XMod

Crossed Modules and Cat1-Groups

2.92

23 January 2024

Chris Wensley
Murat Alp
Alper Odabas
Enver Onder Uslu

Chris Wensley

Email: cdwensley.maths@btinternet.com
Homepage: https://github.com/cdwensley

Murat Alp

Email: muratalp@nigde.edu.tr
Address: Prof. Dr. M. Alp
Ömer Halisdemir University
Art and Science Faculty
Mathematics Department
Nigde
Turkey

Alper Odabas

Email: aodabas@ogu.edu.tr
Address: Dr. A. Odabas
Osmangazi University
Arts and Sciences Faculty
Department of Mathematics and Computer Science
Eskisehir
Turkey

Abstract

The XMod package provides functions for computation with - finite crossed modules of groups and cat1-groups, and morphisms of these structures; - finite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients; - isoclinism classes of groups and crossed modules; - derivations of crossed modules and sections of cat1-groups; - crossed squares and their morphisms, including the actor crossed square of a crossed module; - crossed modules of finite groupoids (experimental version).

XMod was originally implemented in 1996 using the GAP3 language, when the second author was studying for a Ph.D. [Alp97] at Bangor.

In April 2002 the first and third parts were converted to GAP4, the pre-structures were added, and version 2.001 was released. The final two parts, covering derivations, sections and actors, were included in the January 2004 release 2.002 for GAP 4.4.

In October 2015 functions for computing isoclinism classes of crossed modules, written by Alper Odabaş and Enver Uslu, were added. These are contained in Chapter 4, and are described in detail in the paper [IOU16].

Bug reports, suggestions and comments are, of course, welcome. Please submit an issue at https://github.com/gap-packages/xmod/issues/ or send an email to the first author at cdwensley@btinternet.com.

Copyright

© 1996-2024, Chris Wensley et al.
The XMod package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

This documentation was prepared using the GAPDoc [LN17] and AutoDoc [GH17] packages.
The procedure used to produce new releases uses the package GitHubPagesForGAP [Hor17] and the package ReleaseTools.

Contents

1 Introduction 5
2 2d-groups : crossed modules and cat ${ }^{1}$-groups 8
2.1 Constructions for crossed modules 8
2.2 Properties of crossed modules 14
2.3 Pre-crossed modules 16
2.4 Cat 1-groups and pre-cat ${ }^{1}$-groups 17
2.5 Properties of cat ${ }^{1}$-groups and pre-cat ${ }^{1}$-groups 22
2.6 Enumerating cat ${ }^{1}$-groups with a given source 24
2.7 Selection of a small cat ${ }^{1}$-group 26
2.8 More functions for crossed modules and cat ${ }^{1}$-groups 28
2.9 The group groupoid associated to a cat ${ }^{1}$-group 29
3 2d-mappings 32
3.1 Morphisms of 2-dimensional groups 32
3.2 Morphisms of pre-crossed modules 32
3.3 Morphisms of pre-cat1-groups 35
3.4 Operations on morphisms 37
3.5 Quasi-isomorphisms 38
4 Isoclinism of groups and crossed modules 40
4.1 More operations for crossed modules 40
4.2 Isoclinism for groups 47
4.3 Isoclinism for crossed modules 49
5 Whitehead group of a crossed module 51
5.1 Derivations and Sections 51
5.2 Whitehead Groups and Monoids 54
6 Actors of 2d-groups 57
6.1 Actor of a crossed module 57
7 Induced constructions 61
7.1 Coproducts of crossed modules 61
7.2 Induced crossed modules 62
7.3 Induced cat ${ }^{1}$-groups 64
8 Crossed squares and Cat 2-groups 66
8.1 Definition of a crossed square and a crossed n-cube of groups 66
8.2 Constructions for crossed squares 67
8.3 Morphisms of crossed squares 76
8.4 Definitions and constructions for cat ${ }^{2}$-groups and their morphisms 78
8.5 Enumerating cat ${ }^{2}$-groups with a given source 83
9 Crossed cubes and Cat ${ }^{3}$-groups 88
9.1 Functions for (pre-)cat ${ }^{3}$-groups 88
9.2 Enumerating cat ${ }^{3}$-groups with a given source 90
9.3 Definition and constructions for cat ${ }^{n}$-groups and their morphisms 90
10 Crossed modules of groupoids 92
10.1 Constructions for crossed modules of groupoids 92
11 Double Groupoids 95
11.1 Double groupoid squares 95
11.2 Basic double groupoids 98
11.3 Commutative double groupoids 99
12 Applications 101
12.1 Free Loop Spaces 101
13 Interaction with HAP 103
13.1 Calling HAP functions 103
14 Utility functions 105
14.1 Mappings 105
14.2 Abelian Modules 106
15 Development history 108
15.1 Changes from version to version 108
15.2 Versions for GAP [4.5 .. 4.12] 109
15.3 What needs doing next? 111
References 113
Index 114

Chapter 1

Introduction

The XMod package provides functions for computation with

- finite crossed modules of groups and cat1-groups, and morphisms of these structures;
- finite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;
- derivations of crossed modules and sections of cat1-groups;
- isoclinism of groups and crossed modules;
- the actor crossed square of a crossed module;
- crossed squares, cat2-groups, and their morphisms (experimental version);
- crossed modules of groupoids (experimental version).

It is loaded with the command
Example

```
gap> LoadPackage( "xmod" );
```

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. Loday, in [Lod82], reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90], [Nor87] and Gilbert [Gil90] have studied derivations, automorphisms of crossed modules and the actor of a crossed module, while Ellis [Ell84] has investigated higher dimensional analogues. Properties of induced crossed modules have been determined by Brown, Higgins and Wensley in [BH78], [BW95] and [BW96]. For further references see [AW00], where we discuss some of the data structures and algorithms used in this package, and also tabulate isomorphism classes of cat1-groups up to size 30.

XMod was originally implemented in 1997 using the GAP 3 language. In April 2002 the first and third parts were converted to GAP 4, the pre-structures were added, and version 2.001 was released. The final two parts, covering derivations, sections and actors, were included in the January 2004 release 2.002 for GAP 4.4. Many of the function names have been changed during the conversion, for example ConjugationXMod has become XModByNormalSubgroup (2.1.2). For a list of name changes see the file names.pdf in the doc directory.

In October 2015 Alper Odabaş and Enver Uslu were added to the list of package authors. Their functions for computing isoclinism classes of groups and crossed modules are contained in Chapter 4, and are described in detail in their paper [IOU16].

The package may be obtained as a compressed tar file XMod-version.number.tar.gz by ftp from one of the following sites:

- the XMod GitHub release site: https://github.com/gap-packages.github.io/xmod/.
- any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/xmod/.
Crossed modules and cat1-groups are special types of 2-dimensional groups [Bro82], [BHS11], and are implemented as 2DimensionalDomains and 2DimensionalGroups having a Source and a Range.

The package divides into eight parts. The first part is concerned with the standard constructions for pre-crossed modules and crossed modules; together with direct products; normal sub-crossed modules; and quotients. Operations for constructing pre-cat1-groups and cat1-groups, and for converting between cat1-groups and crossed modules, are also included.

The second part is concerned with morphisms of (pre-)crossed modules and (pre-)cat1-groups, together with standard operations for morphisms, such as composition, image and kernel.

The third part is the most recent part of the package, introduced in October 2015. Additional operations and properties for crossed modules are included in Section 4.1. Then, in 4.2 and 4.3 there are functions for isoclinism of groups and crossed modules.

The fourth part is concerned with the equivalent notions of derivation for a crossed module and section for a cat1-group, and the monoids which they form under the Whitehead multiplication.

The fifth part deals with actor crossed modules and actor cat1-groups. For the actor crossed module $\operatorname{Act}(\mathscr{X})$ of a crossed module \mathscr{X} we require representations for the Whitehead group of regular derivations of \mathscr{X} and for the group of automorphisms of \mathscr{X}. The construction also provides an inner morphism from \mathscr{X} to $\operatorname{Act}(\mathscr{X})$ whose kernel is the centre of \mathscr{X}.

The sixth part, which remains under development, contains functions to compute induced crossed modules.

Since version 2.007 there are experimental functions for crossed squares and their morphisms, structures which arise as 3-dimensional groups. Examples of these are inclusions of normal subcrossed modules, and the inner morphism from a crossed module to its actor.

The eighth part has some experimental functions for crossed modules of groupoids, interacting with the package groupoids. Much more work on this is needed.

Future plans include the implementation of group-graphs which will provide examples of precrossed modules (their implementation will require interaction with graph-theoretic functions in GAP 4). There are also plans to implement cat2-groups, and conversion betwen these and crossed squares.

The equivalent categories XMod (crossed modules) and Cat1 (cat1-groups) are also equivalent to GpGpd, the subcategory of group objects in the category Gpd of groupoids. Finite groupoids have been implemented in Emma Moore's package groupoids [Moo01] for groupoids and crossed resolutions.

In order that the user has some control of the verbosity of the XMod package's functions, an InfoClass InfoXMod is provided (see Chapter ref:Info Functions in the GAP Reference Manual for a description of the Info mechanism). By default, the InfoLevel of InfoXMod is 0; progressively more information is supplied by raising the InfoLevel to 1,2 and 3.

```
gap> SetInfoLevel( InfoXMod, 1); #sets the InfoXMod level to 1
```

Once the package is loaded, the manual doc/manual.pdf can be found in the documentation folder. The html versions, with or without MathJax, should be rebuilt as follows:

Example
gap> ReadPackage("xmod, "makedoc.g");

It is possible to check that the package has been installed correctly by running the test files:
Example
gap> ReadPackage("xmod", "tst/testall.g");
\#I Testing .../pkg/xmod/tst/gp2obj.tst

Additional information can be found on the Computational Higher-dimensional Discrete Algebra website at: https://github.com/cdwensley.

Chapter 2

2d-groups : crossed modules and cat ${ }^{1}$-groups

The term $2 d$-group refers to a set of equivalent categories of which the most common are the categories of crossed modules; cat ${ }^{1}$-groups; and group-groupoids, all of which involve a pair of groups.

2.1 Constructions for crossed modules

A crossed module (of groups) $\mathscr{X}=(\partial: S \rightarrow R)$ consists of a group homomorphism ∂, called the boundary of \mathscr{X}, with source S and range R. The group R acts on itself by conjugation, and on S by an action $\alpha: R \rightarrow \operatorname{Aut}(S)$ such that, for all $s, s_{1}, s_{2} \in S$ and $r \in R$,

$$
\text { XMod } 1: \partial\left(s^{r}\right)=r^{-1}(\partial s) r=(\partial s)^{r}, \quad \text { XMod } 2: s_{1}^{\partial s_{2}}=s_{2}^{-1} s_{1} s_{2}=s_{1}^{s_{2}}
$$

When only the first of these axioms is satisfied, the resulting structure is a pre-crossed module (see section 2.3). The kernel of ∂ is abelian.
(Much of the literature on crossed modules uses left actions, but we have chosen to use right actions in this package since that is the standard choice for group actions in GAP.)

2.1.1 XMod

$\begin{array}{lr}\triangleright \text { XMod(args) } & \text { (function) } \\ \triangleright \text { XModByBoundaryAndAction(bdy, act) }\end{array}$
(operation)

The global function XMod calls one of the standard constructions described in the following subsections. In the example the boundary is the identity mapping on c5 and the action is trivial.

Example \qquad

```
gap> c5 := Group( (5,6,7,8,9) );;
gap> SetName( c5, "c5" );
gap> id5 := IdentityMapping( c5 );;
gap> ac5 := AutomorphismGroup( c5 );;
gap> act := MappingToOne( c5, ac5 );;
gap> XMod( id5, act ) = XModByBoundaryAndAction( id5, act );
true
```


2.1.2 XModByNormalSubgroup

\triangleright XModByNormalSubgroup (G, N)

A conjugation crossed module is the inclusion of a normal subgroup $S \unlhd R$, where R acts on S by conjugation.

2.1.3 XModByTrivialAction

\triangleright XModByTrivialAction(bdy)
(operation)

A trivial action crossed module $(\partial: S \rightarrow R)$ has $s^{r}=s$ for all $s \in S, r \in R$, the source is abelian and the image lies in the centre of the range.

Example

```
gap> q8 := QuaternionGroup( IsPermGroup, 8 );
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ])
gap> SetName( q8, "q8" );
gap> c2 := Centre( q8 );
Group([ (1,3)(2,4)(5,7)(6,8) ])
gap> SetName( c2, "<-1>" );
gap> bdy := InclusionMappingGroups( q8, c2 );;
gap> X8a := XModByTrivialAction( bdy );
[<-1>->q8]
gap> c4 := Subgroup( q8, [q8.1] );;
gap> SetName( c4, "<i>" );
gap> X8b := XModByNormalSubgroup( q8, c4 );
[<i>->q8]
gap> Display(X8b);
Crossed module [<i>->q8] :-
: Source group has generators:
    [ (1,5,3,7)(2,8,4,6)]
: Range group q8 has generators:
    [ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]
: Boundary homomorphism maps source generators to:
    [ (1,5,3,7)(2,8,4,6)]
Action homomorphism maps range generators to automorphisms:
    (1,5,3,7)(2,8,4,6) --> { source gens --> [ (1,5,3,7) (2,8,4,6)] }
    (1,2,3,4)(5,6,7,8) --> { source gens --> [ (1,7,3,5) (2,6,4,8)] }
```

 These 2 automorphisms generate the group of automorphisms.

2.1.4 XModByAutomorphismGroup

\triangleright XModByAutomorphismGroup (grp)	(attribute)
\triangleright XModByInnerAutomorphismGroup $(g r p)$	(attribute)
\triangleright XModByGroupOfAutomorphisms (G, A)	(operation)

An automorphism crossed module has as range a subgroup R of the automorphism group $\operatorname{Aut}(S)$ of S which contains the inner automorphism group of S. The boundary maps $s \in S$ to the inner automorphism of S by s.

```
gap> X5 := XModByAutomorphismGroup( c5 );
[c5 -> Aut(c5)]
gap> Display( X5 );
Crossed module [c5->Aut(c5)] :-
: Source group c5 has generators:
    [ (5,6,7,8,9) ]
    Range group Aut(c5) has generators:
    [ GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ], [ (5,7,9,6,8) ] ) ]
    Boundary homomorphism maps source generators to:
    [ IdentityMapping( c5 ) ]
    Action homomorphism maps range generators to automorphisms:
    GroupHomomorphismByImages ( c5, c5, [ (5,6,7,8,9) ],
[ (5,7,9,6,8) ] ) --> \{ source gens --> [ (5,7,9,6,8) ] \}
    This automorphism generates the group of automorphisms.
```


2.1.5 XModByCentralExtension

\triangleright XModByCentralExtension(bdy)
(operation)

A central extension crossed module has as boundary a surjection $\partial: S \rightarrow R$, with central kernel, where $r \in R$ acts on S by conjugation with $\partial^{-1} r$.

Example

```
gap> gen12 := [ (1,2,3,4,5,6), (2,6)(3,5) ];;
gap> d12 := Group( gen12 );;
gap> gen6 := [ (7,8,9), (8,9) ];;
gap> s3 := Group( gen6 );;
gap> SetName( d12, "d12" ); SetName( s3, "s3" );
gap> pr12 := GroupHomomorphismByImages( d12, s3, gen12, gen6 );;
gap> Kernel( pr12 ) = Centre( d12 );
true
gap> X12 := XModByCentralExtension( pr12 );;
gap> Display( X12 );
Crossed module [d12->s3] :-
: Source group d12 has generators:
    [ (1, 2, 3,4,5,6), (2,6)(3,5) ]
: Range group s3 has generators:
    [ (7, 8,9), (8,9) ]
Boundary homomorphism maps source generators to:
    [ (7,8,9), (8,9) ]
    Action homomorphism maps range generators to automorphisms:
    (7,8,9) --> { source gens --> [ (1,2,3,4,5,6), (1,3)(4,6)] }
    (8,9) --> { source gens --> [ (1,6,5,4,3,2), (2,6)(3,5) ] }
    These 2 automorphisms generate the group of automorphisms.
```


2.1.6 XModByPullback

\triangleright XModByPullback(xmod, hom)

Let $\mathscr{X}_{0}=(\mu: M \rightarrow P)$ be a crossed module. If $v: N \rightarrow P$ is a group homomorphism with the same range as \mathscr{X}_{0}, form the pullback group $L=M \times{ }_{P} N$, with projection $\lambda: L \rightarrow N$ (as defined in the Utils package). Then N acts on L by $(m, n)^{n^{\prime}}:=\left(m^{v n^{\prime}}, n^{n^{\prime}}\right)$, so that $\mathscr{X}_{1}=(\lambda: L \rightarrow N)$ is the pullback crossed module determined by \mathscr{X}_{0} and v. There is also a morphism of crossed modules $(\kappa, v): \mathscr{X}_{1} \rightarrow \mathscr{X}_{2}$.

The example forms a pullback of the crossed module X 12 of the previous subsection.

```
gap> gens4 := [ (11,12), (12,13), (13,14) ];;
gap> s4 := Group( gens4 );;
gap> theta := GroupHomomorphismByImages( s4, s3, gens4, [(7,8),(8,9),(7,8)] );;
gap> X1 := XModByPullback( X12, theta );;
gap> StructureDescription( Source( X1 ) );
"C2 x S4"
gap> SetName( s4, "s4" ); SetName( Source( X1 ), "c2s4" );
gap> infoX1 := PullbackInfo( Source( X1 ) );;
gap> infoX1!.directProduct;
Group([ (1,2,3,4,5,6), (2,6) (3,5), (7,8), (8,9), (9,10)])
gap> infoX1!.projections[1];
[ (7,8) (9,10), (7,9) (8,10), (2,6) (3,5) (8,9), (1,5,3) (2,6,4) (8,10,9),
    (1,6,5,4,3,2)(8,9,10)] -> [ (), (), (2,6)(3,5), (1,5,3) (2,6,4),
    (1,6,5,4,3,2) ]
gap> infoX1!.projections[2];
[ (7,8)(9,10), (7,9)(8,10), (2,6)(3,5) (8,9), (1,5,3) (2,6,4) (8,10,9),
    (1,6,5,4,3,2)(8,9,10)] -> [ (11,12)(13,14), (11,13)(12,14), (12,13),
    (12,14,13), (12,13,14)]
```


2.1.7 XModByAbelianModule

```
\ XModByAbelianModule(abmod)
```

(operation)

A crossed abelian module has an abelian module as source and the zero map as boundary. See section 14.2 for an example.

2.1.8 DirectProduct (for crossed modules)

```
- DirectProduct(X1, X2)
```

(operation)

The direct product $\mathscr{X}_{1} \times \mathscr{X}_{2}$ of two crossed modules has source $S_{1} \times S_{2}$, range $R_{1} \times R_{2}$ and boundary $\partial_{1} \times \partial_{2}$, with R_{1}, R_{2} acting trivially on S_{2}, S_{1} respectively. The embeddings and projections are constructed automatically, and placed in the DirectProductInfo attribute, together with the two objects $\mathscr{X}_{1} \times \mathscr{X}_{2}$.

The example constructs the product of the two crossed modules formed in subsection XModByTrivialAction (2.1.3).

```
gap> X8ab := DirectProduct( X8a, X8b );
[[<-1>->q8]x[<i>->q8]]
gap> infoX8ab := DirectProductInfo( X8ab );
rec(
    embeddings := [ [[<-1>->q8] => [<-1>x<i>->q8xq8]],
        [[<i>->q8] => [<-1>x<i>->q8xq8]] ], objects := [ [<-1>->q8], [<i>->q8] ]
    projections := [ [[<-1>x<i>->q8xq8] => [<-1>->q8]],
            [[<-1>x<i>->q8xq8] => [<i>->q8]] ] )
gap> DirectProduct( X8a, X8b, X12 );
[[[<-1>->q8]x[<i>->q8]]x[d12->s3]]
```


2.1.9 Source (for crossed modules)

$\triangleright \operatorname{Source}(X 0) \quad$ (attribute)
\triangleright Range (XO) (attribute)
\triangleright Boundary $(X 0)$ (attribute)
\triangleright XModAction (XO) (attribute)

The following attributes are used in the construction of a crossed module X0.

- Source (X0) and Range (X0) are the source S and range R of ∂, the boundary Boundary (X0);
- XModAction(X0) is a homomorphism from R to a group of automorphisms of X0.
(Up until version 2.63 there was an additional attribute AutoGroup, the range of XModAction(X0).)
The example uses the crossed module X12 constructed in subsection XModByCentralExtension (2.1.5).

Example

```
gap> [ Source( X12 ), Range( X12 ) ];
[ d12, s3 ]
gap> Boundary( X12 );
[ (1,2,3,4,5,6), (2,6)(3,5)] -> [ (7,8,9), (8,9)]
gap> XModAction( X12 );
[ (7,8,9), (8,9) ] ->
[ [ (1,2,3,4,5,6), (2,6)(3,5) ] -> [ (1,2,3,4,5,6), (1,3)(4,6)],
    [ (1,2,3,4,5,6), (2,6)(3,5)] -> [ (1,6,5,4,3,2), (2,6)(3,5)] ]
```


2.1.10 ImageEImXModAction

\triangleright ImageElmXModAction (XO, s, r)

This function returns the element s^{r} given by XModAction(X0).

```
gap> ImageElmXModAction( X12, (1,2,3,4,5,6), (8,9) );
(1,6,5,4,3,2)
```


2.1.11 Size2d (for crossed modules)

\triangleright Size2d (XO)
(attribute)

The standard operation Size cannot be used for crossed modules because the size of a collection is required to be a number, and we wish to return a list. Size2d (XO) returns the two-element list, [Size (Source (X0)), Size (Range (X0))].

In the simple example below, X 5 is the automorphism crossed module constructed in subsection XModByAutomorphismGroup (2.1.4).

Example

```
gap> Size2d( X5 );
```

[5, 4]

2.1.12 \quad Name (for crossed modules)

```
\Name(XO)
\triangleright IdGroup(XO)
\triangleright ExternalSetXMod(XO)
\(\triangleright\) ExternalSetXMod (XO)
(attribute)
```

More familiar attributes are Name and IdGroup. The name is formed by concatenating the names of the source and range (if these exist). IdGroup (X0) returns a two-element list [IdGroup (Source(X0)), IdGroup (Range(X0))].

The ExternalSetXMod for a crossed module is the source group considered as a G-set of the range group using the crossed module action.

The Display function is used to print details of 2d-groups.
The Print statements at the end of the example list the GAP representations and attributes of X5.

```
Example
gap> IdGroup( X5 );
[ [ 5, 1 ], [ 4, 1 ] ]
gap> ext := ExternalSetXMod( X5 );
<xset:[ (), (5,6,7,8,9), (5,7,9,6,8), (5,8,6,9,7), (5,9,8,7,6) ]>
gap> Orbits( ext );
[ [ () ], [ (5,6,7,8,9), (5,7,9,6,8), (5,9,8,7,6), (5,8,6,9,7)] ]
gap> a := GeneratorsOfGroup( Range( X5 ) ) [1]^2;
[ (5,6,7,8,9) ] -> [ (5,9,8,7,6) ]
gap> ImageElmXModAction( X5, (5,7,9,6,8), a );
(5,8,6,9,7)
gap> Print( RepresentationsOfObject(X5), "\n" );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "IsPreXModObj" ]
gap> Print( KnownAttributesOfObject(X5), "\n" );
```

```
[ "Name", "Range", "Source", "IdGroup", "Boundary", "Size2d", "XModAction",
    "ExternalSetXMod", "HigherDimension" ]
```


2.2 Properties of crossed modules

The underlying category structures for the objects constructed in this chapter follow the sequence Is2DimensionalDomain; Is2DimensionalMagma; Is2DimensionalMagmaWithOne; Is2DimensionalMagmaWithInverses, mirroring the situation for (one-dimensional) groups. From these we construct Is2DimensionalSemigroup, Is2DimensionalMonoid and Is2DimensionalGroup.

