPreXModMorphism, 32
IsPreXModWithObjects, 93
IsSection, 53
IsSimplyConnected2DimensionalGroup, 44
IsSingleValued

for pre-xmod morphisms, 33
IsStemDomain

for crossed modules of groups, 49
for groups, 47

IsSub2DimensionalGroup, 29
IsSubCat1Group, 28
IsSubPreCat1Group, 28
IsSubPreXMod, 28
IsSubXMod, 28
IsSurjective

for pre-xmod morphisms, 33
IsSymmetric3DimensionalGroup, 75
IsTotal

for pre-xmod morphisms, 33
IsTrivialAction2DimensionalGroup, 14
IsTrivialAction3DimensionalGroup, 75
IsUp2DimensionalMapping, 51
IsXMod, 14
IsXModMorphism, 32

IsXModWithObjects, 93

Kernel
for 2d-mappings, 37

Kernel2DimensionalMapping, 37
KernelCokernelXMod, 15
KernelEmbedding, 18

Left2DimensionalGroup, 74
Left2DimensionalMorphism, 76
Left3DimensionalGroup, 89
loop space, 101
LoopClasses, 101
LoopsXMod, 101
LowerCentralSeriesOfXMod, 45
LueXMod, 58

Mapping2ArgumentsByFunction, 75
MappingToOne, 105
morphism, 32
morphism of 2d-group, 32
morphism of 3d-group, 76
MorphismOfInducedXMod, 62
MorphismOfPullback

for a crossed module by pullback, 34

Name, 74
for cat1-groups, 18
for crossed modules, 13

NaturalMorphismByNormalSubPreXMod, 40
NilpotencyClass2DimensionalGroup, 45
Normalizer, 43
NormalSubXMods, 15
NorrieXMod, 58

ObjectList, 93
operations on morphisms, 37
order of a 2d-automorphism, 33

Peiffer subgroup, 16
PeifferSubgroup, 17
PermAutomorphismAsXModMorphism, 57
pre-crossed module, 16
PreCat1Group, 17
PreCat1GroupByTailHeadEmbedding, 17
PreCat1GroupMorphism, 35
PreCat1GroupMorphismByGroup-

Homomorphisms, 35
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PreCat1GroupRecordOfPreXMod, 23
PreCat1GroupWithIdentityEmbedding, 18
PreCat2Group, 79
PreCat2GroupByPreCat1Groups, 79
PreCat2GroupMorphism, 81
PreCat2GroupMorphismByGroup-

Homomorphisms, 81
PreCat2GroupMorphismByPreCat1Group-

Morphisms, 81
PreCat3Group, 89
PreCat3GroupByPreCat2Groups, 89
PreCatnGroup, 91
PreCrossedSquareByPreXMods, 68
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PreCrossedSquareMorphismByPreXMod-
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PreXModByBoundaryAndAction, 16
PreXModMorphism, 33
PreXModMorphismByGroupHomomorphisms, 33
PreXModRecordOfPreCat1Group, 23
PreXModWithTrivialRange, 16
PrincipalDerivation, 52
PrincipalDerivations, 56

quasi isomorphisms, 38
QuasiIsomorphism, 39
QuotientQuasiIsomorphism, 39

Range, 76
for 2d-group mappings, 32
for cat1-groups, 18
for crossed modules, 12

RangeEmbedding, 18
RangeHom, 32
regular derivation, 51
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