There are then a variety of properties associated with crossed modules, starting with IsPreXMod and IsXMod.

2.2.1 IsXMod

```
\ IsXMod(XO) (property)
\triangleright ~ I s P r e X M o d ( X O ) ~ ( p r o p e r t y ) ~
```



```
\triangleright ~ I s F p 2 D i m e n s i o n a l G r o u p ( X O ) ~ ( p r o p e r t y ) ~
```

A structure which has IsPerm2DimensionalGroup is a precrossed module or a pre-cat ${ }^{1}$ group (see section 2.4) whose source and range are both permutation groups. The properties IsPc2DimensionalGroup, IsFp2DimensionalGroup are defined similarly. In the example below we see that X5 has IsPreXMod, IsXMod and IsPerm2DimensionalGroup. There are also properties corresponding to the various construction methods listed in section 2.1: IsTrivialAction2DimensionalGroup; IsNormalSubgroup2DimensionalGroup; IsCentralExtension2DimensionalGroup; IsAutomorphismGroup2DimensionalGroup; IsAbelianModule2DimensionalGroup.

```
gap> [ IsTrivial( X5 ), IsNonTrivial( X5 ), IsFinite( X5 ) ];
[ false, true, true ]
gap> kpoX5 := KnownPropertiesOfObject(X5);;
gap> ForAll( [ "IsTrivial", "IsNonTrivial", "IsFinite",
> "CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",
> "IsGeneratorsOfSemigroup", "IsPreXModDomain", "IsPreXMod", "IsXMod",
> "IsAutomorphismGroup2DimensionalGroup" ],
> s -> s in kpoX5 );
true
```


2.2.2 SubXMod

```
\triangleright SubXMod(X0, src, rng)
\triangleright TrivialSubXMod(XO)

With the standard crossed module constructors listed above as building blocks, sub-crossed modules, normal sub-crossed modules \(\mathscr{N} \triangleleft \mathscr{X}\), and also quotients \(\mathscr{X} / \mathscr{N}\) may be constructed. A subcrossed module \(\mathscr{S}=(\delta: N \rightarrow M)\) is normal in \(\mathscr{X}=(\partial: S \rightarrow R)\) if
- \(N, M\) are normal subgroups of \(S, R\) respectively,
- \(\delta\) is the restriction of \(\partial\),
- \(n^{r} \in N\) for all \(n \in N, r \in R\),
- \(\left(s^{-1}\right)^{m} s \in N\) for all \(m \in M, s \in S\).

These conditions ensure that \(M \ltimes N\) is normal in the semidirect product \(R \ltimes S\). (Note that \(\langle s, m\rangle=\) \(\left(s^{-1}\right)^{m} s\) is a displacement: see Displacement (4.1.3).)

A method for IsNormal for precrossed modules is provided. See section 4.1 for factor crossed modules and their natural morphisms.

The five normal subcrossed modules of X 4 found in the following example are [id,id], \([k 4, k 4],[k 4, a 4],[a 4, a 4]\) and \(X 4\) itself.

Example
```

gap> s4 := Group((1,2), (2,3), (3,4));;
gap> a4 := Subgroup(s4, [(1,2,3), (2,3,4)]);;
gap> k4 := Subgroup(a4, [(1,2) (3,4), (1,3)(2,4)]);;
gap> SetName(s4,"s4"); SetName(a4,"a4"); SetName(k4,"k4");
gap> X4 := XModByNormalSubgroup(s4, a4);
[a4->s4]
gap> Y4 := SubXMod(X4, k4, a4);
[k4->a4]
gap> IsNormal(X4,Y4);
true
gap> NX4 := NormalSubXMods(X4);;
gap> Length(NX4);
5

```

\subsection*{2.2.3 KernelCokernelXMod}
- KernelCokernelXMod (XO)
(attribute)

Let \(\mathscr{X}=(\partial: S \rightarrow R)\). If \(K \leqslant S\) is the kernel of \(\partial\), and \(J \leqslant R\) is the image of \(\partial\), form \(C=R / J\). Then \(\left(\left.v \partial\right|_{K}: K \rightarrow C\right)\) is a crossed module where \(v: R \rightarrow C, r \mapsto J r\) is the natural map, and the action of \(C\) on \(K\) is given by \(k^{J r}=k^{r}\).

\section*{Example}
```

gap> d8d8 := Group((1,2,3,4), (1,3), (5,6,7,8), (5,7));;
gap> X88 := XModByAutomorphismGroup(d8d8);;
gap> Size2d(X88);
[64, 2048]
gap> Y88 := KernelCokernelXMod(X88);;

```
```

gap> IdGroup(Y88);
[[4, 2], [128, 928]]
gap> StructureDescription(Y88);
["C2 x C2", "(D8 x D8) : C2"]

```

\subsection*{2.3 Pre-crossed modules}

\subsection*{2.3.1 PreXModByBoundaryAndAction}
```

\triangleright PreXModByBoundaryAndAction(bdy, act)
(operation)
\triangleright PreXModWithTrivialRange(src, rng)
\triangleright SubPreXMod(X0, src, rng)

```
(operation)
(operation)

If axiom XMod 2 is not satisfied, the corresponding structure is known as a pre-crossed module.
A special case of this operation is when the range is a trivial group (not necessarily a subgroup of the source), and so the action is trivial. This case will be used when constructing a special type of double groupoid in Chapter 11.

Example
```

gap> b1 := (11,12,13,14,15,16,17,18);; b2 := (12,18)(13,17)(14,16);;
gap> d16 := Group(b1, b2);;
gap> sk4 := Subgroup(d16, [b1^4, b2]);;
gap> SetName(d16, "d16"); SetName(sk4, "sk4");
gap> bdy16 := GroupHomomorphismByImages(d16, sk4, [b1,b2], [b1^4,b2]);;
gap> aut1 := GroupHomomorphismByImages(d16, d16, [b1,b2], [b1^5,b2]);;
gap> aut2 := GroupHomomorphismByImages(d16, d16, [b1,b2], [b1,b2^4*b2]);;
gap> aut16 := Group([aut1, aut2]);;
gap> act16 := GroupHomomorphismByImages(sk4, aut16, [b1^4,b2], [aut1,aut2]);;
gap> P16 := PreXModByBoundaryAndAction(bdy16, act16);
[d16->sk4]
gap> IsXMod(P16);
false
gap> Q16 := PreXModWithTrivialRange(d16, d16);
[d16->Group([()])]
gap> SQ16 := SubPreXMod(Q16, sk4, Group([()]));;
gap> Display(SQ16);
Crossed module :-
: Source group has generators:
[(11,15)(12,16)(13,17)(14,18), (12,18) (13,17)(14,16)]
: Range group has generators:
[()]
: Boundary homomorphism maps source generators to:
[(), ()]
The automorphism group is trivial

```

\subsection*{2.3.2 PeifferSubgroup}
\(\triangleright\) PeifferSubgroup (XO) (attribute)
- XModByPeifferQuotient (prexmod)
(attribute)

The Peiffer subgroup \(P\) of a pre-crossed module \(\mathscr{X}\) is the subgroup of \(\operatorname{ker}(\partial)\) generated by Peiffer commutators
\[
\left\lfloor s_{1}, s_{2}\right\rfloor=\left(s_{1}^{-1}\right)^{\partial s_{2}} s_{2}^{-1} s_{1} s_{2}=\left\langle\partial s_{2}, s_{1}\right\rangle\left[s_{1}, s_{2}\right] .
\]

Then \(\mathscr{P}=\left(0: P \rightarrow\left\{1_{R}\right\}\right)\) is a normal sub-pre-crossed module of \(\mathscr{X}\) and \(\mathscr{X} / \mathscr{P}=(\partial: S / P \rightarrow R)\) is a crossed module.

In the following example the Peiffer subgroup is cyclic of size 4.
Example
```

gap> P := PeifferSubgroup(P16);
Group([(11,15)(12,16)(13,17)(14,18), (11,17,15,13)(12,18,16,14)])
gap> X16 := XModByPeifferQuotient(P16);
Peiffer([d16->sk4])
gap> Display(X16);
Crossed module Peiffer([d16->sk4]) :-
: Source group has generators:
[f1, f2]
: Range group has generators:
[(11,15)(12,16)(13,17)(14,18), (12,18)(13,17)(14,16)]
: Boundary homomorphism maps source generators to:
[(12,18)(13,17)(14,16), (11,15) (12,16) (13,17) (14,18)]
The automorphism group is trivial
gap> iso16 := IsomorphismPermGroup(Source(X16));;
gap> S16 := Image(iso16);
Group([(1,2), (3,4)])

```

\subsection*{2.4 Cat \({ }^{1}\)-groups and pre-cat \({ }^{1}\)-groups}

In [Lod82], Loday reformulated the notion of a crossed module as a cat \({ }^{1}\)-group, namely a group \(G\) with a pair of endomorphisms \(t, h: G \rightarrow G\) having a common image \(R\) and satisfying certain axioms. We find it computationally convenient to define a cat \({ }^{1}\)-group \(\mathscr{C}=(e ; t, h: G \rightarrow R)\) as having source group \(G\), range group \(R\), and three homomorphisms: two surjections \(t, h: G \rightarrow R\) and an embedding \(e: R \rightarrow G\) satisfying:
\[
\text { Cat 1:toe }=h \circ e=\operatorname{id}_{R}, \quad \text { Cat 2: }[\operatorname{ker} t, \operatorname{ker} h]=\left\{1_{G}\right\} .
\]

It follows that \(t \circ e \circ h=h, h \circ e \circ t=t, t \circ e \circ t=t\) and \(h \circ e \circ h=h\). (See section 2.5 for the case when \(t, h\) are endomorphisms.)

\subsection*{2.4.1 Cat1Group}
```

\triangleright ~ C a t 1 G r o u p (a r g s) ~ (f u n c t i o n) ~ ()
\triangleright PreCat1Group(args)
(function)
\triangleright PreCat1GroupByTailHeadEmbedding(t, h, e)

The global functions Cat1Group and PreCat1Group can be called in various ways.

- as Cat1Group(t,h,e); when t, h, e are three homomorphisms, which is equivalent to PreCat1GroupByTailHeadEmbedding(t,h,e);
- as Cat1Group (t,h); when t, h are two endomorphisms, which is equivalent to PreCat1GroupWithIdentityEmbedding(t,h);
- as $\operatorname{Cat} 1 \operatorname{Group}(\mathrm{t})$; when $t=h$ is an endomorphism, which is equivalent to PreCat1GroupWithIdentityEmbedding(t,t);
- as $\operatorname{Cat} 1 \mathrm{Group}(\mathrm{t}, \mathrm{e})$; when $t=h$ and e are homomorphisms, which is equivalent to PreCat1GroupByTailHeadEmbedding(t,t,e);
- as Cat1Group ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) ; when i, j, k are integers, which is equivalent to Cat1Select ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) ; as described in section 2.7.

```
gap> g18gens := [ (1,2,3), (4,5,6), (2,3)(5,6)];;
gap> s3agens := [ (7,8,9), (8,9)];;
gap> g18 := Group( g18gens );; SetName( g18, "g18" );
gap> s3a := Group( s3agens );; SetName( s3a, "s3a" );
gap> t1 := GroupHomomorphismByImages(g18,s3a,g18gens,[(7,8,9),(),(8,9)]);
[ (1,2,3), (4,5,6), (2,3)(5,6)] -> [ (7,8,9), (), (8,9)]
gap> h1 := GroupHomomorphismByImages(g18,s3a,g18gens,[(7,8,9), (7,8,9), (8,9)]);
[ (1,2,3), (4,5,6), (2,3)(5,6)] -> [ (7,8,9), (7,8,9), (8,9)]
gap> e1 := GroupHomomorphismByImages(s3a,g18,s3agens,[(1,2,3), (2,3)(5,6)]);
[ (7,8,9), (8,9)] -> [ (1,2,3), (2,3)(5,6)]
gap> C18 := Cat1Group( t1, h1, e1 );
[g18=>s3a]
```


2.4.2 Source (for cat1-groups)

\triangleright	Source (C)
\triangleright Range (C)	(attribute)
$\triangleright \operatorname{TailMap}(C)$	(attribute)
$\triangleright \operatorname{HeadMap}(C)$	(attribute)
$\triangleright \operatorname{RangeEmbedding}(C)$	(attribute)
$\triangleright \operatorname{KernelEmbedding}(C)$	(attribute)
$\triangleright \operatorname{Boundary}(C)$	(attribute)
$\triangleright \operatorname{Name}(C)$	(attribute)
$\triangleright \operatorname{Size2d}(C)$	(attribute)
	(attribute)

These are the attributes of a cat ${ }^{1}$-group \mathscr{C} in this implementation.
The maps t, h are often referred to as the source and target, but we choose to call them the tail and head of \mathscr{C}, because source is the GAP term for the domain of a function. The RangeEmbedding is the embedding of R in G, the KernelEmbedding is the inclusion of the kernel of t in G, and the Boundary
is the restriction of h to the kernel of t . It is frequently the case that $t=h$, but not in the example C18 above.

Example

```
gap> [ Source( C18 ), Range( C18 ) ];
[ g18, s3a ]
gap> TailMap( C18 );
[ (1,2,3), (4,5,6), (2,3)(5,6)] -> [ (7,8,9), (), (8,9)]
gap> HeadMap( C18 );
[ (1,2,3), (4,5,6), (2,3)(5,6)] -> [ (7,8,9), (7,8,9), (8,9)]
gap> RangeEmbedding( C18 );
[ (7,8,9), (8,9)] -> [ (1,2,3), (2,3)(5,6)]
gap> Kernel( C18 );
Group([ (4,5,6) ])
gap> KernelEmbedding( C18 );
[ (4,5,6) ] -> [ (4,5,6) ]
gap> Name( C18 );
"[g18=>s3a]"
gap> Size2d( C18 );
[ 18, 6 ]
gap> StructureDescription( C18 );
[ "(C3 x C3) : C2", "S3" ]
```

The next four subsections contain some more constructors for cat ${ }^{1}$-groups.

2.4.3 DiagonalCat1Group

```
\triangleright DiagonalCat1Group(genG)
```

(operation)

This operation constructs examples of cat ${ }^{1}$-groups of the form $G \times G \Rightarrow G$. The tail map is the identity on the first factor and kills of the second, while the head map does the reverse. The range embedding maps G to the diagonal in $G \times G$. The corresponding crossed module is isomorphic to the identity crossed module on G.

Example

```
gap> C4 := DiagonalCat1Group( [ (1,2,3), (2,3,4) ] );;
gap> SetName( Source(C4), "a4a4" ); SetName( Range(C4_, "a4d" );
gap> Display( C4 );
Cat1-group [a4a4=>a4d] :-
: Source group a4a4 has generators:
    [(1,2,3), (2,3,4), (5,6,7), (6,7,8)]
: Range group a4d has generators:
    [ ( 9,10,11), (10,11,12) ]
tail homomorphism maps source generators to:
    [ ( 9,10,11), (10,11,12), (), () ]
head homomorphism maps source generators to:
    [(), (), ( 9,10,11), (10,11,12)]
: range embedding maps range generators to:
    [(1, 2, 3)(5,6,7), (2,3,4)(6,7,8)]
: kernel has generators:
```

$[(5,6,7),(6,7,8)]$
boundary homomorphism maps generators of kernel to:
[($9,10,11),(10,11,12)]$
kernel embedding maps generators of kernel to:
$[(5,6,7),(6,7,8)]$

2.4.4 TransposeCat1Group

\triangleright TransposeCat1Group(CO)
(attribute)
\triangleright TransposeIsomorphism(C0)
(attribute)

The transpose of a cat ${ }^{1}$-group C has the same source, range and embedding, but has the tail and head maps interchanged. The TransposeIsomorphism gives the isomorphism between the two.

Example

```
gap> R4 := TransposeCat1Group( C4 );
[a4a4=>a4d]
gap> Boundary( R4 );
[ (2,3,4), (1,2,3) ] -> [ (10,11,12), (9,10,11)]
gap> TailMap( R4 ) = HeadMap( R4 );
false
gap> TailMap( R4 ) = HeadMap( C4 );
true
gap> MappingGeneratorsImages( TransposeIsomorphism(C4) );
[ [ [ (1,2,3), (2,3,4), (5,6,7), (6,7,8)],
        [ (5,6,7), (6,7,8), (1,2,3), (2,3,4) ] ],
    [ [ (9,10,11), (10,11,12) ], [ (9,10,11), (10,11,12) ] ] ]
```


2.4.5 Cat1GroupByPeifferQuotient

```
\triangleright Cat1GroupByPeifferQuotient(P)
```

If $C=(e ; t, h: G \rightarrow R)$ is a pre-cat ${ }^{1}$-group, its Peiffer subgroup is $P=[\operatorname{ker} t, \operatorname{ker} h]$ and the associated cat ${ }^{1}$-group C_{2} has source G / P. In the example, $t=h: s 4 \rightarrow c 2$ with $\operatorname{ker} t=\operatorname{ker} h=a 4$ and $P=[a 4, a 4]=k 4$, so that $G / P=s 4 / k 4 \cong s 3$.

Example

```
gap> s4 := Group( (1,2,3), (3,4) );; SetName( s4, "s4" );
gap> h := GroupHomomorphismByImages( s4, s4, [(1,2,3),(3,4)], [(),(3,4)] );;
gap> c2 := Image( h );; SetName( c2, "c2" );
gap> C := PreCat1Group( h, h );
[s4=>c2]
gap> P := PeifferSubgroupPreCat1Group( C );
Group([ (1,3)(2,4), (1,2)(3,4) ])
gap> C2 := Cat1GroupByPeifferQuotient( C );
[Group( [ f1, f2 ] )=>c2]
gap> StructureDescription( C2 );
[ "S3", "C2" ]
```

```
gap> rec2 := PreXModRecordOfPreCat1Group( C );;
gap> XC := rec2.prexmod;;
gap> StructureDescription( XC );
[ "A4", "C2" ]
gap> XC2 := XModByPeifferQuotient( XC );;
gap> StructureDescription( XC2 );
[ "C3", "C2" ]
gap> CXC2 := Cat1GroupOfXMod( XC2 );;
gap> StructureDescription( CXC2 );
[ "S3", "C2" ]
gap> IsomorphismCat1Groups( C2, CXC2 );
[[Group( [ f1, f2 ] ) => c2] => [(..|X..) => c2]]
```


2.4.6 SubCat1Group

```
\triangleright SubCat1Group(C1, S1)
(operation)
\triangleright SubPreCat1Group(C1, S1)
(operation)
```

S_{1} is a sub-cat ${ }^{1}$-group of C_{1} provided the source and range of S_{1} are subgroups of the source and range of C_{1} and that the tail, head and embedding of S_{1} are the appropriate restrictions of those of C_{1}.

Example

```
gap> s3 := Subgroup( s4, [(2,3),(3,4)] );;
gap> res := DoublyRestrictedMapping( h, s3, s3 );;
gap> S := PreCat1Group( res, res );
[Group( [ (2,3), (3,4)] )=>Group( [ (3,4), (3,4) ] )]
```


2.4.7 DirectProduct (for cat1-groups)

```
\triangleright DirectProduct(C1, C2)
```

(operation)

The direct product $\mathscr{C}_{1} \times \mathscr{C}_{2}$ of two cat ${ }^{1}$-groups has source $G_{1} \times G_{2}$ and range $R_{1} \times R_{2}$. The tail, head and embedding maps are $t_{1} \times t_{2}, h_{1} \times h_{2}$ and $e_{1} \times e_{2}$. The embeddings and projections are constructed automatically, and placed in the DirectProductInfo attribute, together with the two objects \mathscr{C}_{1} and \mathscr{C}_{2}.

The example constructs the product of two of the cat ${ }^{1}$-groups constructed above.

```
Example
gap> C418 := DirectProduct( C4, C18 );
[(a4a4xg18)=>(a4d x s3a)]
gap> infoC418 := DirectProductInfo( C418 );
rec(
    embeddings := [ [[a4a4=>a4d] => [(a4a4xg18)=>(a4d x s3a)]],
            [[g18=>s3a] => [(a4a4xg18)=>(a4d x s3a)]] ],
    objects := [ [a4a4=>a4d], [g18=>s3a] ],
    projections := [ [[(a4a4xg18)=>(a4d x s3a)] => [a4a4=>a4d]],
            [[(a4a4xg18)=>(a4d x s3a)] => [g18=>s3a]] ] )
```

```
gap> t418 := TailMap( C418 );
[ (1,2,3), (2,3,4), (5,6,7), (6,7,8), (9,10,11), (12,13,14), (10,11)(13,14)
    ] -> [ (1,2,3), (2,3,4), (), (), (5,6,7), (), (6,7) ]
gap> h418 := HeadMap( C418 );
[ (1,2,3), (2,3,4), (5,6,7), (6,7,8), (9,10,11), (12,13,14), (10,11) (13,14)
    ] -> [ (), (), (1,2,3), (2,3,4), (5,6,7), (5,6,7), (6,7)]
gap> e418 := RangeEmbedding( C418 );
[ (1,2,3), (2,3,4), (5,6,7), (6,7) ] -> [ (1,2,3) (5,6,7), (2,3,4) (6,7,8),
    (9,10,11), (10,11)(13,14) ]
```


2.5 Properties of cat ${ }^{1}$-groups and pre-cat ${ }^{1}$-groups

Many of the properties listed in section 2.2 apply to pre-cat ${ }^{1}$-groups and to cat ${ }^{1}$-groups since these are also 2d-groups. There are also more specific properties.

2.5.1 IsCat1Group


```
\triangleright ~ I s I d e n t i t y C a t 1 G r o u p ( C O ) ~ ( p r o p e r t y ) ~ ( )
```

IsIdentityCat1Group (C0) is true when the head and tail maps of C0 are identity mappings.

```
                                    Example
gap> G8 := SmallGroup( 288, 956 ); SetName( G8, "G8" );
<pc group of size 288 with 7 generators>
gap> d12 := DihedralGroup( 12 ); SetName( d12, "d12" );
<pc group of size 12 with 3 generators>
gap> a1 := d12.1;; a2 := d12.2;; a3 := d12.3;; a0 := One( d12 );;
gap> gensG8 := GeneratorsOfGroup( G8 );;
gap> t8 := GroupHomomorphismByImages( G8, d12, gensG8,
> [ a0, a1*a3, a2*a3, a0, a0, a3, a0 ] );;
gap> h8 := GroupHomomorphismByImages( G8, d12, gensG8,
> [ a1*a2*a3, a0, a0, a2*a3, a0, a0, a3~2 ] );;
gap> e8 := GroupHomomorphismByImages( d12, G8, [a1,a2,a3],
> [G8.1*G8.2*G8.4*G8.6^2, G8.3*G8.4*G8.6^2*G8.7, G8.6*G8.7^2 ] );
[ f1, f2, f3 ] -> [ f1*f2*f4*f6^2, f3*f4*f6^ 2*f7, f6*f7^2 ]
gap> C8 := PreCat1GroupByTailHeadEmbedding( t8, h8, e8 );
[G8=>d12]
gap> IsCat1Group( C8 );
true
gap> KnownPropertiesOfObject( C8 );
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",
    "IsGeneratorsOfSemigroup", "IsPreCat1Domain", "IsPc2DimensionalGroup",
    "IsPreXMod", "IsPreCat1Group", "IsCat1Group", "IsIdentityPreCat1Group",
    "IsPreCat1GroupWithIdentityEmbedding" ]
```


2.5.2 IsPreCat1GroupWithIdentityEmbedding

```
\triangleright IsPreCat1GroupWithIdentityEmbedding(CO) (property)
\triangleright IsomorphicPreCat1GroupWithIdentityEmbedding(CO) (attribute)
\triangleright IsomorphismToPreCat1GroupWithIdentityEmbedding(CO) (attribute)
```

IsPreCat1GroupWithIdentityEmbedding(C0) is true when the range embedding of C0 is an inclusion mapping. (This property used to be called IsPreCat1GroupByEndomorphisms but, as the example below shows, when the tail and head maps are endomorphisms the range embedding need not be an inclusion.) When this is not the case, replacing t, h, e by $t * e, h * e$ and the inclusion mapping of the image of e gives an isomorphic cat ${ }^{1}$-group for which IsPreCat1GroupWithIdentityEmbedding is true. This is the IsomorphicPreCat1GroupWithIdentityEmbedding of C0 and IsomorphismToPreCat1GroupWithIdentityEmbedding is the isomorphism between them. (See the next chapter for mappings of cat ${ }^{1}$-groups.)

Example

```
gap> G5 := Group( (1,2,3,4,5) );;
gap> t := GroupHomomorphismByImages( G5, G5, [(1,2,3,4,5)], [(1,5,4,3,2)] );;
gap> PC5 := PreCat1GroupByTailHeadEmbedding( t, t, t );
[Group( [ (1,2,3,4,5) ] )=>Group( [ (1,2,3,4,5) ] )]
gap> IsPreCat1GroupWithIdentityEmbedding( PC5 );
false
gap> IPC5 := IsomorphicPreCat1GroupWithIdentityEmbedding( PC5 );
[Group( [ (1,2,3,4,5) ] )=>Group( [ (1,2,3,4,5) ] )]
gap> TailMap( IPC5 ); RangeEmbedding( IPC5 );
[(1,2,3,4,5) ] -> [ (1,2,3,4,5) ]
[ (1,2,3,4,5) ] -> [ (1,2,3,4,5) ]
```


2.5.3 Cat1GroupOfXMod

```
\triangleright Cat1GroupOfXMod(XO) (attribute)
\ XModOfCat1Group(CO)
\triangleright ~ P r e C a t 1 G r o u p R e c o r d O f P r e X M o d ( P O ) ~ ( a t t r i b u t e ) ~
\triangleright PreXModRecordOfPreCat1Group(PO)
(attribute)
```

The category of crossed modules is equivalent to the category of cat ${ }^{1}$-groups, and the functors between these two categories may be described as follows. Starting with the crossed module $\mathscr{X}=$ $(\partial: S \rightarrow R)$ the group G is defined as the semidirect product $G=R \ltimes S$ using the action from \mathscr{X}, with multiplication rule

$$
\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, s_{1}^{r_{2}} s_{2}\right)
$$

The structural morphisms are given by

$$
t(r, s)=r, \quad h(r, s)=r(\partial s), \quad e r=(r, 1)
$$

On the other hand, starting with a cat ${ }^{1}$-group $\mathscr{C}=(e ; t, h: G \rightarrow R)$, we define $S=\operatorname{ker} t$, the range R is unchanged, and $\partial=\left.h\right|_{S}$. The action of R on S is conjugation in G via the embedding of R in G.

As from version 2.74, the attribute PreCat1GroupRecordOfPreXMod of a pre-crossed modute $X=(\partial: S \rightarrow R)$ returns a record with fields

- . precat1, the pre-cat1-group $C=(e ; t, h: G \rightarrow R)$ of X, where $G=R \ltimes S$;
- .iscat1, true if C is a cat1-group;
- . xmodSourceEmbedding, the image S^{\prime} of S in G;
- .xmodSourceEmbeddingIsomorphism, the isomorphism $S \rightarrow S^{\prime}$;
- . xmodRangeEmbedding, the image R^{\prime} of R in G;
- . xmodRangeEmbeddingIsomorphism, the isomorphism $R \rightarrow R^{\prime}$;

```
gap> X8 := XModOfCat1Group( C8 );;
gap> Display( X8 );
Crossed module X([G8=>d12]) :-
: Source group has generators:
    [ f1, f4, f5, f7 ]
: Range group d12 has generators:
    [ f1, f2, f3 ]
: Boundary homomorphism maps source generators to:
    [ f1*f2*f3, f2*f3, <identity> of ..., f3^2 ]
: Action homomorphism maps range generators to automorphisms:
    f1 --> { source gens --> [ f1*f5, f4*f5, f5, f7^2 ] }
    f2 --> { source gens --> [ f1*f5*f7^2, f4, f5, f7 ] }
    f3 --> { source gens --> [ f1*f7, f4, f5, f7 ] }
    These 3 automorphisms generate the group of automorphisms.
: associated cat1-group is [G8=>d12]
gap> StructureDescription(X8);
[ "D24", "D12" ]
```


2.6 Enumerating cat ${ }^{1}$-groups with a given source

As the size of a group G increases, the number of cat ${ }^{1}$-groups with source G increases rapidly. However, one is usually only interested in the isomorphism classes of cat ${ }^{1}$-groups with source G. An iterator AllCat1GroupsIterator is provided, which runs through the various cat ${ }^{1}$-groups. This iterator finds, for each subgroup R of G, the cat ${ }^{1}$-groups with range R. It does this by running through the AllSubgroupsIterator (G) provided by the Utils package, and then using the iterator AllCat1GroupsWithImageIterator (G,R).

2.6.1 AllCat1GroupsWithImage

\triangleright AllCat1GroupsWithImageNumber (G, R)

The iterator AllCat1GroupsWithImageIterator (G, R) iterates through all the cat ${ }^{1}$-groups with source G and range R. The attribute AllCat1GroupsWithImageNumber (G) runs through this iterator to count the number n_{R} of these cat ${ }^{1}$-groups. The operation AllCat1GroupsWithImage (G) returns a list containing these n_{R} cat ${ }^{1}$-groups. Since these lists can get very long, this operation should only be used for simple cases. The operation AllCat1GroupsWithImageUpToIsomorphism(G) returns representatives of the isomorphism classes of these cat ${ }^{1}$-groups.

Example

```
gap> d12 := DihedralGroup( IsPermGroup, 12 ); SetName( d12, "d12" );
Group([ (1,2,3,4,5,6), (2,6)(3,5) ])
gap> c2 := Subgroup( d12, [ (1,6)(2,5)(3,4)] );;
gap> AllCat1GroupsWithImageNumber( d12, c2 );
1
gap> L12 := AllCat1GroupsWithImage( d12, c2 );
[ [d12=>Group( [ (), (1,6)(2,5)(3,4)] )] ]
```


2.6.2 AllCat1GroupsMatrix

\triangleright AllCat1GroupsMatrix (G)
(attribute)

The operation AllCat1GroupsMatrix (G) constructs a symmetric matrix M with rows and columns labelled by the idempotent endomorphisms e_{i} on G, where $M_{i j}=2$ if e_{i}, e_{j} combine to form a cat ${ }^{1}$-group; $M_{i j}=1$ if they only form a pre-cat ${ }^{1}$-group; and $M_{i j}=0$ otherwise. The matrix is automatically printed out with dots in place of zeroes.

In the example we see that the group $Q D_{16}$ has 10 idempotent endomorphisms and 5 cat 1-groups, all of which are symmetric $(t=h)$, and a further 9 pre-cat ${ }^{1}$-groups, 5 of which are symmetric. (A cat ${ }^{1}$-group and its transpose are not counted twice.) This operation is intended to be used to illustrate how cat ${ }^{1}$-groups are formed, and should only be used with groups of low order.

The attribute AllCat1GroupsNumber (G) returns the number n of these cat ${ }^{1}$-groups.

```
                                    Example
gap> qd16 := SmallGroup( 16, 8 );;
gap> AllCat1GroupsMatrix( qd16 );;
number of idempotent endomorphisms found = 10
number of cat1-groups found = 5
number of additional pre-cat1-groups found = 9
1..........
.21.......
.11.......
...21.....
...11.....
.....21...
.....11...
.......21.
.......11.
.......... }
```


2.6.3 AllCat1GroupsIterator

```
\triangleright AllCat1GroupsIterator (G) (operation)
\triangleright ~ A l l C a t 1 G r o u p s U p T o I s o m o r p h i s m ( G )
\triangleright AllCat1Groups(G)

The iterator AllCat1GroupsIterator (G) iterates through all the cat \({ }^{1}\)-groups with source \(G\). The operation AllCat1Groups (G) returns a list containing these \(n\) cat \({ }^{1}\)-groups. Since these lists can get very long, this operation should only be used for simple cases. The operation AllCat1GroupsUpToIsomorphism(G) returns representatives of the isomorphism classes of these subgroups.
```

gap> iter := AllCat1GroupsIterator(d12);;
gap> AllCat1GroupsNumber(d12);
12
gap> iso12 := AllCat1GroupsUpToIsomorphism(d12);
[[d12=>Group([(), (2,6)(3,5)])],
[d12=>Group ([(1,4) (2,5) (3,6), (2,6) (3,5)])],
[d12=>Group ([(1,5,3) (2,6,4), (2,6) (3,5)])],
[d12=>Group ([(1,2,3,4,5,6), (2,6)(3,5)])]]

```

\subsection*{2.6.4 CatnGroupNumbers (for cat1-groups)}
```

\triangleright CatnGroupNumbers(G) (attribute)
\triangleright ~ C a t n G r o u p L i s t s (G) ~ (a t t r i b u t e) ~

```


The attribute CatnGroupNumbers for a group \(G\) is a mutable record which stores numbers of cat \({ }^{1}\) groups, cat \(^{2}\)-groups, etc. as they are calculated. The field CatnGroupNumbers ( \(G\) ) .idem is the number of idempotent endomorphisms of \(G\). Similarly, CatnGroupNumbers ( \(G\) ) . cat1 is the number of cat \({ }^{1}\) groups on \(G\), while CatnGroupNumbers (G).iso1 is the number of isomorphism classes of these cat \({ }^{1}\)-groups. Also CatnGroupNumbers (G). symm is the number of cat \({ }^{1}\)-groups whose TailMap is the same as the HeadMap, while CatnGroupNumbers (G). siso is the number of isomorphism classes of these symmetric cat \({ }^{1}\)-groups. Symmetric cat \({ }^{1}\)-groups are in one-one correspondence with symmetric \(\mathrm{cat}^{2}\)-groups. The attribute CatnGroupLists is used for storing results of \(\mathrm{cat}^{2}\)-group calculations.
```

gap> CatnGroupNumbers(d12);
rec(cat1 := 12, idem := 21, iso1 := 4, siso := 4, symm := 12)

```

\subsection*{2.7 Selection of a small cat \({ }^{1}\)-group}

The Cat1Group function may also be used to select a cat \({ }^{1}\)-group from a data file. All cat \({ }^{1}\)-structures on groups of size up to 60 (ordered according to the GAP 4 numbering of small groups) are stored in a
list in file cat1data.g. Global variables CAT1_LIST_MAX_SIZE := 60, CAT1_LIST_CLASS_SIZES and CAT1_LIST_NUMBERS are also stored. The second of these just stores the number of isomorphism classes of groups of size size. The third stores the numbers of isomorphism classes of cat \({ }^{1}\)-groups for each of these groups. The data is read into the list CAT1_LIST only when this function is called.

This data was available in early versions of XMod with groups up to order 70 covered. More recently a larger range of groups has become available in the package HAP. The authors are indebted to Van Luyen Le in Galway for pointing out a number of errors in the version of this list distributed up to version 2.24 of this package.

\subsection*{2.7.1 Cat1Select}
- Cat1Select(size, gpnum, num)
(operation)

The function Cat1Select returns the cat \({ }^{1}\)-group numbered num whose source is the group \(\mathrm{G}:=\) SmallGroup (size, gpnum). When \(|G| \leqslant 60\) the data file in this package is used. For larger groups SmallCat1Group (see 13.1) is called, accessing the datafile in package HAP.

The example below is the first case in which \(t \neq h\) and the associated conjugation crossed module is given by the normal subgroup c3 of s3.

Example
```

gap> L18 := Cat1Select(18);
Usage: Cat1Select(size, gpnum, num); where gpnum <= 5
fail
gap> \#\# check the number of cat1-structures on the fourth group of order 18
gap> Cat1Select(18, 4);
Usage: Cat1Select(size, gpnum, num); where num <= 4
fail
gap> \#\# select the second of these cat1-structures
gap> B18 := Cat1Select(18, 4, 2);
[(C3 x C3) : C2=>Group([f1, <identity> of ..., f3])]
gap> \#\# convert from a pc-cat1-group to a permutation cat1-group
gap> iso18 := IsomorphismPermObject(B18);;
gap> PB18 := Image(iso18);;
gap> Display(PB18);
Cat1-group :-
: Source group has generators:
[(4,5,6), (1,2,3), (2,3) (5,6)]
: Range group has generators:
[(1,2,3), (2,3)(5,6)]
tail homomorphism maps source generators to:
[(), (1,2,3), (2,3)(5,6)]
head homomorphism maps source generators to:
[(), (1,2,3), (2,3) (5,6)]
: range embedding maps range generators to:
[(1,2,3), (2,3)(5,6)]
: kernel has generators:
[(4,5,6)]
boundary homomorphism maps generators of kernel to:
[()]
kernel embedding maps generators of kernel to:
[(4,5,6)]

```
```

: associated crossed module is [Group([(4,5,6)]) -> Group(
[(1,2,3), (2,3)(5,6)])]
gap> convert the result to the associated permutation crossed module
gap> Y18 := XModOfCat1Group(PB18);;
gap> Display(Y18);
Crossed module :-
: Source group has generators:
[(4,5,6)]
: Range group has generators:
[(1,2,3), (2,3)(5,6)]
: Boundary homomorphism maps source generators to:
[()]
: Action homomorphism maps range generators to automorphisms:
(1,2,3) --> { source gens --> [(4,5,6)] }
(2,3)(5,6) --> { source gens --> [(4,6,5)] }
These 2 automorphisms generate the group of automorphisms.
: associated cat1-group is [Group([(4,5,6), (1,2,3), (2,3) (5,6)
]) => Group([(1,2,3), (2,3)(5,6)])]

```

\subsection*{2.8 More functions for crossed modules and cat \({ }^{1}\)-groups}

Chapter 4 contains functions for quotient crossed modules; centre of a crossed module; commutator and derived subcrossed modules; etc.

Here we mention two functions for groups which have been extended to the two-dimensional case.

\subsection*{2.8.1 IdGroup (for 2d-groups)}
```

\triangleright IdGroup(2DimensionalGroup) (operation)
\triangleright StructureDescription(2DimensionalGroup) (operation)

```

These functions return two-element lists formed by applying the function to the source and range of the 2 d -group.

Example
```

gap> IdGroup(X8);
[[24, 6], [12, 4]]
gap> StructureDescription(C8);
["(S3 x D24) : C2", "D12"]

```

There are also a number of functions which test for sub-structures.

\subsection*{2.8.2 IsSubXMod}
\(\triangleright \operatorname{IsSubXMod}(X O, S O) \quad\) (operation)
\(\triangleright\) IsSubPreXMod (XO, SO)
\(\triangleright\) IsSubCat1Group(GO, RO)
(operation)
- IsSubPreCat1Group(GO, RO)
e

These functions test whether the second argument is a sub-2d-group of the first argument. The examples refer back to sub-2d-groups created in sections 2.2 and 2.4.
```

gap> IsSubXMod(X4, Y4);
true
gap> IsSubPreCat1Group(C, S);
true

```

\subsection*{2.9 The group groupoid associated to a cat \({ }^{1}\)-group}

A group groupoid is an algebraic object which is both a groupoid and a group. The category of group groupoids is equivalent to the categories of precrossed modules and precat \({ }^{1}\)-groups. Starting with a (pre)cat \({ }^{1}\)-group \(\mathscr{C}=(e ; t, h: G \rightarrow R)\), we form the groupoid \(\mathscr{G}\) having the elements of \(R\) as objects and the elements of \(G\) as arrows. The arrow \(g\) has tail \(t g\) and head \(h g\). \(\mathscr{G}\) has one connected component for each coset of \(t G\) in \(R\).

The groupoid (partial) multiplication \(*\) on these arrows is defined by:
\[
\left(g_{1}: r_{1} \rightarrow r_{2}\right) *\left(g_{2}: r_{2} \rightarrow r_{3}\right)=\left(g_{1}\left(e r_{2}^{-1}\right) g_{2}: r_{1} \rightarrow r_{3}\right)
\]

\subsection*{2.9.1 GroupGroupoid}
- GroupGroupoid(precat1)
(attribute)

The operation GroupGroupoid implements this construction. In the example we start with a crossed module \(\left(C_{3}^{2} \rightarrow S_{3}\right)\), form the associated cat \({ }^{1}\)-group \(\left(S_{3} \ltimes C_{3}^{2} \Rightarrow S_{3}\right)\), and then form the group groupoid gpd33. Since the image of the boundary of the crossed module is \(C_{3}\), with index 2 in the range, the groupoid has two connected components, and the root objects are \(\{(),(12,13)\}\). The size of the vertex groups is \(|\operatorname{ker} t \cap \operatorname{ker} h|=3\), and the generators at the root objects are ()\(\rightarrow(4,5,6)(7,9,8) \rightarrow\) () and \((12,13) \rightarrow(2,3)(4,6)(7,8) \rightarrow(12,13)\).
```

gap> s3 := Group((11,12), (12,13));;
gap> c3c3 := Group([(14,15,16), (17,18,19)]);;
gap> bdy := GroupHomomorphismByImages(c3c3, s3,
> [(14,15,16),(17,18,19)], [(11,12,13),(11,12,13)]);;
gap> a := GroupHomomorphismByImages(c3c3, c3c3,
> [(14,15,16),(17,18,19)], [(14,16,15),(17,19,18)]);;
gap> aut := Group([a]);;
gap> act := GroupHomomorphismByImages(s3, aut, [(11,12),(12,13)], [a,a]);;
gap> X33 := XModByBoundaryAndAction(bdy, act);;
gap> C33 := Cat1GroupOfXMod(X33);;
gap> G33 := Source(C33);;
gap> gpd33 := GroupGroupoid(C33);
groupoid with 2 pieces:
1: single piece groupoid with rays: < Group([()>-(4,5,6)(7,9,8)->()]),

```
```

[(), (11,12,13), (11,13,12)], [()>-()->(), ()>-(7,8,9)-> (11,12,13),
()>-(7,9,8)->(11,13,12)] >
2: single piece groupoid with rays: < Group(
[(12,13)>-(2,3)(4,6)(7,8)->(12,13)]), [(12,13), (11,12), (11,13)],
[(12,13)>-(2,3)(5,6)(8,9)->(12,13), (12,13)>-(2,3)(5,6)(7,9)-> (11,13),
(12,13)>-(2,3)(5,6)(7,8)->(11,12)] >

```

\subsection*{2.9.2 GroupGroupoidElement}
```

\triangleright GroupGroupoidElement(precat1, root, g)

```
(operation)

Since we need to define a second multiplication on the elements of \(G\), we have to convert \(g \in G\) into a new type of object, GroupGroupoidElementType, a record \(e\) with fields:
- e!. precat1, the precat \({ }^{1}\)-group from which \(\mathscr{G}\) was formed;
- e! .root, the root object of the component containing \(e\);
- e!.element, the element \(g \in G\);
- e!.tail, the tail object of the element \(e\);
- e! .head, the head object of the element \(e\);
- e!.tailid, the identity element at the tail object;
- e!. headid, the identity element at the head object;

In the example we pick a particular pair of elements \(g_{1}, g_{2} \in G\), construct group groupoid elements \(e_{1}, e_{2}\) from them, and show that \(g_{1} * g_{2}\) and \(e_{1} * e_{2}\) give very different results. (Warning: at present iterators for object groups and homsets do not work.)
```

gap> piece2 := Pieces(gpd33) [2];;
gap> obs2 := piece2!.objects;
$[(12,13),(11,12),(11,13)]$
gap> RaysOfGroupoid(piece2);
$[(12,13)>-(2,3)(5,6)(8,9)->(12,13),(12,13)>-(2,3)(5,6)(7,9)->(11,13)$,
$(12,13)>-(2,3)(5,6)(7,8)->(11,12)]$
gap> g1 $:=(1,2)(5,6)(7,9) ;$;
gap> g2 $:=(2,3)(4,5)(7,8) ;$
gap> g1 * g2;
$(1,3,2)(4,5,6)(7,9,8)$
gap> e1 := GroupGroupoidElement(C33, (12,13), g1);
$(11,12)>-(1,2)(5,6)(7,9)->(12,13)$
gap> e2 := GroupGroupoidElement(C33, $(12,13), \mathrm{g} 2)$;
$(12,13)>-(2,3)(4,5)(7,8)->(11,13)$
gap> e1*e2;
$(11,12)>-(1,2)(4,5)(8,9)->(11,13)$
gap> e2^-1;
$(11,13)>-(1,3)(4,6)(7,9)->(12,13)$

```
```

gap> obgp := ObjectGroup(gpd33, (11,12));;
gap> GeneratorsOfGroup(obgp)[1];
(11,13)>-(1, 3)(4, 6)(7, 8)-> (11, 13)
gap> Homset(gpd33, (11,12), (11,13));
<homset (11,12) -> (11,13) with head group Group(
[(11,12)>-(1, 2)(4, 6)(7, 8)->(11,12)])>

```

\section*{Chapter 3}

\section*{2d-mappings}

\subsection*{3.1 Morphisms of 2-dimensional groups}

This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

\subsection*{3.1.1 Source (for 2d-group mappings)}
\(\triangleright\) Source (map) (attribute)
\(\triangleright\) Range (map) (attribute)
\(\triangleright\) SourceHom (map) (attribute)
\(\triangleright\) RangeHom (map) (attribute)

Morphisms of 2-dimensional groups are implemented as 2-dimensional mappings. These have a pair of 2-dimensional groups as source and range, together with two group homomorphisms mapping between corresponding source and range groups. These functions return fail when invalid data is supplied.

\subsection*{3.2 Morphisms of pre-crossed modules}

\subsection*{3.2.1 IsXModMorphism}
```

\triangleright IsXModMorphism(map)
(property)
| IsPreXModMorphism(map)
(property)

```

A morphism between two pre-crossed modules \(\mathscr{X}_{1}=\left(\partial_{1}: S_{1} \rightarrow R_{1}\right)\) and \(\mathscr{X}_{2}=\left(\partial_{2}: S_{2} \rightarrow R_{2}\right)\) is a pair \((\sigma, \rho)\), where \(\sigma: S_{1} \rightarrow S_{2}\) and \(\rho: R_{1} \rightarrow R_{2}\) commute with the two boundary maps and are morphisms for the two actions:
\[
\partial_{2} \circ \sigma=\rho \circ \partial_{1}, \quad \sigma\left(s^{r}\right)=(\sigma s)^{\rho r} .
\]

Here \(\sigma\) is the SourceHom (3.1.1) and \(\rho\) is the RangeHom (3.1.1) of the morphism. When \(\mathscr{X}_{1}=\mathscr{X}_{2}\) and \(\sigma, \rho\) are automorphisms then \((\sigma, \rho)\) is an automorphism of \(\mathscr{X}_{1}\). The group of automorphisms is denoted by \(\operatorname{Aut}\left(\mathscr{X}_{1}\right)\).

\subsection*{3.2.2 IsInjective (for pre-xmod morphisms)}
\(\triangleright\) IsInjective (map) (method)
- IsSurjective (map)
\(\triangleright\) IsSingleValued (map)
- IsTotal (map)
\(\triangleright\) IsBijective (map)
(method)
(method) (method)
- IsEndo2DimensionalMapping(map)

The usual properties of mappings are easily checked. It is usually sufficient to verify that both the SourceHom (3.1.1) and the RangeHom (3.1.1) have the required property.

\subsection*{3.2.3 XModMorphism}
```

\triangleright ~ X M o d M o r p h i s m (a r g s) ~ (f u n c t i o n))
\triangleright XModMorphismByGroupHomomorphisms(X1, X2, sigma, rho) (operation)
\triangleright ~ P r e X M o d M o r p h i s m (a r g s) ~ (f u n c t i o n))

```

```

\triangleright InclusionMorphism2DimensionalDomains(X1, S1) (operation)
\triangleright ~ I n n e r A u t o m o r p h i s m X M o d (X 1 , ~ r) ~ (o p e r a t i o n))
\triangleright IdentityMapping(X1) (attribute)

```

These are the constructors for morphisms of pre-crossed and crossed modules.
In the following example we construct a simple automorphism of the crossed module X5 constructed in the previous chapter.

Example
```

gap> sigma5 := GroupHomomorphismByImages(c5, c5, [(5,6,7,8,9)]
[(5,9,8,7,6)]);;
gap> rho5 := IdentityMapping(Range(X1));
IdentityMapping(PAut(c5))
gap> mor5 := XModMorphism(X5, X5, sigma5, rho5);
[[c5->Aut(c5))] => [c5->Aut(c5))]]
gap> Display(mor5);
Morphism of crossed modules :-
: Source = [c5->Aut(c5)] with generating sets:
[(5,6,7,8,9)]
[GroupHomomorphismByImages(c5, c5, [(5,6,7,8,9)], [(5,7,9,6,8)])]
: Range = Source
Source Homomorphism maps source generators to:
[(5,9,8,7,6)]
: Range Homomorphism maps range generators to:
[GroupHomomorphismByImages(c5, c5, [(5,6,7,8,9)], [(5,7,9,6,8)])]
gap> IsAutomorphism2DimensionalDomain(mor5);
true
gap> Order(mor5);
2
gap> RepresentationsOfObject(mor5);
["IsComponentObjectRep", "IsAttributeStoringRep", "Is2DimensionalMappingRep"]
gap> KnownPropertiesOfObject(mor5);

```
```

["CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",
"IsSingleValued", "IsInjective", "IsSurjective", "RespectsMultiplication",
"IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2DimensionalDomain",
"IsAutomorphism2DimensionalDomain"]
gap> KnownAttributesOfObject(mor5);
["Name", "Order", "Range", "Source", "SourceHom", "RangeHom"]

```

\subsection*{3.2.4 IsomorphismPerm2DimensionalGroup (for pre-xmod morphisms)}
```

\triangleright IsomorphismPerm2DimensionalGroup(obj)
(attribute)
\triangleright IsomorphismPc2DimensionalGroup(obj)
\triangleright IsomorphismByIsomorphisms(D, list)

```
(attribute) (operation)

When \(\mathscr{D}\) is a 2-dimensional domain with source \(S\) and range \(R\) and \(\sigma: S \rightarrow S^{\prime}, \rho: R \rightarrow R^{\prime}\) are isomorphisms, then IsomorphismByIsomorphisms ( D , [sigma, rho]) returns an isomorphism \((\sigma, \rho): \mathscr{D} \rightarrow \mathscr{D}^{\prime}\) where \(\mathscr{D}^{\prime}\) has source \(S^{\prime}\) and range \(R^{\prime}\). Be sure to test IsBijective for the two functions \(\sigma, \rho\) before applying this operation.

Using IsomorphismByIsomorphisms with a pair of isomorphisms obtained using IsomorphismPermGroup or IsomorphismPcGroup, we may construct a crossed module or a cat1-group of permutation groups or pc-groups.
```

gap> q8 := SmallGroup(8,4);; \#\# quaternion group
gap> XAq8 := XModByAutomorphismGroup(q8);
[Group([f1, f2, f3]) ->Group([Pcgs([f1, f2, f3]) -> [f1*f2, f2, f3],
Pcgs([f1, f2, f3]) -> [f2, f1*f2, f3],
Pcgs([f1, f2, f3]) -> [f1*f3, f2, f3],
Pcgs([f1, f2, f3]) -> [f1, f2*f3, f3]])]
gap> iso := IsomorphismPerm2DimensionalGroup(XAq8);;
gap> YAq8 := Image(iso);
[Group([(1, 2,4,6) (3, 8,7,5), (1,3,4,7) (2,5,6,8), (1,4) (2,6)(3,7) (5,8)
]) ->Group ([(1,3,4,6), (1,2,3) (4,5,6), (1,4) (3,6), (2,5)(3,6)])]
gap> s4 := SymmetricGroup(4);;
gap> isos4 := IsomorphismGroups(Range(YAq8), s4);;
gap> id := IdentityMapping(Source(YAq8));;
gap> IsBijective(id);; IsBijective(isos4); ;
gap> mor := IsomorphismByIsomorphisms(YAq8, [id,isos4]);;
gap> ZAq8 := Image(mor);
[Group([(1,2,4,6) (3,8,7,5), (1,3,4,7)(2,5,6,8), (1,4) (2,6)(3,7)(5,8)
])->SymmetricGroup([1 .. 4])]

```

\subsection*{3.2.5 MorphismOfPullback (for a crossed module by pullback)}
\(\triangleright\) MorphismOfPullback(xmod)
(attribute)
Let \(\mathscr{X}_{1}=(\lambda: L \rightarrow N)\) be the pullback crossed module obtained from a crossed module \(\mathscr{X}_{0}=(\mu\) : \(M \rightarrow P)\) and a group homomorphism \(v: N \rightarrow P\). Then the associated crossed module morphism is
\((\kappa, v): \mathscr{X}_{1} \rightarrow \mathscr{X}_{0}\) where \(\kappa\) is the projection from \(L\) to \(M\).

\subsection*{3.3 Morphisms of pre-cat1-groups}

A morphism of pre-cat1-groups from \(\mathscr{C}_{1}=\left(e_{1} ; t_{1}, h_{1}: G_{1} \rightarrow R_{1}\right)\) to \(\mathscr{C}_{2}=\left(e_{2} ; t_{2}, h_{2}: G_{2} \rightarrow R_{2}\right)\) is a pair \((\gamma, \rho)\) where \(\gamma: G_{1} \rightarrow G_{2}\) and \(\rho: R_{1} \rightarrow R_{2}\) are homomorphisms satisfying
\[
h_{2} \circ \gamma=\rho \circ h_{1}, \quad t_{2} \circ \gamma=\rho \circ t_{1}, \quad e_{2} \circ \rho=\gamma \circ e_{1} .
\]

\subsection*{3.3.1 IsCat1GroupMorphism}
\begin{tabular}{lr}
\(\triangleright\) IsCat1GroupMorphism(map) & (property) \\
\(\triangleright\) IsPreCat1GroupMorphism(map) & (property) \\
\(\triangleright\) Cat1GroupMorphism(args) & (function) \\
\(\triangleright\) Cat1GroupMorphismByGroupHomomorphisms(C1, C2, gamma, rho) & (operation) \\
\(\triangleright\) PreCat1GroupMorphism(args) & (function) \\
\(\triangleright\) PreCat1GroupMorphismByGroupHomomorphisms (P1, P2, gamma, rho) & (operation) \\
\(\triangleright \operatorname{InclusionMorphism2DimensionalDomains(C1,~S1)~}\) & (operation) \\
\(\triangleright\) InnerAutomorphismCat1(C1, r) & (operation) \\
\(\triangleright\) IdentityMapping(C1) & (attribute)
\end{tabular}

For an example we form a second cat1-group \(\mathrm{C} 2=[\mathrm{g} 18=>\mathrm{s} 3 \mathrm{a}]\), similar to C 1 in 2.4.1, then construct an isomorphism \((\gamma, \rho)\) between them.
```

gap> t3 := GroupHomomorphismByImages(g18,s3a,g18gens,[(),(7,8,9),(8,9)]);;
gap> e3 := GroupHomomorphismByImages(s3a,g18,s3agens,[(4,5,6),(2,3)(5,6)]);;
gap> C3 := Cat1Group(t3, h1, e3);;
gap> imgamma := [(4,5,6), (1,2,3), (2,3)(5,6)];;
gap> gamma := GroupHomomorphismByImages(g18, g18, g18gens, imgamma);;
gap> rho := IdentityMapping(s3a);;
gap> phi3 := Cat1GroupMorphism(C18, C3, gamma, rho);;
gap> Display(phi3);;
Morphism of cat1-groups :-
: Source = [g18=>s3a] with generating sets:
[(1,2,3), (4,5,6), (2,3)(5,6)]
[(7,8,9), (8,9)]
: Range = [g18=>s3a] with generating sets:
[(1,2,3), (4,5,6), (2,3)(5,6)]
[(7,8,9), (8,9)]
: Source Homomorphism maps source generators to:
[(4,5,6), (1,2,3), (2,3) (5,6)]
Range Homomorphism maps range generators to:
[(7,8,9), (8,9)]

```

\subsection*{3.3.2 Cat1GroupMorphismOfXModMorphism}
\(\begin{array}{ll}\triangleright \text { Cat1GroupMorphismOfXModMorphism(IsXModMorphism) } & \text { (attribute) } \\ \triangleright \text { XModMorphismOfCat1GroupMorphism(IsCat1GroupMorphism) }\end{array}\)
\(\triangleright\) XModMorphismOfCat1GroupMorphism(IsCat1GroupMorphism)
(attribute)

If \((\sigma, \rho): \mathscr{X}_{1} \rightarrow \mathscr{X}_{2}\) and \(\mathscr{C}_{1}, \mathscr{C}_{2}\) are the cat \({ }^{1}\)-groups accociated to \(\mathscr{X}_{1}, \mathscr{X}_{2}\), then the associated morphism of cat \({ }^{1}\)-groups is \((\gamma, \rho)\) where \(\gamma\left(r_{1}, s_{1}\right)=\left(\rho r_{1}, \sigma s_{1}\right)\).

Similarly, given a morphism \((\gamma, \rho): \mathscr{C}_{1} \rightarrow \mathscr{C}_{2}\) of cat1-groups, the associated morphism of crossed modules is \((\sigma, \rho): \mathscr{X}_{1} \rightarrow \mathscr{X}_{2}\) where \(\sigma s_{1}=\gamma\left(1, s_{1}\right)\).

Example
```

gap> phi5 := Cat1GroupMorphismOfXModMorphism(mor5);
[[(Aut(c5) |X c5)=>Aut(c5)] => [(Aut(c5) |X c5)=>Aut(c5)]]
gap> mor3 := XModMorphismOfCat1GroupMorphism(phi3);;
gap> Display(mor3);
Morphism of crossed modules :-
: Source = xmod([g18=>s3a]) with generating sets:
[(4,5,6)]
[(7,8,9), (8,9)]
: Range = xmod([g18=>s3a]) with generating sets:
[(1,2,3)]
[(7,8,9), (8,9)]
: Source Homomorphism maps source generators to:
[(1,2,3)]
: Range Homomorphism maps range generators to:
[(7,8,9), (8,9)]

```

\subsection*{3.3.3 IsomorphismPermObject}
```

\triangleright IsomorphismPermObject(obj) (function)
\triangleright IsomorphismPerm2DimensionalGroup(2DimensionalGroup) (attribute)
\triangleright IsomorphismFp2DimensionalGroup(2DimensionalGroup) (attribute)
\triangleright ~ I s o m o r p h i s m P c 2 D i m e n s i o n a l G r o u p (2 D i m e n s i o n a l G r o u p) ~ (a t t r i b u t e) ~
\triangleright ~ R e g u l a r A c t i o n H o m o m o r p h i s m 2 D i m e n s i o n a l G r o u p (2 D i m e n s i o n a l G r o u p) ~ (a t t r i b u t e) ~

```

The global function IsomorphismPermObject calls IsomorphismPerm2DimensionalGroup, which constructs a morphism whose SourceHom (3.1.1) and RangeHom (3.1.1) are calculated using IsomorphismPermGroup on the source and range.

The global function RegularActionHomomorphism2DimensionalGroup is similar, but uses RegularActionHomomorphism in place of IsomorphismPermGroup.

Example
```

gap> iso8 := IsomorphismPerm2DimensionalGroup(C8);

```
[[G8=>d12] => [..]]

\subsection*{3.3.4 SmallerDegreePermutationRepresentation2DimensionalGroup (for perm 2dgroups)}
- SmallerDegreePermutationRepresentation2DimensionalGroup(Perm2DimensionalGroup)

The attribute SmallerDegreePermutationRepresentation2DimensionalGroup is obtained by calling SmallerDegreePermutationRepresentation on the source and range to obtain the an isomorphism for the pre-xmod or pre-cat \({ }^{1}\)-group.

Example
```

gap> G := Group((1,2,3,4)(5,6,7,8));;
gap> H := Subgroup(G, [(1,3)(2,4)(5,7)(6,8)]);;
gap> XG := XModByNormalSubgroup(G, H);
[Group([(1,3)(2,4)(5,7)(6,8)])->Group([(1,2,3,4)(5,6,7,8)])]
gap> sdpr := SmallerDegreePermutationRepresentation2DimensionalGroup(XG);;
gap> Range(sdpr);
[Group([(1,2)])->Group([(1,2,3,4)])]

```

\subsection*{3.4 Operations on morphisms}

\subsection*{3.4.1 CompositionMorphism}
\(\triangleright\) CompositionMorphism(map2, map1)
(operation)

Composition of morphisms (written (<map1> * <map2>) when maps act on the right) calls the CompositionMorphism function for maps (acting on the left), applied to the appropriate type of 2 d mapping.

Example
```

gap> H8 := Subgroup(G8,[G8.3,G8.4,G8.6,G8.7]); SetName(H8, "H8");
Group([f3, f4, f6, f7])
gap> c6 := Subgroup(d12, [b,c]); SetName(c6, "c6");
Group([f2, f3])
gap> SC8 := Sub2DimensionalGroup(C8, H8, c6);
[H8=>c6]
gap> IsCat1Group(SC8);
true
gap> inc8 := InclusionMorphism2DimensionalDomains(C8, SC8);
[[H8=>c6] => [G8=>d12]]
gap> CompositionMorphism(iso8, inc);
[[H8=>c6] => P[G8=>d12]]

```

\subsection*{3.4.2 Kernel (for 2d-mappings)}
```

\triangleright Kernel(map)
(operation)

```
- Kernel2DimensionalMapping(map)
(attribute)
The kernel of a morphism of crossed modules is a normal subcrossed module whose groups are the kernels of the source and target homomorphisms. The inclusion of the kernel is a standard example of a crossed square, but these have not yet been implemented.
```

gap> c2 := Group((19,20));
Group([(19,20)])
gap> X0 := XModByNormalSubgroup(c2, c2); SetName(X0, "X0");
[Group([(19,20)])->Group([(19,20)])]
gap> SX8 := Source(X8);;
gap> genSX8 := GeneratorsOfGroup(SX8);
[f1, f4, f5, f7]
gap> sigma0 := GroupHomomorphismByImages(SX8,c2,genSX8,[(19,20),(),(),()]);
[f1, f4, f5, f7] -> [(19,20), (), (), ()]
gap> rho0 := GroupHomomorphismByImages(d12,c2,[a1,a2,a3],[(19,20),(),()]);
[f1, f2, f3] -> [(19,20), (), ()]
gap> mor0 := XModMorphism(X8, X0, sigma0, rho0);;
gap> KO := Kernel(mor0);;
gap> StructureDescription(KO);
["C12", "C6"]

```

\subsection*{3.5 Quasi-isomorphisms}

A morphism of crossed modules \(\phi: \mathscr{X}=(\partial: S \rightarrow R) \rightarrow \mathscr{X}^{\prime}=\left(\partial^{\prime}: S^{\prime} \rightarrow R^{\prime}\right)\) induces homomorphisms \(\pi_{1}(\phi): \pi_{1}(\partial) \rightarrow \pi_{1}\left(\partial^{\prime}\right)\) and \(\pi_{2}(\phi): \pi_{2}(\partial) \rightarrow \pi_{2}\left(\partial^{\prime}\right)\). A morphism \(\phi\) is a quasi-isomorphism if both \(\pi_{1}(\phi)\) and \(\pi_{2}(\phi)\) are isomorphisms. Two crossed modules \(\mathscr{X}, \mathscr{X}^{\prime}\) are quasi-isomorphic is there exists a sequence of quasi-isomorphisms
\[
\mathscr{X}=\mathscr{X}_{1} \leftrightarrow \mathscr{X}_{2} \leftrightarrow \mathscr{X}_{3} \leftrightarrow \cdots \longleftrightarrow \mathscr{X}_{\ell}=\mathscr{X}^{\prime}
\]
of length \(\ell-1\). Here \(\mathscr{X}_{i} \leftrightarrow \mathscr{X}_{j}\) means that either \(\mathscr{X}_{i} \rightarrow \mathscr{X}_{j}\) or \(\mathscr{X}_{j} \rightarrow \mathscr{X}_{i}\). When \(\mathscr{X}, \mathscr{X}^{\prime}\) are quasiisomorphic we write \(\mathscr{X} \simeq \mathscr{X}^{\prime}\). Clearly \(\simeq\) is an equivalence relation. Mac \(\backslash\) Lane and Whitehead in [MLW50] showed that there is a one-to-one correspondence between homotopy 2-types and quasiisomorphism classes. We say that \(\mathscr{X}\) represents a trivial quasi-isomorphism class if \(\partial=0\).

Two cat \({ }^{1}\)-groups are quasi-isomorphic if their corresponding crossed modules are. The procedure for constructing a representative for the quasi-isomorphism class of a cat \({ }^{1}\)-group \(\mathscr{C}\), as described by Ellis and Le in [EL14], is as follows. The quotient process consists of finding all normal sub-crossed modules \(\mathscr{N}\) of the crossed module \(\mathscr{X}\) associated to \(\mathscr{C}\); constructing the quotient crossed module morphisms \(v: \mathscr{X} \rightarrow \mathscr{X} / \mathscr{N}\); and converting these \(v\) to morphisms from \(\mathscr{C}\).

The sub-crossed module process consists of finding all sub-crossed modules \(\mathscr{S}\) of \(\mathscr{X}\) such that the inclusion \(t: \mathscr{S} \rightarrow \mathscr{X}\) is a quasi-isomorphism; then converting \(l\) to a morphism to \(\mathscr{C}\).

The procedure for finding all quasi-isomorphism reductions consists of repeating the quotient process, followed by the sub-crossed module process, until no further reductions are possible.

It may happen that \(\mathscr{C}_{1} \simeq \mathscr{C}_{2}\) without either having a quasi-isomorphism reduction. In this case it is necessary to find a suitable \(\mathscr{C}_{3}\) with reductions \(\mathscr{C}_{3} \rightarrow \mathscr{C}_{1}\) and \(\mathscr{C}_{3} \rightarrow \mathscr{C}_{2}\). No such automated process is available in XMod.

Functions for these computations were first implemented in the package HAP and are available as QuotientQuasiIsomorph, SubQuasiIsomorph and QuasiIsomorph.

\subsection*{3.5.1 QuotientQuasiIsomorphism}
\(\triangleright\) QuotientQuasiIsomorphism(cat1, bool)
(operation)

This function implements the quotient process. The second parameter is a boolean which, when true, causes the results of some intermediate calculations to be printed. The output shows the identity of the reduced cat1-group, if there is one.

\section*{Example}
```

gap> C18a := Cat1Select(18, 4, 4);;
gap> StructureDescription(C18a);
["(C3 x C3) : C2", "S3"]
gap> QuotientQuasiIsomorphism(C18a, true);
quo: [f2][f3], ["1", "C2"]
[[2, 1], [2, 1]], [2, 1, 1]
[[2, 1, 1]]

```

\subsection*{3.5.2 SubQuasiIsomorphism}
\(\triangleright\) SubQuasiIsomorphism(cat1, bool) (operation)

This function implements the sub-crossed module process.

\section*{Example}
gap> SubQuasiIsomorphism( C18a, false );
[ [ 2, 1, 1], [ 2, 1, 1], [ 2, 1, 1 ] ]

\subsection*{3.5.3 QuasiIsomorphism}
\(\triangleright\) QuasiIsomorphism(cat1, list, bool)
(operation)

This function implements the general process.
```

gap> L18a := QuasiIsomorphism(C18a, [18,4,4], false);

```
[ [ 2, 1, 1], [ 18, 4, 4 ] ]

The logs above show that C18a has just one normal sub-crossed module \(\mathscr{N}\) leading to a reduction, and that there are three sub-crossed modules \(\mathscr{S}\) all giving the same reduction. The conclusion is that C18a is quasi-isomorphic to the identity cat1-group on the cyclic group of order 2 .

\section*{Chapter 4}

\section*{Isoclinism of groups and crossed modules}

This chapter describes some functions written by Alper Odabaş and Enver Uslu, and reported in their paper [IOU16]. Section 4.1 contains some additional basic functions for crossed modules, constructing quotients, centres, centralizers and normalizers. In Sections 4.2 and 4.3 there are functions dealing specifically with isoclinism for groups and for crossed modules. Since these functions represent a recent addition to the package (as of November 2015), the function names are liable to change in future versions. The notion of isoclinism has been crucial to the enumeration of groups of prime power order, see for example James, Newman and O'Brien, [JNO90].

\subsection*{4.1 More operations for crossed modules}

\subsection*{4.1.1 FactorPreXMod}
```

\triangleright FactorPreXMod(X1, X2)
\triangleright NaturalMorphismByNormalSubPreXMod(X1, X2)

When $\mathscr{X}_{2}=\left(\partial_{2}: S_{2} \rightarrow R_{2}\right)$ is a normal sub-precrossed module of $\mathscr{X}_{1}=\left(\partial_{1}: S_{1} \rightarrow R_{1}\right)$, then the quotient precrossed module is $\left(\partial: S_{2} / S_{1} \rightarrow R_{2} / R_{1}\right)$ with the induced boundary and action maps. Quotienting a precrossed module by it's Peiffer subgroup is a special case of this construction. (Permutation representations vary between different versions of GAP.)

Example

```
gap> d24 := DihedralGroup( IsPermGroup, 24 );;
gap> SetName( d24, "d24" );
gap> Y24 := XModByAutomorphismGroup( d24 );;
gap> Size2d( Y24 );
[ 24, 48]
gap> X24 := Image( IsomorphismPerm2DimensionalGroup( Y24 ) );
[d24->Group([ (2,4), (1,2,3,4), (6,7), (5,6,7) ])]
gap> nsx := NormalSubXMods( X24 );;
gap> Length( nsx );
40
gap> ids := List( nsx, n -> IdGroup(n) );;
gap> pos1 := Position( ids, [ [4,1], [8,3] ] );;
gap> Xn1 := nsx[pos1];
[Group( [ f2*f4~2, f3*f4 ] )->Group( [ f3, f4, f5 ] )]
```

```
gap> nat1 := NaturalMorphismByNormalSubPreXMod( X24, Xn1 );;
gap> Qn1 := FactorPreXMod( X24, Xn1 );;
gap> [ Size2d( Xn1 ), Size2d( Qn1 ) ];
[ [4, 8 ], [ 6, 6 ] ]
```


4.1.2 IntersectionSubXMods

\triangleright IntersectionSubXMods(X0, X1, X2)
(operation)

When $\mathrm{X} 1, \mathrm{X} 2$ are subcrossed modules of X 0 , then the source and range of their intersection are the intersections of the sources and ranges of $X 1$ and $X 2$ respectively.

Example

```
gap> pos2 := Position( ids, [ [24,6], [12,4] ] );;
gap> Xn2 := nsx[pos2];;
gap> IdGroup( Xn2 );
[ [ 24, 6 ], [ 12, 4 ] ]
gap> pos3 := Position( ids, [ [12,2], [24,5] ] );;
gap> Xn3 := nsx[pos3];;
gap> IdGroup( Xn3 );
[ [ 12, 2 ], [ 24, 5 ] ]
gap> Xn23 := IntersectionSubXMods( X24, Xn2, Xn3 );;
gap> IdGroup( Xn23 );
[ [ 12, 2 ], [ 6, 2 ] ]
```


4.1.3 Displacement

```
D Displacement(alpha, r, s) (operation)
\triangleright ~ D i s p l a c e m e n t G r o u p ( X O , ~ Q , ~ T ) ~ ( o p e r a t i o n ) ~ ( )
\triangleright ~ D i s p l a c e m e n t S u b g r o u p ( X O ) ~ ( a t t r i b u t e ) ~
```

Commutators may be written $[r, q]=r^{-1} q^{-1} r q=\left(q^{-1}\right)^{r} q=r^{-1} r^{q}$, and satisfy identities

$$
[r, q]^{p}=\left[r^{p}, q^{p}\right], \quad[p r, q]=[p, q]^{r}[r, q], \quad[r, p q]=[r, q][r, p]^{q}, \quad[r, q]^{-1}=[q, r] .
$$

In a similar way, when a group R acts on a group S, the displacement of $s \in S$ by $r \in R$ is defined to be $\langle r, s\rangle:=\left(s^{-1}\right)^{r} s \in S$. When $\mathscr{X}=(\partial: S \rightarrow R)$ is a pre-crossed module, the first crossed module axiom requires $\partial\langle r, s\rangle=[r, \partial s]$. When α is the action of \mathscr{X}, the Displacement function may be used to calculate $\langle r, s\rangle$. Displacements satisfy the following identities, where $s, t \in S, p, q, r \in R$:

$$
\langle r, s\rangle^{p}=\left\langle r^{p}, s^{p}\right\rangle, \quad\langle q r, s\rangle=\langle q, s\rangle^{r}\langle r, s\rangle, \quad\langle r, s t\rangle=\langle r, t\rangle\langle r, s\rangle^{t}, \quad\langle r, s\rangle^{-1}=\left\langle r^{-1}, s^{r}\right\rangle
$$

The operation DisplacementGroup applied to $X 0, Q, T$ is the subgroup of S consisting of all the displacements $\langle r, s\rangle, r \in Q \leqslant R, s \in T \leqslant S$. The DisplacementSubgroup of \mathscr{X} is the subgroup $\operatorname{Disp}(\mathscr{X})$ of S given by DisplacementGroup (X0, R, S). The identities imply $\langle r, s\rangle^{t}=\left\langle r, s t^{r^{-1}}\right\rangle\left\langle r^{-1}, t\right\rangle$, so $\operatorname{Disp}(\mathscr{X})$ is normal in S.

```
gap> pos4 := Position( ids, [ [6,2], [24,14] ] );;
gap> Xn4 := nsx[pos4];;
gap> bn4 := Boundary( Xn4 );;
gap> Sn4 := Source(Xn4);;
gap> Rn4 := Range(Xn4);;
gap> genRn4 := GeneratorsOfGroup( Rn4 );;
gap> L := List( genRn4, g -> ( Order(g) = 2 ) and
> not ( IsNormal( Rn4, Subgroup( Rn4, [g] ) ) ) );;
gap> pos := Position( L, true );;
gap> s := Sn4.1; r := genRn4[pos];
(1, 3, 5, 7, 9, 11) (2, 4, 6, 8, 10, 12)
(6,7)
gap> act := XModAction( Xn4 ); ;
gap> d := Displacement( act, r, s );
(1, 5, 9)(2, 6, 10) (3,7, 11) (4, 8, 12)
gap> Image( bn4, d ) = Comm( r, Image( bn4, s ) );
true
gap> Qn4 := Subgroup( Rn4, [ (6,7), (1,3), (2,4) ] );;
gap> Tn4 := Subgroup( Sn4, [ (1,3,5,7,9,11)(2,4,6,8,10,12)] );;
gap> DisplacementGroup( Xn4, Qn4, Tn4 );
Group ([ (1,5,9)(2,6,10)(3,7,11)(4,8,12) ])
gap> DisplacementSubgroup( Xn4 );
Group([ (1,5,9)(2,6,10)(3,7,11)(4,8,12) ])
```


4.1.4 CommutatorSubXMod

\triangleright CommutatorSubXMod(X, X1, X2)
\triangleright CrossActionSubgroup (X, X1, X2)

When $\mathscr{X}_{1}=(N \rightarrow Q), \mathscr{X}_{2}=(M \rightarrow P)$ are two normal subcrossed modules of $\mathscr{X}=(\partial: S \rightarrow R)$, the displacements $\langle p, n\rangle$ and $\langle q, m\rangle$ all map by ∂ into $[Q, P]$. These displacements form a normal subgroup of S, called the CrossActionSubgroup. The CommutatorSubXMod [$\mathscr{X}_{1}, \mathscr{X}_{2}$] has this subgroup as source and $[P, Q]$ as range, and is normal in \mathscr{X}.

Example

```
gap> CAn23 := CrossActionSubgroup( X24, Xn2, Xn3 );;
gap> IdGroup( CAn23 );
[ 12, 2 ]
gap> Cn23 := CommutatorSubXMod( X24, Xn2, Xn3 );;
gap> IdGroup( Cn23 );
[ [ 12, 2 ], [ 6, 2 ] ]
gap> Xn23 = Cn23;
true
```


4.1.5 DerivedSubXMod

\triangleright DerivedSubXMod (XO)
(attribute)

The DerivedSubXMod of \mathscr{X} is the normal subcrossed module $[\mathscr{X}, \mathscr{X}]=\left(\partial^{\prime}: \operatorname{Disp}(\mathscr{X}) \rightarrow[R, R]\right)$ where ∂^{\prime} is the restriction of ∂ (see page 66 of Norrie's thesis [Nor87]).

Example

```
gap> DXn4 := DerivedSubXMod( Xn4 );;
```

gap> IdGroup (DXn4);
[[3, 1], [3, 1]]

4.1.6 FixedPointSubgroupXMod

\triangleright FixedPointSubgroupXMod (XO, T, Q)
(operation)
\triangleright StabilizerSubgroupXMod (XO, T, Q)
(operation)

The FixedPointSubgroupXMod (X,T,Q) for $\mathscr{X}=(\partial: S \rightarrow R)$ is the $\operatorname{subgroup} \operatorname{Fix}(\mathscr{X}, T, Q)$ of elements $t \in T \leqslant S$ individually fixed under the action of $Q \leqslant R$.

The StabilizerSubgroupXMod (X,T,Q) for \mathscr{X} is the $\operatorname{subgroup} \operatorname{Stab}(\mathscr{X}, T, Q)$ of $Q \leqslant R$ whose elements act trivially on the whole of $T \leqslant S$ (see page 19 of Norrie's thesis [Nor87]).

Example

```
gap> fix := FixedPointSubgroupXMod( Xn4, Sn4, Rn4 );
Group([ (1,7)(2,8)(3,9)(4,10) (5,11) (6,12) ])
gap> stab := StabilizerSubgroupXMod( Xn4, Sn4, Rn4 );;
gap> IdGroup( stab );
[ 12, 5 ]
```


4.1.7 CentreXMod

```
\triangleright CentreXMod(XO) (attribute)
\triangleright ~ C e n t r a l i z e r ~ ( X , ~ Y ) ~ ( o p e r a t i o n ) )
\trianglerightNormalizer(X, Y) (operation)
```

The centre $Z(\mathscr{X})$ of $\mathscr{X}=(\partial: S \rightarrow R)$ has as source the fixed point $\operatorname{subgroup} \operatorname{Fix}(\mathscr{X}, S, R)$. The range is the intersection of the centre $Z(R)$ with the stabilizer subgroup.

When $\mathscr{Y}=(T \rightarrow Q)$ is a subcrossed module of $\mathscr{X}=(\partial: S \rightarrow R)$, the centralizer $C_{\mathscr{X}}(\mathscr{Y})$ of \mathscr{Y} has as source the fixed point subgroup $\operatorname{Fix}(\mathscr{X}, S, Q)$. The range is the intersection of the centralizer $C_{R}(Q)$ with $\operatorname{Stab}(\mathscr{X}, T, R)$.

The normalizer $N_{\mathscr{X}}(\mathscr{Y})$ of \mathscr{Y} has as source the subgroup of S consisting of the displacements $\langle s, q\rangle$ which lie in S.

```
gap> ZXn4 := CentreXMod( Xn4 );
[Group( [ f3*f4 ] )->Group( [ f3, f5 ] )]
```

```
gap> IdGroup( ZXn4 );
[ [ 2, 1 ], [ 4, 2 ] ]
gap> CDXn4 := Centralizer( Xn4, DXn4 );
[Group( [ f3*f4 ] )->Group( [ f2 ] )]
gap> IdGroup( CDXn4 );
[ [ 2, 1 ], [ 3, 1] ]
gap> NDXn4 := Normalizer( Xn4, DXn4 );
[Group( <identity> of ... )->Group( [ f5, f2*f3 ] )]
gap> IdGroup( NDXn4 );
[ [ 1, 1], [ 12, 5 ] ]
```


4.1.8 CentralQuotient

\triangleright CentralQuotient (G)
(attribute)

The CentralQuotient of a group G is the crossed module $(G \rightarrow G / Z(G))$ with the natural homomorphism as the boundary map. This is a special case of XModByCentralExtension (2.1.5).

Similarly, the central quotient of a crossed module \mathscr{X} is the crossed square $(\mathscr{X} \Rightarrow \mathscr{X} / Z(\mathscr{X}))$ (see section 8.2).

Example

```
gap> Q24 := CentralQuotient( d24); IdGroup( Q24 );
```

[d24->d24/Z(d24)]
[[24, 6], [12, 4]]

4.1.9 IsAbelian2DimensionalGroup

\triangleright IsAbelian2DimensionalGroup (XO) (property)
\triangleright IsAspherical2DimensionalGroup (XO) (property)
\triangleright IsSimplyConnected2DimensionalGroup (X0) (property)
\triangleright IsFaithful2DimensionalGroup (XO) (property)

A crossed module is abelian if it equal to its centre. This is the case when the range group is abelian and the action is trivial.

A crossed module is aspherical if the boundary has trivial kernel.
A crossed module is simply connected if the boundary has trivial cokernel.
A crossed module is faithful if the action is faithful.

```
gap> [ IsAbelian2DimensionalGroup(Xn4), IsAbelian2DimensionalGroup(X24) ];
[ false, false ]
gap> pos7 := Position( ids, [ [3,1], [6,1] ] );;
gap> [ IsAspherical2DimensionalGroup(nsx[pos7]), IsAspherical2DimensionalGroup(X24) ];
[ true, false ]
gap> [ IsSimplyConnected2DimensionalGroup(Xn4), IsSimplyConnected2DimensionalGroup(X24) ];
[ true, true ]
gap> [ IsFaithful2DimensionalGroup(Xn4), IsFaithful2DimensionalGroup(X24) ];
```

```
[ false, true ]
```


4.1.10 LowerCentralSeriesOfXMod

```
\triangleright LowerCentralSeriesOfXMod(X0)
(attribute)
\(\triangleright\) IsNilpotent2DimensionalGroup(XO)
\(\triangleright\) NilpotencyClass2DimensionalGroup (XO)
```

(property)
(attribute)

Let \mathscr{Y} be a subcrossed module of \mathscr{X}. A series of length n from \mathscr{X} to \mathscr{Y} has the form

$$
\mathscr{X}=\mathscr{X}_{0} \unrhd \mathscr{X}_{1} \unrhd \cdots \unrhd \mathscr{X}_{i} \unrhd \cdots \unrhd \mathscr{X}_{n}=\mathscr{Y} \quad(1 \leqslant i \leqslant n)
$$

The quotients $\mathscr{F}_{i}=\mathscr{X}_{i} / \mathscr{X}_{i-1}$ are the factors of the series.
A factor \mathscr{F}_{i} is central if $\mathscr{X}_{i-1} \unlhd \mathscr{X}$ and \mathscr{F}_{i} is a subcrossed module of the centre of $\mathscr{X}_{1} / \mathscr{X}_{i-1}$.
A series is central if all its factors are central.
\mathscr{X} is soluble if it has a series all of whose factors are abelian.
\mathscr{X} is nilpotent is it has a series all of whose factors are central factors of \mathscr{X}.
The lower central series of \mathscr{X} is the sequence (see [Nor87], p.77):

$$
\mathscr{X}=\Gamma_{1}(\mathscr{X}) \unrhd \Gamma_{2}(\mathscr{X}) \unrhd \cdots \quad \text { where } \quad \Gamma_{j}(\mathscr{X})=\left[\Gamma_{j-1}(\mathscr{X}), \mathscr{X}\right] .
$$

If \mathscr{X} is nilpotent, then its lower central series is its most rapidly descending central series.
The least integer c such that $\Gamma_{c+1}(\mathscr{X})$ is the trivial crossed module is the nilpotency class of \mathscr{X}.

```
gap> lcs := LowerCentralSeries( X24 );;
gap> List( lcs, g -> IdGroup(g) );
[ [ [ 24, 6 ], [ 48, 38 ] ], [ [ 12, 2 ], [ 6, 2 ] ], [ [ 6, 2 ], [ 3, 1 ] ],
    [ [ 3, 1 ], [ 3, 1 ] ] ]
gap> IsNilpotent2DimensionalGroup( X24 );
false
gap> NilpotencyClassOf2DimensionalGroup( X24 );
O
```


4.1.11 IsomorphismXMods

- IsomorphismXMods(X1, X2)

The function IsomorphismXMods computes an isomorphism $\mu: \mathscr{X}_{1} \rightarrow \mathscr{X}_{2}$, provided one exists, or else returns fail.

```
gap> gend24 := GeneratorsOfGroup( d24 );;
gap> a := gend24[1];; b:= gend24[2];;
gap> J := Subgroup( d24, [a^2,b] );
Group([ (1,3,5,7,9,11)(2,4,6,8,10,12), (2,12)(3,11)(4,10)(5,9)(6,8) ])
gap> K := Subgroup( d24, [a^2,a*b] );
```

```
Group([ (1,3,5,7,9,11) (2,4,6,8,10,12), (1,12) (2,11) (3,10)(4,9)(5,8)(6,7) ])
gap> XJ := XModByNormalSubgroup( d24, J );;
gap> XK := XModByNormalSubgroup( d24, K );;
gap> iso := IsomorphismXMods( XJ, XK );;
gap> SourceHom( iso );
[ (1,3,5,7,9,11)(2,4,6,8,10,12), (2,12)(3,11)(4,10)(5,9)(6,8)] ->
[ (1,3,5,7,9,11)(2,4,6,8,10,12), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7) ]
gap> RangeHom( iso );
[ (1,2,3,4,5,6,7,8,9,10,11,12), (2,12)(3,11)(4,10)(5,9)(6,8) ] ->
[ (1,2,3,4,5,6,7,8,9,10,11,12), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)]
```


4.1.12 AllXMods

```
\triangleright ~ A l l X M o d s ( a r g s ) ~ ( f u n c t i o n ) ~ ( )
\triangleright ~ A l l X M o d s W i t h G r o u p s ( s r c , ~ r n g ) ~ ( o p e r a t i o n ) ~
\triangleright ~ A l l X M o d s U p T o I s o m o r p h i s m ( s r c , ~ r n g ) ~ ( o p e r a t i o n ) ~
\triangleright IsomorphismClassRepresentatives2dGroups(L)
(operation)
```

The global function AllXMods may be called in three ways. Firstly, as AllXMods (S,R) to compute all crossed modules with chosen source and range groups: this calls AllXModsWithGroups (S,R). Secondly, AllXMods([n,m]) computes all crossed modules with a given size $[\mathrm{n}, \mathrm{m}]$. Thirdly AllXMods (ord) to compute all crossed modules whose associated cat1-groups have a given size ord.

The function AllXModsUpToIsomorphism (S,R) returns a list of representatives of the isomorphism classes of crossed modules with source S and range R.

If L is a list returned by, for example, AllXModsWithGroups (S, R), then the isomorphism class representatives for this list is returned by IsomorphismClassRepresentatives2dGroups (L). This result is the same as that given by AllXModsUpToIsomorphism (S, R).

In the example we see that there are 4 crossed modules, in 3 isomorphism classes, $\left(C_{6} \rightarrow S_{3}\right)$; forming a subset of the 17 crossed modules with size $[6,6]$; and that these form a subset of the 205 crossed modules whose cat1-group has size 36 . There are 40 precrossed modules with size $[6,6]$.

```
gap> c6 := SmallGroup( 6, 2 );;
gap> s3 := SmallGroup( 6, 1 );;
gap> Ac6s3 := AllXMods( c6, s3 );;
gap> Length( Ac6s3 );
4
gap> Ic6s3 := AllXModsUpToIsomorphism( c6, s3 );;
gap> List( Ic6s3, obj -> IsTrivialAction2DimensionalGroup( obj ) );
[ true, false, false ]
gap> Kc6s3 := List( Ic6s3, obj -> KernelCokernelXMod( obj ) );;
gap> List( Kc6s3, obj -> IdGroup( obj ) );
[ [ [ 6, 2 ], [ 6, 1] ], [ [ 6, 2 ], [ 6, 1 ] ], [ [ 2, 1 ], [ 2, 1 ] ] ]
[ ]
gap> A66 := AllXMods( [6,6] );;
gap> Length( A66 );
17
```

```
gap> IA66 := IsomorphismClassRepresentatives2dGroups( A66 );;
gap> Length( IA66 );
9
gap> x36 := AllXMods( 36 );;
gap> Length( x36 );
205
gap> size36 := List( x36, x -> Size2d( x ) );;
gap> Collected( size36 );
[ [ [ 1, 36 ], 14 ], [ [ 2, 18 ], 7 ], [ [ 3, 12 ], 21 ], [ [ 4, 9 ], 14 ],
    [ [ 6, 6 ], 17 ], [ [ 9, 4 ], 102 ], [ [ 12, 3 ], 8 ], [ [ 18, 2 ], 18 ],
    [ [ 36, 1], 4 ] ]
```


4.2 Isoclinism for groups

4.2.1 Isoclinism (for groups)

```
\triangleright Isoclinism(G, H)
\triangleright AreIsoclinicDomains(G, H)
```

(operation)

Let G, H be groups with central quotients $Q(G)$ and $Q(H)$ and derived subgroups $[G, G]$ and $[H, H]$ respectively. Let $c_{G}: G / Z(G) \times G / Z(G) \rightarrow[G, G]$ and $c_{H}: H / Z(H) \times H / Z(H) \rightarrow[H, H]$ be the two commutator maps. An isoclinism $G \sim H$ is a pair of isomorphisms (η, ξ) where $\eta: G / Z(G) \rightarrow$ $H / Z(H)$ and $\xi:[G, G] \rightarrow[H, H]$ such that $c_{G} * \xi=(\eta \times \eta) * c_{H}$. Isoclinism is an equivalence relation, and all abelian groups are isoclinic to the trivial group.

```
gap> G := SmallGroup( 64, 6 );; StructureDescription( G );
"(C8 x C4) : C2"
gap> QG := CentralQuotient( G );; IdGroup( QG );
[ [ 64, 6 ], [ 8, 3 ] ]
gap> H := SmallGroup( 32, 41 );; StructureDescription( H );
"C2 x Q16"
gap> QH := CentralQuotient( H );; IdGroup( QH );
[ [ 32, 41 ], [ 8, 3 ] ]
gap> Isoclinism( G, H );
[ [ f1, f2, f3 ] -> [ f1, f2*f3, f3 ], [ f3, f5 ] -> [ f4*f5, f5 ] ]
gap> K := SmallGroup( 32, 43 );; StructureDescription( K );
"(C2 x D8) : C2"
gap> QK := CentralQuotient( K );; IdGroup( QK );
[ [ 32, 43 ], [ 16, 11 ] ]
gap> AreIsoclinicDomains( G, K );
false
```


4.2.2 IsStemDomain (for groups)

```
\triangleright IsStemDomain(G)
    (property)
\triangleright IsoclinicStemDomain(G)
```

\triangleright ~ A l l S t e m G r o u p I d s (n) ~ (o p e r a t i o n) ~
\& AllStemGroupFamilies(n)

A group G is a stem group if $Z(G) \leq[G, G]$. Every group is isoclinic to a stem group, but distinct stem groups may be isoclinic. For example, groups D_{8}, Q_{8} are two isoclinic stem groups.

The function IsoclinicStemDomain returns a stem group isoclinic to G.
The function AllStemGroupIds returns the IdGroup list of the stem groups of a specified size, while AllStemGroupFamilies splits this list into isoclinism classes.

```
gap> DerivedSubgroup(G);
Group([ f3, f5 ])
gap> IsStemDomain( G );
false
gap> IsoclinicStemDomain( G );
<pc group of size 16 with 4 generators>
gap> AllStemGroupIds( 32 );
[ [ 32, 6 ], [ 32, 7 ], [ 32, 8 ], [ 32, 18 ], [ 32, 19 ], [ 32, 20 ],
    [ 32, 27 ], [ 32, 28 ], [ 32, 29 ], [ 32, 30 ], [ 32, 31 ], [ 32, 32 ],
    [ 32, 33 ], [ 32, 34 ], [ 32, 35 ], [ 32, 43 ], [ 32, 44 ], [ 32, 49 ],
    [ 32, 50 ] ]
gap> AllStemGroupFamilies( 32 );
[ [ [ 32, 6 ], [ 32, 7 ], [ 32, 8 ] ], [ [ 32, 18 ], [ 32, 19 ], [ 32, 20 ] ],
    [ [ 32, 27 ], [ 32, 28 ], [ 32, 29 ], [ 32, 30 ], [ 32, 31 ], [ 32, 32 ],
        [ 32, 33 ], [ 32, 34 ], [ 32, 35 ] ], [ [ 32, 43 ], [ 32, 44 ] ],
    [ [ 32, 49 ], [ 32, 50 ] ] ]
```


4.2.3 IsoclinicRank (for groups)

```
\triangleright ~ I s o c l i n i c R a n k ( G ) ~ ( a t t r i b u t e ) ~
\triangleright ~ I s o c l i n i c M i d d l e L e n g t h ( G ) ~ ( a t t r i b u t e ) ~
```

Let G be a finite p-group. Then $\log _{p}|[G, G] /(Z(G) \cap[G, G])|$ is called the middle length of G. Also $\log _{p}|Z(G) \cap[G, G]|+\log _{p}|G / Z(G)|$ is called the rank of G. These invariants appear in the tables of isoclinism families of groups of order 128 in [JNO90].

Example

```
gap> IsoclinicMiddleLength( G );
1
gap> IsoclinicRank( G );
4
```


4.3 Isoclinism for crossed modules

4.3.1 Isoclinism (for crossed modules)

```
\triangleright ~ I s o c l i n i s m ( X O , ~ Y O ) ~ ( o p e r a t i o n ) )
\triangleright AreIsoclinicDomains(XO, YO) (operation)
```

Let \mathscr{X}, \mathscr{Y} be crossed modules with central quotients $Q(\mathscr{X})$ and $Q(\mathscr{Y})$, and derived subcrossed modules $[\mathscr{X}, \mathscr{X}]$ and $[\mathscr{Y}, \mathscr{Y}]$ respectively. Let $c_{\mathscr{X}}: Q(\mathscr{X}) \times Q(\mathscr{X}) \rightarrow[\mathscr{X}, \mathscr{X}]$ and $c_{\mathscr{Y}}: Q(\mathscr{Y}) \times$ $Q(\mathscr{Y}) \rightarrow[\mathscr{Y}, \mathscr{Y}]$ be the two commutator maps. An isoclinism $\mathscr{X} \sim \mathscr{Y}$ is a pair of bijective morphisms (η, ξ) where $\eta: Q(\mathscr{X}) \rightarrow Q(\mathscr{Y})$ and $\xi:[\mathscr{X}, \mathscr{X}] \rightarrow[\mathscr{Y}, \mathscr{Y}]$ such that $c_{\mathscr{X}} * \xi=(\eta \times \eta) * c_{\mathscr{Y}}$. Isoclinism is an equivalence relation, and all abelian crossed modules are isoclinic to the trivial crossed module.

```
Example
```

```
gap> C8 := Cat1Group( 16, 8, 2 );;
gap> X8 := XMod(C8); IdGroup( X8 );
[Group( [ f1*f2*f3, f3, f4 ] )->Group( [ f2, f2 ] )]
[ [ 8, 1 ], [ 2, 1 ] ]
gap> C9 := Cat1Group( 32, 9, 2 );
[(C8 x C2) : C2 => Group( [ f2, f2 ] )]
gap> X9 := XMod( C9 ); IdGroup( X9 );
[Group( [ f1*f2*f3, f3, f4, f5 ] )->Group( [ f2, f2 ] )]
[ [ 16, 5 ], [ 2, 1 ] ]
gap> AreIsoclinicDomains( X8, X9 );
true
gap> ism89 := Isoclinism( X8, X9 );;
gap> Display( ism89 );
[ [[Group( [ f1, f2, <identity> of ... ] ) -> Group( [ f2, f2 ] )] => [Group(
    [ f1, f2, <identity> of ..., <identity> of ... ] ) -> Group(
    [ f2, f2 ] )]],
    [[Group( [ f3 ] ) -> Group( <identity> of ... )] => [Group(
        [ f3 ] ) -> Group( <identity> of ... )]] ]
```


4.3.2 IsStemDomain (for crossed modules of groups)

```
\triangleright ~ I s S t e m D o m a i n ( X O ) ~ ( p r o p e r t y ) ~
\triangleright IsoclinicStemDomain(XO) (attribute)
```

A crossed module \mathscr{X} is a stem crossed module if $Z(\mathscr{X}) \leq[\mathscr{X}, \mathscr{X}]$. Every crossed module is isoclinic to a stem crossed module, but distinct stem crossed modules may be isoclinic.

A method for IsoclinicStemDomain has yet to be implemented.

```
gap> IsStemDomain(X8);
true
gap> IsStemDomain(X9);
false
```


4.3.3 IsoclinicRank (for crossed modules of groups)

- IsoclinicRank (XO)
- IsoclinicMiddleLength (XO)

The formulae in subsection 4.2.3 are applied to the crossed module.
Example
gap> IsoclinicMiddleLength(X8);
[1, 0]
gap> IsoclinicRank(X8) ;
[3, 1]

Chapter 5

Whitehead group of a crossed module

5.1 Derivations and Sections

The Whitehead monoid $\operatorname{Der}(\mathscr{X})$ of \mathscr{X} was defined in [Whi48] to be the monoid of all derivations from R to S, that is the set of all maps $\chi: R \rightarrow S$, with Whitehead multiplication \star (on the right) satisfying:

$$
\text { Der 1: } \chi(q r)=(\chi q)^{r}(\chi r), \quad \text { Der } 2:\left(\chi_{1} \star \chi_{2}\right)(r)=\left(\chi_{2} r\right)\left(\chi_{1} r\right)\left(\chi_{2} \partial \chi_{1} r\right) .
$$

The zero map is the identity for this composition. Invertible elements in the monoid are called regular. The Whitehead group of \mathscr{X} is the group of regular derivations in $\operatorname{Der}(\mathscr{X})$. In the next chapter the actor of \mathscr{X} is defined as a crossed module whose source and range are permutation representations of the Whitehead group and the automorphism group of \mathscr{X}.

The construction for cat1-groups equivalent to the derivation of a crossed module is the section. The monoid of sections of $\mathscr{C}=(e ; t, h: G \rightarrow R)$ is the set of group homomorphisms $\xi: R \rightarrow G$, with Whitehead multiplication \star (on the right) satisfying:

```
Sect 1: \(t \circ \xi=\operatorname{id}_{R}, \quad\) Sect \(2:\left(\xi_{1} \star \xi_{2}\right)(r)=\left(\xi_{1} r\right)\left(e h \xi_{1} r\right)^{-1}\left(\xi_{2} h \xi_{1} r\right)=\left(\xi_{2} h \xi_{1} r\right)\left(e h \xi_{1} r\right)^{-1}\left(\xi_{1} r\right)\).
```

The embedding e is the identity for this composition, and $h\left(\xi_{1} \star \xi_{2}\right)=\left(h \xi_{1}\right)\left(h \xi_{2}\right)$. A section is regular when $h \xi$ is an automorphism, and the group of regular sections is isomorphic to the Whitehead group.

If ε denotes the inclusion of $S=\operatorname{ker} t$ in G then $\partial=h \varepsilon: S \rightarrow R$ and

$$
\xi r=(e r)(e \chi r), \quad \text { which equals } \quad(r, \chi r) \in R \ltimes S,
$$

determines a section ξ of \mathscr{C} in terms of the corresponding derivation χ of \mathscr{X}, and conversely.

5.1.1 DerivationByImages

```
D DerivationByImages(XO, ims) (operation)
\triangleright ~ I s D e r i v a t i o n ( m a p ) ~ ( p r o p e r t y )
```



```
\triangleright UpGeneratorImages(chi) (attribute)
\triangleright ~ U p I m a g e P o s i t i o n s ( c h i ) ~ ( a t t r i b u t e ) )
\triangleright DerivationImage(chi, r) (operation)
```

A derivation χ is stored like a group homomorphisms by specifying the images of the generating set StrongGeneratorsStabChain (StabChain(R)) of the range R. This set of images is stored as the attribute UpGeneratorImages of χ. The function IsDerivation is automatically called to check that this procedure is well-defined.

Images of the remaining elements may be obtained using axiom Der 1. UpImagePositions (chi) is the list of the images under χ of Elements (R) and DerivationImage (chi,r) returns χr.

In the following example a cat1-group C3 and the associated crossed module X3 are constructed, where X3 is isomorphic to the inclusion of the normal cyclic group c3 in the symmetric group s3. The derivation χ_{1} maps $c 3$ to the identity and the other 3 elements to $(1,2,3)(4,6,5)$.

Example

```
gap> g18 := Group( (1,2,3), (4,5,6), (2,3)(5,6) );;
gap> SetName( g18, "g18" );
gap> gen18 := GeneratorsOfGroup( g18 );;
gap> g1 := gen18[1];; g2 := gen18[2];; g3 := gen18[3];;
gap> s3 := Subgroup( g18, gen18{[2..3]} );;
gap> SetName( s3, "s3" );;
gap> t := GroupHomomorphismByImages( g18, s3, gen18, [g2,g2,g3] );;
gap> h := GroupHomomorphismByImages( g18, s3, gen18, [(),g2,g3] );;
gap> e := GroupHomomorphismByImages( s3, g18, [g2,g3], [g2,g3] );;
gap> C3 := Cat1Group( t, h, e );
[g18=>s3]
gap> SetName( Kernel(t), "c3" );;
gap> X3 := XModOfCat1Group( C3 );
[c3->s3]
gap> R3 := Range( X3 );;
gap> StrongGeneratorsStabChain( StabChain( R3 ) );
[ (4,5,6), (2,3)(5,6) ]
gap> chi1 := DerivationByImages( X3, [ (), (1,2,3)(4,6,5) ] );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (), (1,2,3)(4,6,5) ] )
gap> [ IsUp2DimensionalMapping( chi1 ), IsDerivation( chi1 ) ];
[ true, true ]
gap> UpGeneratorImages( chi1 );
[(), (1,2,3)(4,6,5)]
gap> UpImagePositions( chi1 );
[ 1, 1, 1, 2, 2, 2 ]
gap> DerivationImage( chi1, (2,3)(4,5) );
(1,2,3)(4,6,5)
```


5.1.2 PrincipalDerivation

The principal derivation determined by $s \in S$ is the derivation $\eta_{s}: R \rightarrow S, r \mapsto\left(s^{-1}\right)^{r} s$.

```
gap> eta := PrincipalDerivation( X3, (1,2,3)(4,6,5) );
```

```
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6)], [ (), (1,3,2)(4,5,6)] )
```


5.1.3 SectionByHomomorphism

```
\triangleright SectionByHomomorphism(C, hom) (operation)
\triangleright ~ I s S e c t i o n ( h o m ) ~ ( p r o p e r t y ) ~ ( )
\triangleright ~ S e c t i o n B y D e r i v a t i o n ( c h i ) ~ ( o p e r a t i o n ) ~ ( )
D DerivationBySection(xi)

Sections are group homomorphisms, so do not need a special representation. Operations SectionByDerivation and DerivationBySection convert derivations to sections, and vice-versa, calling Cat1GroupOfXMod (2.5.3) and XModOfCat1Group (2.5.3) automatically.

Two strategies for calculating derivations and sections are implemented, see [AW00]. The default method for AllDerivations (5.2.1) is to search for all possible sets of images using a backtracking procedure, and when all the derivations are found it is not known which are regular. In early versions of this package, the default method for AllSections ( <C> ) was to compute all endomorphisms on the range group R of C as possibilities for the composite \(h \xi\). A backtrack method then found possible images for such a section. In the current version the derivations of the associated crossed module are calculated, and these are all converted to sections using SectionByDerivation.
```

gap> hom2 := GroupHomomorphismByImages(s3, g18, [(4,5,6), (2,3)(5,6)],
> [(1,3,2) (4,6,5), (1,2)(4,6)]);;
gap> xi2 := SectionByHomomorphism(C3, hom2);
SectionByHomomorphism(s3, g18, [(4,5,6), (2,3)(5,6)],
[(1,3,2)(4,6,5), (1,2) (4,6)])
gap> [IsUp2DimensionalMapping(xi2), IsSection(xi2)];
[true, true]
gap> chi2 := DerivationBySection(xi2);
DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],
[(1,3,2)(4,5,6), (1,2,3)(4,6,5)])
gap> xi1 := SectionByDerivation(chi1);
SectionByHomomorphism(s3, g18, [(4,5,6), (2,3)(5,6)],
[(1,2,3), (1,2)(4,6)])

```

\subsection*{5.1.4 IdentityDerivation}
```

\triangleright IdentityDerivation(XO) (attribute)
\triangleright IdentitySection(CO)
(attribute)

```

The identity derivation maps the range group to the identity subgroup of the source, while the identity section is just the range embedding considered as a section.

Example
```

gap> IdentityDerivation(X3);
DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)], [(), ()])

```
```

gap> IdentitySection(C3);
SectionByHomomorphism(s3, g18, [(4,5,6), (2,3)(5,6)],
[(4,5,6), (2,3)(5,6)])

```

\subsection*{5.1.5 WhiteheadProduct}
- WhiteheadProduct(chi1, chi2)
\(\triangleright\) WhiteheadOrder(chi)

The WhiteheadProduct may be applied to two derivations to form \(\chi_{1} \star \chi_{2}\), or to two sections to form \(\xi_{1 \star} \xi_{2}\). The WhiteheadOrder of a regular derivation \(\chi\) is the smallest power of \(\chi\), using this product, equal to the IdentityDerivation (5.1.4).
```

gap> chi12 := WhiteheadProduct(chi1, chi2);
DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)], [(1,2,3) (4,6,5), ()])
gap> xi12 := WhiteheadProduct(xi1, xi2);
SectionByHomomorphism(s3, g18, [(4,5,6), (2,3)(5,6)],
[(1,2,3), (2,3)(5,6)])
gap> xi12 = SectionByDerivation(chi12);
true
gap> [WhiteheadOrder(chi2), WhiteheadOrder(xi2)];
[2, 2]

```

\subsection*{5.2 Whitehead Groups and Monoids}

As mentioned at the beginning of this chapter, the Whitehead monoid \(\operatorname{Der}(\mathscr{X})\) of \(\mathscr{X}\) is the monoid of all derivations from \(R\) to \(S\). Monoids of derivations have representation IsMonoidOfUp2DimensionalMappingsObj. Multiplication tables for Whitehead monoids enable the construction of transformation representations.

\subsection*{5.2.1 AllDerivations}
```

\triangleright AllDerivations(XO) (attribute)
\triangleright ImagesTable(obj)
D DerivationClass(mon)
\triangleright WhiteheadMonoidTable(XO)
\ WhiteheadTransformationMonoid(XO)

Using our example X3 we find that there are just nine derivations.

```
Example
gap> all3 := AllDerivations( X3 );
monoid of derivations with images list:
[ (), () ]
[(), (1,3,2)(4,5,6)]
```

```
[(), (1,2,3)(4,6,5)]
[ (1,3,2)(4,5,6), () ]
[(1,3,2)(4,5,6), (1,3,2)(4,5,6)]
[(1,3,2)(4,5,6), (1,2,3)(4,6,5) ]
[ (1,2,3)(4,6,5), () ]
[(1,2,3)(4,6,5), (1,3,2) (4,5,6)]
[(1,2,3)(4,6,5), (1,2,3)(4,6,5)]
gap> DerivationClass( all3 );
"all"
gap> Perform( ImagesTable( all3 ), Display );
[ 1, 1, 1, 1, 1, 1]
[ 1, 1, 1, 3, 3, 3 ]
[1, 1, 1, 2, 2, 2 ]
[1, 3, 2, 1, 3, 2 ]
[1, 3, 2, 3, 2, 1 ]
[1, 3, 2, 2, 1, 3 ]
[1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3, 3, 1, 2 ]
[ 1, 2, 3, 2, 3, 1 ]
gap> wmt3 := WhiteheadMonoidTable( X3 );;
gap> Perform( wmt3, Display );
[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
[ 2, 3, 1, 5, 6, 4, 8, 9, 7 ]
[ 3, 1, 2, 6, 4, 5, 9, 7, 8 ]
[4, 6, 5, 1, 3, 2, 7, 9, 8 ]
[ 5, 4, 6, 2, 1, 3, 8, 7, 9 ]
[ 6, 5, 4, 3, 2, 1, 9, 8, 7 ]
[7, 7, 7, 7, 7, 7, 7, 7, 7 ]
[ 8, 8, 8, 8, 8, 8, 8, 8, 8 ]
[ 9, 9, 9, 9, 9, 9, 9, 9, 9 ]
gap> wtm3 := WhiteheadTransformationMonoid( X3 );
<transformation monoid of degree 9 with 3 generators>
gap> GeneratorsOfMonoid( wtm3 );
[ Transformation( [ 2, 3, 1, 5, 6, 4, 8, 9, 7 ] ),
    Transformation( [ 4, 6, 5, 1, 3, 2, 7, 9, 8 ] ),
    Transformation( [ 7, 7, 7, 7, 7, 7, 7, 7, 7 ] ) ]
```


5.2.2 RegularDerivations

\triangleright RegularDerivations (X0) (attribute)
\triangleright ImagesList (obj) (attribute)
\triangleright WhiteheadGroupTable (XO) (attribute)
\triangleright WhiteheadPermGroup (XO)
(attribute)

RegularDerivations are those derivations which are invertible in the monoid. Multiplication tables for the Whitehead group enable the construction of permutation representations.

Of the nine derivations of X3 just six are regular. The associated group is isomorphic to the symmetric group s3.

```
gap> reg3 := RegularDerivations( X3 );
monoid of derivations with images list:
[ (), () ]
[(), (1,3,2)(4,5,6)]
[ (), (1,2,3)(4,6,5) ]
[(1,3,2)(4,5,6), ()]
[(1,3,2)(4,5,6), (1,3,2) (4,5,6)]
[ (1,3,2)(4,5,6), (1,2,3)(4,6,5)]
gap> wgt3 := WhiteheadGroupTable( X3 );;
gap> Perform( wgt3, Display );
[ [ 1, 2, 3, 4, 5, 6 ],
    [ 2, 3, 1, 5, 6, 4],
    [ 3, 1, 2, 6, 4, 5 ],
    [ 4, 6, 5, 1, 3, 2 ],
    [ 5, 4, 6, 2, 1, 3 ],
    [ 6, 5, 4, 3, 2, 1 ] ]
gap> wpg3 := WhiteheadPermGroup( X3 );
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5)])
```


5.2.3 PrincipalDerivations

- PrincipalDerivations(X0)
(attribute)

The principal derivations form a subgroup of the Whitehead group.
Example

```
gap> PDX3 := PrincipalDerivations( X3 );
monoid of derivations with images list:
[ (), () ]
[(), (1,3,2)(4,5,6)]
[(), (1,2,3)(4,6,5)]
```


5.2.4 AllSections

\triangleright AllSections (CO) (attribute)
\triangleright RegularSections (CO) (attribute)

These operations have been declared but are not yet implemented. The interested user should, instead, work with the corresponding derivations.

Chapter 6

Actors of 2d-groups

6.1 Actor of a crossed module

The actor of \mathscr{X} is a crossed module $\operatorname{Act}(\mathscr{X})=(\Delta: \mathscr{W}(\mathscr{X}) \rightarrow \operatorname{Aut}(\mathscr{X}))$ which was shown by Lue and Norrie, in [Nor87] and [Nor90] to give the automorphism object of a crossed module \mathscr{X}. In this implementation, the source of the actor is a permutation representation W of the Whitehead group of regular derivations, and the range of the actor is a permutation representation A of the automorphism group $\operatorname{Aut}(\mathscr{X})$ of \mathscr{X}.

6.1.1 AutomorphismPermGroup

```
\triangleright AutomorphismPermGroup(xmod)
\(\triangleright\) GeneratingAutomorphisms (xmod)
\(\triangleright\) PermAutomorphismAsXModMorphism(xmod, perm)

The automorphisms \((\sigma, \rho)\) of \(\mathscr{X}\) form a group \(\operatorname{Aut}(\mathscr{X})\) of crossed module isomorphisms. The function AutomorphismPermGroup finds a set of GeneratingAutomorphisms for Aut \((\mathscr{X})\), and then constructs a permutation representation of this group, which is used as the range of the actor crossed module of \(\mathscr{X}\). The individual automorphisms can be constructed from the permutation group using the function PermAutomorphismAsXModMorphism. The example below uses the crossed module X3 \(=[c 3->s 3]\) constructed in section 5.1.
```

gap> APX3 := AutomorphismPermGroup(X3);
Group([(5,7,6), (1,2)(3,4)(6,7)])
gap> Size(APX3);
6
gap> genX3 := GeneratingAutomorphisms(X3);
[[[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]]]
gap> e6 := Elements(APX3) [6];
(1,2) (3,4) (5,7)
gap> m6 := PermAutomorphismAsXModMorphism(X3, e6);;
gap> Display(m6);
Morphism of crossed modules :-
: Source = [c3->s3] with generating sets:
[(1,2,3)(4,6,5)]

```
```

 [(4,5,6), (2,3)(5,6)]
 Range = Source
 Source Homomorphism maps source generators to:
 [(1,3,2)(4,5,6)]
 : Range Homomorphism maps range generators to:
 [(4,6,5), (2,3)(4,5)]
    ```

\subsection*{6.1.2 WhiteheadXMod}
```

\triangleright WhiteheadXMod(xmod) (attribute)
\triangleright LueXMod(xmod)
\ NorrieXMod(xmod)
ActorXMod(xmod)

```
(attribute)
(attribute)
(attribute)
(attribute)

An automorphism \((\sigma, \rho)\) of X acts on the Whitehead monoid by \(\chi^{(\sigma, \rho)}=\sigma \circ \chi \circ \rho^{-1}\), and this determines the action for the actor. In fact the four groups \(S, W, R, A\), the homomorphisms between them, and the various actions, give five crossed modules forming a crossed square (see ActorCrossedSquare (8.2.5)).
- \(\mathscr{W}(\mathscr{X})=(\eta: S \rightarrow W)\), the Whitehead crossed module of \(\mathscr{X}\), at the top,
- \(\mathscr{X}=(\partial: S \rightarrow R)\), the initial crossed module, on the left,
- \(\operatorname{Act}(\mathscr{X})=(\Delta: W \rightarrow A)\), the actor crossed module of \(\mathscr{X}\), on the right,
- \(\mathscr{N}(X)=(\alpha: R \rightarrow A)\), the Norrie crossed module of \(\mathscr{X}\), on the bottom, and
- \(\mathscr{L}(\mathscr{X})=(\Delta \circ \eta=\alpha \circ \partial: S \rightarrow A)\), the Lue crossed module of \(\mathscr{X}\), along the top-left to bottomright diagonal.

Example
```

gap> WGX3 := WhiteheadPermGroup(X3);
Group([(1,2,3) (4,5,6), (1,4) (2,6) (3,5)])
gap> WX3 := WhiteheadXMod(X3);;
gap> Display(WX3);
Crossed module Whitehead[c3->s3] :-
: Source group has generators:
[(1,2,3)(4,6,5)]
: Range group has generators:
[(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]
: Boundary homomorphism maps source generators to:
[(1,2,3)(4,5,6)]
Action homomorphism maps range generators to automorphisms:
(1,2,3)(4,5,6) --> { source gens --> [(1,2,3) (4,6,5)] }
(1,4)(2,6)(3,5) --> { source gens --> [(1,3,2) (4,5,6)] }
These 2 automorphisms generate the group of automorphisms.
gap> LX3 := LueXMod(X3);;
gap> Display(LX3);
Crossed module Lue[c3->s3] :-
: Source group has generators:

```
```

 [(1,2,3)(4,6,5)]
 : Range group has generators:
[(5,7,6), (1,2) (3,4)(6,7)]
: Boundary homomorphism maps source generators to:
[(5,7,6)]
Action homomorphism maps range generators to automorphisms:
(5,7,6) --> { source gens --> [(1,2,3)(4,6,5)] }
(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2) (4,5,6)] }
These 2 automorphisms generate the group of automorphisms.
gap> NX3 := NorrieXMod(X3);;
gap> Display(NX3);
Crossed module Norrie[c3->s3] :-
: Source group has generators:
[(4,5,6), (2,3)(5,6)]
Range group has generators:
[(5,7,6), (1,2) (3,4)(6,7)]
Boundary homomorphism maps source generators to:
[(5,6,7), (1,2) (3,4) (6,7)]
Action homomorphism maps range generators to automorphisms:
(5,7,6) --> { source gens --> [(4,5,6), (2,3)(4,5)] }
(1,2)(3,4)(6,7) --> { source gens --> [(4,6,5), (2,3) (5,6)] }
These 2 automorphisms generate the group of automorphisms.
gap> AX3 := ActorXMod(X3);;
gap> Display(AX3);
Crossed module Actor[c3->s3] :-
: Source group has generators:
[(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]
Range group has generators:
[(5,7,6), (1,2) (3,4)(6,7)]
: Boundary homomorphism maps source generators to:
[(5,7,6), (1,2) (3,4)(6,7)]
: Action homomorphism maps range generators to automorphisms:
(5,7,6) --> { source gens --> [(1,2,3) (4,5,6), (1,6) (2,5)(3,4)] }
(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2) (4,6,5), (1,4) (2,6) (3,5)] }
These 2 automorphisms generate the group of automorphisms.

```

The main methods for these operations are written for permutation crossed modules. For other crossed modules an isomorphism to a permutation crodssed module is found first, and then the main method is applied to the image. In the example the crossed module XAq8 is the automorphism crossed module of the quaternion group.

Example
```

gap> StructureDescription(WhiteheadXMod(XAq8));
["Q8", "C2 x C2 x C2"]
gap> StructureDescription(LueXMod(XAq8));
["Q8", "S4"]
gap> StructureDescription(NorrieXMod(XAq8));
["S4", "S4"]
gap> StructureDescription(ActorXMod(XAq8));
["C2 x C2 x C2", "S4"]

```

\subsection*{6.1.3 XModCentre}
```

\ XModCentre(xmod)
(attribute)
| InnerActorXMod(xmod)
\triangleright InnerMorphism(xmod)
(attribute)
(attribute)

```

Pairs of boundaries or identity mappings provide six morphisms of crossed modules. In particular, the boundaries of \(\mathscr{W}(\mathscr{X})\) and \(\mathscr{N}(\mathscr{X})\) form the inner morphism of \(\mathscr{X}\), mapping source elements to principal derivations and range elements to inner automorphisms. The image of \(\mathscr{X}\) under this morphism is the inner actor of \(\mathscr{X}\), while the kernel is the centre of \(\mathscr{X}\). In the example which follows, the inner morphism of \(\mathrm{X} 3=(\mathrm{c} 3->s 3)\), from Chapter 5, is an inclusion of crossed modules.

Note that we appear to have defined two sorts of centre for a crossed module: XModCentre here, and CentreXMod (4.1.7) in the chapter on isoclinism. We suspect that these two definitions give the same answer, but this remains to be resolved.

Example
```

gap> IMX3 := InnerMorphism(X3);;
gap> Display(IMX3);
Morphism of crossed modules :-
: Source = [c3->s3] with generating sets:
[(1,2,3)(4,6,5)]
[(4,5,6), (2,3)(5,6)]
: Range = Actor[c3->s3] with generating sets:
[(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]
[(5,7,6), (1,2) (3,4) (6,7)]
: Source Homomorphism maps source generators to:
[(1,2,3)(4,5,6)]
: Range Homomorphism maps range generators to:
[(5,6,7), (1,2)(3,4)(6,7)]
gap> IsInjective(IMX3);
true
gap> ZX3 := XModCentre(X3);
[Group(())->Group(())]
gap> IAX3 := InnerActorXMod(X3);;
gap> Display(IAX3);
Crossed module InnerActor[c3->s3] :-
: Source group has generators:
[(1,2,3)(4,5,6)]
: Range group has generators:
[(5,6,7), (1,2) (3,4)(6,7)]
Boundary homomorphism maps source generators to:
[(5,7,6)]
Action homomorphism maps range generators to automorphisms:
(5,6,7) --> { source gens --> [(1,2,3) (4,5,6)] }
(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2) (4,6,5)] }
These 2 automorphisms generate the group of automorphisms.

```

\section*{Chapter 7}

\section*{Induced constructions}

Before describing general functions for computing induced structures, we consider coproducts of crossed modules which provide induced crossed modules in certain cases.

\subsection*{7.1 Coproducts of crossed modules}

Need to add here a reference (or two) for coproducts.

\subsection*{7.1.1 CoproductXMod}
```

\triangleright CoproductXMod(X1, X2)
\triangleright CoproductInfo(XO) (attribute)

```

This function calculates the coproduct crossed module of two or more crossed modules which have a common range \(R\). The standard method applies to \(\mathscr{X}_{1}=\left(\partial_{1}: S_{1} \rightarrow R\right)\) and \(\mathscr{X}_{2}=\left(\partial_{2}: S_{2} \rightarrow R\right)\). See below for the case of three or more crossed modules.

The source \(S_{2}\) of \(\mathscr{X}_{2}\) acts on \(S_{1}\) via \(\partial_{2}\) and the action of \(\mathscr{X}_{1}\), so we can form a precrossed module \(\left(\partial^{\prime}: S_{1} \ltimes S_{2} \rightarrow R\right)\) where \(\partial^{\prime}\left(s_{1}, s_{2}\right)=\left(\partial_{1} s_{1}\right)\left(\partial_{2} s_{2}\right)\). The action of this precrossed module is the diagonal action \(\left(s_{1}, s_{2}\right)^{r}=\left(s_{1}^{r}, s_{2}^{r}\right)\). Factoring out by the Peiffer subgroup, we obtain the coproduct crossed module \(\mathscr{X}_{1} \circ \mathscr{X}_{2}\).

In the example the structure descriptions of the precrossed module, the Peiffer subgroup, and the resulting coproduct are printed out when InfoLevel (InfoXMod) is at least 1. The coproduct comes supplied with attribute CoproductInfo, which includes the embedding morphisms of the two factors.
```

gap> q8 := Group((1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8));;
gap> XAq8 := XModByAutomorphismGroup(q8);;
gap> s4b := Range(XAq8);;
gap> SetName(q8, "q8"); SetName(s4b, "s4b");
gap> a := q8.1;; b := q8.2;;
gap> alpha := GroupHomomorphismByImages(q8, q8, [a,b], [a^-1,b]);;
gap> beta := GroupHomomorphismByImages(q8, q8, [a,b], [a,b^-1]);;
gap> k4b := Subgroup(s4b, [alpha, beta]);; SetName(k4b, "k4b");
gap> Z8 := XModByNormalSubgroup(s4b, k4b);;
gap> SetName(XAq8, "XAq8"); SetName(Z8, "Z8");
gap> SetInfoLevel(InfoXMod, 1);

```
```

gap> XZ8 := CoproductXMod(XAq8, Z8);
\#I prexmod is [[32, 47], [24, 12]]
\#I peiffer subgroup is C2, [2, 1]
\#I the coproduct is ["C2 x C2 x C2 x C2", "S4"], [[16, 14], [24, 12]]
[Group([f1, f2, f3, f4])->s4b]
gap> SetName(XZ8, "XZ8");
gap> info := CoproductInfo(XZ8);
rec(embeddings := [[XAq8 => XZ8], [Z8 => XZ8]], xmods := [XAq8, Z8])
gap> SetInfoLevel(InfoXMod, 0);

```

Given a list of more than two crossed modules with a common range \(R\), then an iterated coproduct is formed:
\[
\bigcirc\left[\mathscr{X}_{1}, \mathscr{X}_{2}, \ldots, \mathscr{X}_{n}\right]=\mathscr{X}_{1} \circ\left(\mathscr{X}_{2} \circ\left(\ldots\left(\mathscr{X}_{n-1} \circ \mathscr{X}_{n}\right) \ldots\right)\right) .
\]

The embeddings field of the CoproductInfo of the resulting crossed module \(\mathscr{Y}\) contains the \(n\) morphisms \(\varepsilon_{i}: \mathscr{X}_{i} \rightarrow \mathscr{Y}(1 \leqslant i \leqslant n)\).

Example
```

gap> Y := CoproductXMod([XAq8, XAq8, Z8, Z8]);
[Group([f1, f2, f3, f4, f5, f6, f7, f8])->s4b]
gap> StructureDescription(Y);
["C2 x C2 x C2 x C2 x C2 x C2 x C2 x C2", "S4"]
gap> CoproductInfo(Y);
rec(
embeddings :=
[[XAq8 => [Group([f1, f2, f3, f4, f5, f6, f7, f8]) -> s4b]],
[XAq8 => [Group([f1, f2, f3, f4, f5, f6, f7, f8]) -> s4b]],
[Z8 => [Group([f1, f2, f3, f4, f5, f6, f7, f8]) -> s4b]],
[Z8 => [Group([f1, f2, f3, f4, f5, f6, f7, f8]) -> s4b]]],
xmods := [XAq8, XAq8, Z8, Z8])

```

\subsection*{7.2 Induced crossed modules}

\subsection*{7.2.1 InducedXMod}
\begin{tabular}{lr}
\(\triangleright\) InducedXMod(args) & (function) \\
\(\triangleright\) IsInducedXMod(xmod) & (property) \\
\(\triangleright\) InducedXModBySurjection(xmod, hom) & (operation) \\
\(\triangleright\) InducedXModByCopower(xmod, hom, list) & (operation) \\
\(\triangleright\) MorphismOfInducedXMod(xmod) & (attribute)
\end{tabular}

A morphism of crossed modules \((\sigma, \rho): \mathscr{X}_{1} \rightarrow \mathscr{X}_{2}\) factors uniquely through an induced crossed module \(\rho_{*} \mathscr{X}_{1}=\left(\delta: \rho_{*} S_{1} \rightarrow R_{2}\right)\). Similarly, a morphism of cat1-groups factors through an induced cat1-group. Calculation of induced crossed modules of \(\mathscr{X}\) also provides an algebraic means of determining the homotopy 2 -type of homotopy pushouts of the classifying space of \(\mathscr{X}\). For more background from algebraic topology see references in [BH78], [BW95], [BW96]. Induced crossed modules
and induced cat1-groups also provide the building blocks for constructing pushouts in the categories XMod and Catl.

Data for the cases of algebraic interest is provided by a crossed module \(\mathscr{X}=(\partial: S \rightarrow R)\) and a homomorphism \(\imath: R \rightarrow Q\). The output from the calculation is a crossed module \(\boldsymbol{\imath}_{*} \mathscr{X}=\left(\delta: \boldsymbol{l}_{*} S \rightarrow Q\right)\) together with a morphism of crossed modules \(\mathscr{X} \rightarrow \boldsymbol{\imath}_{*} \mathscr{X}\). When \(\boldsymbol{\imath}\) is a surjection with kernel \(K\) then \(\imath_{*} S=S /[K, S]\) where \([K, S]\) is the subgroup of \(S\) generated by elements of the form \(s^{-1} s^{k}, s \in S, k \in K\) (see [BH78], Prop.9). (For many years, up until June 2018, this manual has stated the result to be \([K, S]\), though the correct quotient had been calculated.) When \(t\) is an inclusion the induced crossed module may be calculated using a copower construction [BW95] or, in the case when \(R\) is normal in \(Q\), as a coproduct of crossed modules ([BW96], but not yet implemented). When \(t\) is neither a surjection nor an inclusion, \(l\) is factored as the composite of the surjection onto the image and the inclusion of the image in \(Q\), and then the composite induced crossed module is constructed. These constructions use Tietze transformation routines in the library file tietze.gi.

As a first, surjective example, we take for \(\mathscr{X}\) the normal inclusion crossed module of a4 in s4, and for \(l\) the surjection from s4 to s3 with kernel \(k 4\). The induced crossed module is isomorphic to \(\mathrm{X} 3=[\mathrm{c} 3->\mathrm{s} 3]\).

Example
```

gap> s4gens := GeneratorsOfGroup(s4);
[(1, 2), (2,3), (3,4)]
gap> a4gens := GeneratorsOfGroup(a4);
[(1,2,3), (2,3,4)]
gap> s3b := Group((5,6),(6,7));; SetName(s3b, "s3b");
gap> epi := GroupHomomorphismByImages(s4, s3b, s4gens, [(5,6),(6,7),(5,6)]);;
gap> X4 := XModByNormalSubgroup(s4, a4);;
gap> indX4 := InducedXModBySurjection(X4, epi);
[a4/ker->s3b]
gap> Display(indX4);
Crossed module [a4/ker->s3b] :-
: Source group a4/ker has generators:
[(1,3,2), (1,2,3)]
: Range group s3b has generators:
[(5,6), (6,7)]
: Boundary homomorphism maps source generators to:
[(5,6,7), (5,7,6)]
: Action homomorphism maps range generators to automorphisms:
(5,6) --> { source gens --> [(1,2,3), (1,3,2)] }
(6,7) --> { source gens --> [(1,2,3), (1,3,2)] }
These 2 automorphisms generate the group of automorphisms.
gap> morX4 := MorphismOfInducedXMod(indX4);
[[a4->s4] => [a4/ker->s3b]]

```

For a second, injective example we take for \(\mathscr{X}\) the automorphism crossed module XAq8 of CoproductXMod (7.1.1), and for \(l\) an inclusion of \(s 4 b\) in \(s 5\). The resulting source group is \(\operatorname{SL}(2,5)\).
```

 Example
 gap> iso4 := IsomorphismGroups(s4b, s4);;

```
```

gap> s5 := Group((1,2,3,4,5), (4,5));;
gap> SetName(s5, "s5");
gap> inc45 := InclusionMappingGroups(s5, s4);;
gap> iota45 := iso4 * inc45;;
gap> indXAq8 := InducedXMod(XAq8, iota45);
i*(XAq8)
gap> Size2d(indXAq8);
[120, 120]
gap> StructureDescription(indXAq8);
["SL(2,5)", "S5"]

```

For a third example we use the version InducedXMod ( \(Q, R, S\) ) of this global function, with \(Q \geqslant R \unrhd S\). We take the identity mapping on s3c as boundary, and the inclusion of s3c in s4 as \(\boldsymbol{\imath}\). The induced group is a general linear group \(\operatorname{GL}(2,3)\).

Example
```

gap> s3c := Subgroup(s4, [(2,3), (3,4)]);;
gap> SetName(s3c, "s3c");
gap> indXs3c := InducedXMod(s4, s3c, s3c);
i*([s3c->s3c])
gap> StructureDescription(indXs3c);
["GL(2,3)", "S4"]

```

\subsection*{7.2.2 AllInducedXMods}
\(\triangleright\) AllInducedXMods(Q) (operation)

This function calculates all the induced crossed modules InducedXMod \((Q, R, S)\), where \(R\) runs over all conjugacy classes of subgroups of \(Q\) and \(S\) runs over all non-trivial normal subgroups of \(R\).

Example
```

gap> all := AllInducedXMods(q8);;
gap> ids := List(all, x -> IdGroup(x));;
gap> Sort(ids);
gap> ids;
[[[1, 1], [8, 4]], [[1, 1], [8, 4]], [[1, 1], [8, 4]],
[[1, 1], [8, 4]], [[4, 2], [8, 4]], [[4, 2], [8, 4]],
[[4, 2], [8, 4]], [[16, 2], [8, 4]], [[16, 2], [8, 4]],
[[16, 2], [8, 4]], [[16, 14], [8, 4]]]

```

\subsection*{7.3 Induced cat \({ }^{1}\)-groups}

\subsection*{7.3.1 InducedCat1Group}

```

\triangleright InducedCat1GroupByFreeProduct(grp, hom)
(property)

```

This area awaits development.

\section*{Chapter 8}

\section*{Crossed squares and Cat \({ }^{2}\)-groups}

The term \(3 d\)-group refers to a set of equivalent categories of which the most common are the categories of crossed squares and cat \(^{2}\)-groups. A \(3 d\)-mapping is a function between two 3d-groups which preserves all the structure.

The material in this chapter should be considered experimental. A major overhaul took place in time for XMod version 2.73, with the names of a number of operations being changed.

\subsection*{8.1 Definition of a crossed square and a crossed \(n\)-cube of groups}

Crossed squares were introduced by Guin-Waléry and Loday (see, for example, [BL87]) as fundamental crossed squares of commutative squares of spaces, but are also of purely algebraic interest. We denote by \([n]\) the set \(\{1,2, \ldots, n\}\). We use the \(n=2\) version of the definition of crossed \(n\)-cube as given by Ellis and Steiner [ES87].

A crossed square \(\mathscr{S}\) consists of the following:
- groups \(S_{J}\) for each of the four subsets \(J \subseteq[2]\) (we often find it convenient to write \(L=S_{[2]}, M=\) \(S_{\{1\}}, N=S_{\{2\}}\) and \(\left.P=S_{\emptyset}\right)\);
- a commutative diagram of group homomorphisms:
\[
\ddot{\partial}_{1}: S_{[2]} \rightarrow S_{\{2\}}, \quad \ddot{\partial}_{2}: S_{[2]} \rightarrow S_{\{1\}}, \quad \dot{\partial}_{2}: S_{\{2\}} \rightarrow S_{\emptyset}, \quad \dot{\partial}_{1}: S_{\{1\}} \rightarrow S_{\emptyset}
\]
(again we often write \(\kappa=\ddot{\partial}_{1}, \lambda=\ddot{\partial}_{2}, \mu=\dot{\partial}_{2}\) and \(v=\dot{\partial}_{1}\) );
- actions of \(S_{\emptyset}\) on \(S_{\{1\}}, S_{\{2\}}\) and \(S_{[2]}\) which determine actions of \(S_{\{1\}}\) on \(S_{\{2\}}\) and \(S_{[2]}\) via \(\dot{\partial}_{1}\) and actions of \(S_{\{2\}}\) on \(S_{\{1\}}\) and \(S_{[2]}\) via \(\dot{\partial}_{2}\);
- a function \(\boxtimes: S_{\{1\}} \times S_{\{2\}} \rightarrow S_{[2]}\).

Here is a picture of the situation:


The following axioms must be satisfied for all \(l \in L, m, m_{1}, m_{2} \in M, n, n_{1}, n_{2} \in N, p \in P\).
- The homomorphisms \(\kappa, \lambda\) preserve the action of \(P\).
- Each of the upper, left-hand, right-hand and lower sides of the square,
\[
\ddot{\mathscr{S}}_{1}=(\kappa: L \rightarrow M), \quad \ddot{\mathscr{S}}_{2}=(\lambda: L \rightarrow N), \quad \dot{\mathscr{S}}_{2}=(\mu: M \rightarrow P), \quad \dot{\mathscr{S}}_{1}=(v: N \rightarrow P),
\]
and the diagonal
\[
\mathscr{S}_{12}=\left(\partial_{12}:=\mu \circ \kappa=\nu \circ \lambda: L \rightarrow P\right)
\]
are crossed modules (with actions via \(P\) ).
These will be called the up, left, right, down and diagonal crossed modules of \(\mathscr{S}\).
- \(\boxtimes\) is a crossed pairing:
\[
\begin{aligned}
& -\left(n_{1} n_{2} \boxtimes m\right)=\left(n_{1} \boxtimes m\right)^{n_{2}}\left(n_{2} \boxtimes m\right), \\
& -\left(n \boxtimes m_{1} m_{2}\right)=\left(n \boxtimes m_{2}\right)\left(n \boxtimes m_{1}\right)^{m_{2}}, \\
& -(n \boxtimes m)^{p}=\left(n^{p} \boxtimes m^{p}\right) .
\end{aligned}
\]
- \(\kappa(n \boxtimes m)=\left(m^{-1}\right)^{n} m \quad\) and \(\quad \lambda(n \boxtimes m)=n^{-1} n^{m}\).
- \((n \boxtimes \kappa l)=\left(l^{-1}\right)^{n} l \quad\) and \(\quad(\lambda l \boxtimes m)=l^{-1} l^{m}\).

Note that the actions of \(M\) on \(N\) and \(N\) on \(M\) via \(P\) are compatible since
\[
n_{1}^{\left(m^{n}\right)}=n_{1}^{\mu\left(m^{n}\right)}=n_{1}^{n^{-1}(\mu m) n}=\left(\left(n_{1}^{n^{-1}}\right)^{m}\right)^{n} .
\]
(A precrossed square is a similar structure which satisfies some subset of these axioms. This notion needs to be clarified.)

Crossed squares are the \(k=2\) case of a crossed \(k\)-cube of groups, defined as follows. (This is an attempt to translate Definition 2.1 in Ronnie Brown's Computing homotopy types using crossed \(n\)-cubes of groups into right actions - but this definition is not yet completely understood!)

A crossed \(k\)-cube of groups consists of the following:
- groups \(S_{A}\) for every subset \(A \subseteq[k]\);
- a commutative diagram of group homomorphisms \(\partial_{i}: S_{A} \rightarrow S_{A \backslash\{i\}}, i \in[k]\); with composites \(\partial_{B}: S_{A} \rightarrow S_{A \backslash B}, B \subseteq[k] ;\)
- actions of \(S_{\emptyset}\) on each \(S_{A}\); and hence actions of \(S_{B}\) on \(S_{A}\) via \(\partial_{B}\) for each \(B \subseteq[k]\);
- functions \(\boxtimes_{A, B}: S_{A} \times S_{B} \rightarrow S_{A \cup B},(A, B \subseteq[k])\).

There is then a long list of axioms which must be satisfied.

\subsection*{8.2 Constructions for crossed squares}

Analogously to the data structure used for crossed modules, crossed squares are implemented as 3d-groups. There are also experimental implementations of \(\mathrm{cat}^{2}\)-groups, with conversion between the two types of structure. Some standard constructions of crossed squares are listed below. At present, a limited number of constructions is implemented. Morphisms of crossed squares have also been implemented, though there is still a great deal to be done.

\subsection*{8.2.1 CrossedSquareByXMods}
\(\triangleright\) CrossedSquareByXMods(up, left, right, down, diag, pairing)
(operation)
\(\triangleright\) PreCrossedSquareByPreXMods(up, left, right, down, diag, pairing)
(operation)

If up,left, right,down,diag are five (pre-)crossed modules whose sources and ranges agree, as above, then we just have to add a crossed pairing to complete the data for a (pre-)crossed square.

The Display function is used to print details of 3d-groups.
We take as our example a simple, but significant case. We start with five crossed modules formed from subgroups of \(D_{8}\) with generators \([(1,2,3,4),(3,4)\). The result is a pre-crossed square which is not a crossed square.
```

gap> b := (2,4);; c := (1,2)(3,4);; p := (1,2,3,4);;
gap> d8 := Group(b, c);;
gap> SetName(d8, "d8");;
gap> L := Subgroup(d8, [p^2]);;
gap> M := Subgroup(d8, [b]);;
gap> N := Subgroup(d8, [c]);;
gap> P := TrivialSubgroup(d8);;
gap> kappa := GroupHomomorphismByImages(L, M, [p^2], [b]);;
gap> lambda := GroupHomomorphismByImages(L, N, [p^2], [c]);;
gap> delta := GroupHomomorphismByImages(L, P, [p^2], [()]);;
gap> mu := GroupHomomorphismByImages(M, P, [b], [()]);;
gap> nu := GroupHomomorphismByImages(N, P, [c], [()]);;
gap> up := XModByTrivialAction(kappa);;
gap> left := XModByTrivialAction(lambda);;
gap> diag := XModByTrivialAction(delta);;
gap> right := XModByTrivialAction(mu);;
gap> down := XModByTrivialAction(nu);;
gap> xp := CrossedPairingByCommutators(N, M, L);;
gap> Print("xp([c,b]) = ", ImageElmCrossedPairing(xp, [c,b]), "\n");
xp([c,b]) = (1,3)(2,4)
gap> PXS := PreCrossedSquareByPreXMods(up, left, right, down, diag, xp);;
gap> Display(PXS);
(pre-)crossed square with (pre-)crossed modules:
up = [Group([(1,3)(2,4)]) -> Group([(2,4)])]
left = [Group([(1,3)(2,4)]) -> Group([(1,2)(3,4)])]
right = [Group([(2,4)]) -> Group(())]
down = [Group([(1,2)(3,4)]) -> Group(())]
gap> IsCrossedSquare(PXS);
false

```

\subsection*{8.2.2 Size3d (for 3d-objects)}

Just as Size2d was used in place of Size for crossed modules, so Size3d is used for crossed squares: Size3d ( XS ) returns a four-element list containing the sizes of the four groups at the corners of the square.
```

gap> Size3d(PXS);
[2, 2, 2, 1]

```

\subsection*{8.2.3 CrossedSquareByNormalSubgroups}
\(\triangleright\) CrossedSquareByNormalSubgroups (L, M, N, P)
(operation)
\(\triangleright\) CrossedPairingByCommutators ( \(N\), M, L)
(operation)

If \(L, M, N\) are normal subgroups of a group \(P\), and \([M, N] \leqslant L \leqslant M \cap N\), then the four inclusions \(L \rightarrow M, L \rightarrow N, M \rightarrow P, N \rightarrow P\), together with the actions of \(P\) on \(M, N\) and \(L\) given by conjugation, form a crossed square with crossed pairing
\[
\boxtimes: N \times M \rightarrow L, \quad(n, m) \mapsto[n, m]=n^{-1} m^{-1} n m=\left(m^{-1}\right)^{n} m=n^{-1} n^{m}
\]

This construction is implemented as CrossedSquareByNormalSubgroups (L, M, N, P) (note that the parent group comes last).
```

gap> d20 := DihedralGroup(IsPermGroup, 20);
gap> gend20 := GeneratorsOfGroup (d20);
$[(1,2,3,4,5,6,7,8,9,10),(2,10)(3,9)(4,8)(5,7)]$
gap> p1 := gend20[1]; ; p2 := gend20[2]; ; p12 := p1*p2;
$(1,10)(2,9)(3,8)(4,7)(5,6)$
gap> d10a := Subgroup(d20, [p1~2, p2]); ;
gap> d10b := Subgroup(d20, [p1~2, p12]);;
gap> c5d := Subgroup(d20, [p1~2]); ;
gap> SetName(d20, "d20"); SetName(d10a, "d10a");
gap> SetName(d10b, "d10b"); SetName(c5d, "c5d");
gap> XSconj := CrossedSquareByNormalSubgroups(c5d, d10a, d10b, d20);
[c5d -> d10a]
$\left[\begin{array}{lll}1 & \mid\end{array}\right.$
[d10b -> d20]
gap> xpc := CrossedPairing(XSconj); ;
gap> ImageElmCrossedPairing(xpc, [p2, p12]);
$(1,9,7,5,3)(2,10,8,6,4)$

```

\subsection*{8.2.4 CrossedSquareByNormalSubXMod}
```

\triangleright CrossedSquareByNormalSubXMod(X0, X1)
(operation)
\triangleright CrossedPairingBySingleXModAction(X0, X1)

If $\mathscr{X}_{1}=\left(\partial_{1}: S_{1} \rightarrow R_{1}\right)$ is a normal sub-crossed module of $\mathscr{X}_{0}=\left(\partial_{0}: S_{0} \rightarrow R_{0}\right)$ then the inclusion morphism gives a crossed square with crossed pairing

$$
\boxtimes: R_{1} \times S_{0} \rightarrow S_{1}, \quad\left(r_{1}, s_{0}\right) \mapsto\left(s_{0}^{-1}\right)^{r_{1}} s_{0} .
$$

The example constructs the same crossed square as in the previous subsection.

```
gap> X20 := XModByNormalSubgroup( d20, d10a );;
gap> X10 := XModByNormalSubgroup( d10b, c5d );;
gap> ok := IsNormalSub2DimensionalDomain( X20, X10 );
true
gap> XS20 := CrossedSquareByNormalSubXMod( X20, X10 );
[ c5d -> d10a ]
[ | | ]
[ d10b -> d20 ]
gap> xp20 := CrossedPairing( XS20 );;
gap> ImageElmCrossedPairing( xp20, [ p1~2, p2 ] );
(1,7,3,9,5)(2,8,4,10,6)
```


8.2.5 ActorCrossedSquare

```
\triangleright ActorCrossedSquare(XO)
(attribute)
\triangleright CrossedPairingByDerivations(XO)

The actor \(\mathscr{A}\left(\mathscr{X}_{0}\right)\) of a crossed module \(\mathscr{X}_{0}\) has been described in Chapter 5 (see ActorXMod (6.1.2)). The crossed pairing is given by
\[
\boxtimes: R \times W \rightarrow S, \quad(r, \chi) \mapsto \chi r .
\]

This is implemented as ActorCrossedSquare (XO) ;.
```

gap> XSact := ActorCrossedSquare(X20);
crossed square with:
up = Whitehead[d10a->d20]
left = [d10a->d20]
right = Actor[d10a->d20]
down = Norrie[d10a->d20]
gap> W := Range(Up2DimensionalGroup(XSact));
c5:c4
gap> w1 := GeneratorsOfGroup(W)[1];
(1,2) (3,4) (5,18) (6,17) (7,20) (8,19) (9,14) (10,13) (11,16) (12,15)
gap> xpa := CrossedPairing(XSact);;
gap> ImageElmCrossedPairing(xpa, [p1, w1]);
(1,9,7,5,3)(2,10,8,6,4)

```

\subsection*{8.2.6 CrossedSquareByAutomorphismGroup}
\(\triangleright\) CrossedSquareByAutomorphismGroup (G) (operation)
\(\triangleright\) CrossedPairingByConjugators (G)

For \(G\) a group let \(\operatorname{Inn}(G)\) be its inner automorphism group and \(\operatorname{Aut}(G)\) its full automorphism group. Then there is a crossed square with groups \([G, \operatorname{Inn}(G), \operatorname{Inn}(G), \operatorname{Aut}(G)]\) where the upper and
left boundaries are the maps \(g \mapsto \boldsymbol{l}_{g}\), where \(\boldsymbol{l}_{g}\) is conjugation of \(G\) by \(g\), and the right and down boundaries are inclusions. The crossed pairing is gived by \(\boldsymbol{l}_{g} \boxtimes \boldsymbol{l}_{h}=[g, h]\).

Example
```

gap> AXS20 := CrossedSquareByAutomorphismGroup(d20);
[d2O -> Inn(d20)]
[| |]
[Inn(d20) -> Aut(d20)]
gap> StructureDescription(AXS20);
["D20", "D10", "D10", "C2 x (C5 : C4)"]
gap> I20 := Range(Up2DimensionalGroup(AXS20));;
gap> genI20 := GeneratorsOfGroup(I20);
[~ (1,2,3,4,5,6,7,8,9,10), ^ (2,10) (3,9)(4,8)(5,7)]
gap> xpi := CrossedPairing(AXS20);;
gap> ImageElmCrossedPairing(xpi, [genI20[1], genI20[2]]);
(1,9,7,5,3)(2,10,8,6,4)

```

\subsection*{8.2.7 CrossedSquareByPullback}
```

\triangleright CrossedSquareByPullback(X1, X2)

```
(operation)

If crossed modules \(\mathscr{X}_{1}=(v: N \rightarrow P)\) and \(\mathscr{X}_{2}=(\mu: M \rightarrow P)\) have a common range \(P\), let \(L\) be the pullback of \(\{v, \mu\}\). Then \(N\) acts on \(L\) by \((n, m)^{n^{\prime}}=\left(n^{n^{\prime}}, m^{v n^{\prime}}\right)\), and \(M\) acts on \(L\) by \((n, m)^{m^{\prime}}=\left(n^{\mu m^{\prime}}, m^{m^{\prime}}\right)\). So \(\left(\pi_{1}: L \rightarrow N\right)\) and \(\left(\pi_{2}: L \rightarrow M\right)\) are crossed modules, where \(\pi_{1}, \pi_{2}\) are the two projections. The crossed pairing is given by:
\[
\boxtimes: N \times M \rightarrow L, \quad(n, m) \mapsto\left(n^{-1} n^{\mu m},\left(m^{-1}\right)^{v n} m\right)
\]

The second example below uses the central extension crossed module \(\mathrm{X} 12=(\mathrm{D} 12->\mathrm{S} 3)\) which was constructed in subsection (XModByCentralExtension (2.1.5)), with pullback group D12xC2.
```

gap> dn := Down2DimensionalGroup(XSconj);;
gap> rt := Right2DimensionalGroup(XSconj);;
gap> XSP := CrossedSquareByPullback(dn, rt);
[(d10b x_d20 d10a) -> d10a]
[| |]
[d10b -> d20]
gap> StructureDescription(XSP);
["C5", "D10", "D10", "D20"]
gap> XS12 := CrossedSquareByPullback(X12, X12);;
gap> StructureDescription(XS12);
["C2 x C2 x S3", "D12", "D12", "S3"]
gap> xp12 := CrossedPairing(XS12);;
gap> ImageElmCrossedPairing(xp12, [(1,2,3,4,5,6), (2,6)(3,5)]);
(1,5,3)(2,6,4)(7,11,9)(8,12,10)

```

\subsection*{8.2.8 CrossedSquareByXModSplitting}
- CrossedSquareByXModSplitting (XO)
(attribute)
\(\triangleright\) CrossedPairingByPreImages (X1, X2)
(operation)

For \(\mathscr{X}=(\partial: S \rightarrow R)\) let \(Q\) be the image of \(\partial\). Then \(\partial=\partial^{\prime} \circ \boldsymbol{\imath}\) where \(\partial^{\prime}: S \rightarrow Q\) and \(t\) is the inclusion of \(Q\) in \(R\). The diagonal of the square is then the initial \(\mathscr{X}\), and the crossed pairing is given by commutators of preimages.

A particular case is when \(S\) is an \(R\)-module \(A\) and \(\partial\) is the zero map.


Example
```

gap> k4 := Group((1,2), (3,4));;
gap> AX4 := XModByAutomorphismGroup(k4);;
gap> X4 := Image(IsomorphismPermObject(AX4));;
gap> XSS4 := CrossedSquareByXModSplitting(X4);;
gap> StructureDescription(XSS4);
["C2 x C2", "1", "1", "S3"]
gap> XSS20 := CrossedSquareByXModSplitting(X20);;
gap> up20 := Up2DimensionalGroup(XSS20);;
gap> Range(up20) = d10a;
true
gap> SetName(Range(up20), "d10a");
gap> Name(XSS2O);
"[d10a->d10a,d10a->d20]"
gap> xp12 := CrossedPairing(XS12);;
gap> ImageElmCrossedPairing(xp12, [(1,2,3,4,5,6), (2,6)(3,5)]);
(1,5,3)(2,6,4)(7, 11, 9) (8, 12, 10)
gap> XSS20;
[d10a->d10a,d10a->d20]
gap> xps := CrossedPairing(XSS20);;
gap> ImageElmCrossedPairing(xps, [p1~2, p2]);
(1,7,3,9,5)(2, 8, 4, 10, 6)

```

\subsection*{8.2.9 CrossedSquare}
\(\triangleright\) CrossedSquare (args)
(function)

The function CrossedSquare may be used to call some of the constructions described in the previous subsections.
- CrossedSquare(X0) calls CrossedSquareByXModSplitting.
- CrossedSquare (C0) calls CrossedSquareOfCat2Group.
- CrossedSquare (X0,X1) calls CrossedSquareByPullback when there is a common range.
- CrossedSquare(X0,X1) calls CrossedSquareByNormalXMod when X1 is normal in X0.
- CrossedSquare(L,M,N,P) calls CrossedSquareByNormalSubgroups.

Example
```

gap> diag := Diagonal2DimensionalGroup(AXS2O);
[d20->Aut(d20)]
gap> XSdiag := CrossedSquare(diag);;
gap> StructureDescription(XSdiag);
["D20", "D10", "D10", "C2 x (C5 : C4)"]

```

\subsection*{8.2.10 Transpose3DimensionalGroup (for crossed squares)}
\(\triangleright\) Transpose3DimensionalGroup (SO)
(attribute)

The transpose of a crossed square \(\mathscr{S}\) is the crossed square \(\tilde{\mathscr{S}}\) obtained by interchanging \(M\) with \(N, \kappa\) with \(\lambda\), and \(v\) with \(\mu\). The crossed pairing is given by
\[
\tilde{\boxtimes}: M \times N \rightarrow L, \quad(m, n) \mapsto m \tilde{\boxtimes} n:=(n \boxtimes m)^{-1} .
\]

Example
```

gap> XStrans := Transpose3DimensionalGroup(XSconj);
[c5d -> d10b]
[| |]
[d10a -> d20]

```

\subsection*{8.2.11 CentralQuotient (for crossed modules)}

The central quotient of a crossed module \(\mathscr{X}=(\partial: S \rightarrow R)\) is the crossed square where:
- the left crossed module is \(\mathscr{X}\);
- the right crossed module is the quotient \(\mathscr{X} / Z(\mathscr{X})\) (see CentreXMod (4.1.7));
- the up and down homomorphisms are the natural homomorphisms onto the quotient groups;
- the crossed pairing \(\boxtimes:(R \times F) \rightarrow S\), where \(F=\operatorname{Fix}(\mathscr{X}, S, R)\), is the displacement element \(\boxtimes(r, F s)=\langle r, s\rangle=\left(s^{-1}\right)^{r} s \quad\) (see Displacement (4.1.3) and section 4.3).

This is the special case of an intended function CrossedSquareByCentralExtension which has not yet been implemented. In the example \(\mathrm{Xn} 7 \unlhd \mathrm{X} 24\), constructed in section 4.1.
```

gap> pos7 := Position(ids, [[12,2], [24,5]]);;
gap> Xn7 := nsx[pos7];;
gap> IdGroup(Xn7);
[[12, 2], [24, 5]]
gap> IdGroup(CentreXMod(Xn7));
[[4, 1], [4, 1]]
gap> CQXn7 := CentralQuotient(Xn7);;
gap> StructureDescription(CQXn7);
["C12", "C3", "C4 x S3", "S3"]

```

\subsection*{8.2.12 IsCrossedSquare}
```

\triangleright IsCrossedSquare(obj) (property)
\triangleright IsPreCrossedSquare(obj)
\triangleright Is3dObject(obj)
\triangleright IsPerm3dObject(obj)
\triangleright IsPc3dObject(obj)
\triangleright IsFp3dObject(obj)

```
(property)
(property)
(property)
(property)
(property)
(property)

These are the basic properties for 3d-groups, and crossed squares in particular.

\subsection*{8.2.13 Up2DimensionalGroup}
```

\Up2DimensionalGroup(XS) (attribute)
\triangleright ~ L e f t 2 D i m e n s i o n a l G r o u p (X S) ~ (a t t r i b u t e) ~
\triangleright ~ D o w n 2 D i m e n s i o n a l G r o u p (X S) ~ (a t t r i b u t e) ~
\triangleright ~ R i g h t 2 D i m e n s i o n a l G r o u p (X S) ~ (a t t r i b u t e) ~
\triangleright ~ C r o s s D i a g o n a l A c t i o n s (X S) ~ (a t t r i b u t e) ~
\triangleright ~ D i a g o n a l 2 D i m e n s i o n a l G r o u p (X S) ~ (a t t r i b u t e)
\ Name(SO) (method)

```

These are the basic attributes of a crossed square \(\mathscr{S}\). The six objects used in the construction of \(\mathscr{S}\) are the four crossed modules (2d-groups) on the sides of the square (up; left; right and down); the diagonal action of \(P\) on \(L\); and the crossed pairing \(\{M, N\} \rightarrow L\) (see the next subsection). The diagonal crossed module \((L \rightarrow P)\) is an additional attribute.
```

gap> Up2DimensionalGroup(XSconj);
[c5d->d10a]
gap> Right2DimensionalGroup(XSact);
Actor[d10a->d20]
gap> Name(XSconj);
"[c5d->d10a,d10b->d20]"
gap> cross1 := CrossDiagonalActions(XSconj)[1];;
gap> gensa := GeneratorsOfGroup(d10a);;
gap> gensb := GeneratorsOfGroup(d10a);;

```
```

gap> act1 := ImageElm(cross1, gensb[1]);;
gap> gensa[2]; ImageElm(act1, gensa[2]);
(2,10)(3,9)(4,8)(5,7)
(1,5) (2,4) (6,10) (7, 9)

```

\subsection*{8.2.14 IsSymmetric3DimensionalGroup}
```

\triangleright IsSymmetric3DimensionalGroup(obj) (property)

```
\(\triangleright\) IsAbelian3DimensionalGroup(obj) (property)
\(\triangleright\) IsTrivialAction3DimensionalGroup(obj) (property)
\(\triangleright\) IsNormalSub3DimensionalGroup(obj) (property)
\(\triangleright\) IsCentralExtension3DimensionalGroup(obj)
- IsAutomorphismGroup3DimensionalGroup(obj)
(property)
(property)

These are further properties for 3d-groups, and crossed squares in particular. A 3d-group is symmetric if its Up2DimensionalGroup is equal to its Left2DimensionalGroup.

\subsection*{8.2.15 CrossedPairing}
```

\triangleright ~ C r o s s e d P a i r i n g (X S) ~ (a t t r i b u t e))

```
\(\triangleright\) CrossedPairingMap(xpair) (attribute)
\(\triangleright\) ImageElmCrossedPairing(XS, pair) (operation)
\(\triangleright\) Mapping2ArgumentsByFunction \((M x N, L, \operatorname{map})\) (operation)

Crossed pairings have been implemented using an operation Mapping2ArgumentsByFunction. This encodes a map \(\{M, N\} \rightarrow L\) as a map \(M \times N \rightarrow L\).

The operation ImageElmCrossedPairing returns the image when a crossed pairing \(\{M, N\} \rightarrow L\) is applied to the pair \([m, n]\) with \(m \in M, n \in N\).

The first example shows the crossed pairing in the crossed square XSconj.
```

 Example
 gap> xp := CrossedPairing(XSconj);
crossed pairing: Group([(1, 3, 5, 7, 9)(2, 4, 6, 8,10),
(1, 10)(2, 9)(3, 8) (4, 7) (5, 6), (11, 13,15,17,19) (12, 14, 16, 18, 20) ,
(12,20)(13,19)(14,18)(15,17)]) -> c5d
gap> ImageElmCrossedPairing(xp,
> [(1,6) (2,5) (3,4) (7,10) (8,9), (1,5) (2,4) (6,9)(7,8)]);
(1,7,8,5,3)(2,9,10,6,4)

```

The second example shows how to construct a crossed pairing.
Example
```

gap> F := FreeGroup(1); ;
gap> x := GeneratorsOfGroup(F)[1];;
gap> z := GroupHomomorphismByImages(F, F, [x], [x^0]);;
gap> id := GroupHomomorphismByImages(F, F, [x], [x]);;
gap> map := Mapping2ArgumentsByFunction([F,F], F, function(c)

```
```

> return x^(ExponentSumWord(c[1],x)*ExponentSumWord(c[2],x)); end); ;
gap> h := CrossedPairingObj([F,F], F, map);;
gap> ImageElmCrossedPairing(h, [x^3,x^4]);
f1~12
gap> A := AutomorphismGroup(F);;
gap> a := GeneratorsOfGroup(A) [1];;
gap> act := GroupHomomorphismByImages(F, A, [x], [a^2]);;
gap> X0 := XModByBoundaryAndAction(z, act);;
gap> X1 := XModByBoundaryAndAction(id, act); ;
gap> XSF := PreCrossedSquareByPreXMods(X0, X0, X1, X1, X0, h);;
gap> IsCrossedSquare(XSF);
true

```

\subsection*{8.3 Morphisms of crossed squares}

This section describes an initial implementation of morphisms of (pre-)crossed squares.

\subsection*{8.3.1 CrossedSquareMorphism}
```

\triangleright ~ C r o s s e d S q u a r e M o r p h i s m (a r g s) ~ (f u n c t i o n))
\triangleright ~ C r o s s e d S q u a r e M o r p h i s m B y X M o d M o r p h i s m s (s r c , ~ r n g , ~ m o r s) ~ (o p e r a t i o n) ~

```

```

\triangleright ~ P r e C r o s s e d S q u a r e M o r p h i s m B y P r e X M o d M o r p h i s m s (s r c , ~ r n g , ~ m o r s) ~ (o p e r a t i o n) ~
\triangleright ~ P r e C r o s s e d S q u a r e M o r p h i s m B y G r o u p H o m o m o r p h i s m s (s r c , ~ r n g , ~ h o m s) ~ (o p e r a t i o n) ~

```

\subsection*{8.3.2 Source}
\begin{tabular}{ll}
\(\triangleright\) Source (map) & (attribute) \\
\(\triangleright\) Range(map) & (attribute) \\
\(\triangleright\) Up2DimensionalMorphism (map) & (attribute) \\
\(\triangleright\) Left2DimensionalMorphism (map) & (attribute) \\
\(\triangleright\) Down2DimensionalMorphism \(\operatorname{map})\) & (attribute) \\
\(\triangleright\) Right2DimensionalMorphism(map) & (attribute)
\end{tabular}
\(\triangleright\) Source (map) (attribute)
- Range (map)
- Up2DimensionalMorphism (map)
    (attribute)
- Left2DimensionalMorphism (map)
    (attribute)
- Right2DimensionalMorphism (map)
    (attribute)

Morphisms of 3dObjects are implemented as 3dMappings. These have a pair of 3d-groups as source and range, together with four 2d-morphisms mapping between the four pairs of crossed modules on the four sides of the squares. These functions return fail when invalid data is supplied.

\subsection*{8.3.3 IsCrossedSquareMorphism}
```

\triangleright IsCrossedSquareMorphism (map) (property)
\triangleright IsPreCrossedSquareMorphism(map) (property)
\triangleright IsBijective(mor) (method)
\triangleright IsEndomorphism3dObject(mor) (property)
\triangleright IsAutomorphism3dObject(mor) (property)

```

A morphism mor between two pre-crossed squares \(\mathscr{S}_{1}\) and \(\mathscr{S}_{2}\) consists of four crossed module morphisms Up2DimensionalMorphism(mor), mapping the Up2DimensionalGroup of \(\mathscr{S}_{1}\) to that of \(\mathscr{S}_{2}\), Left2DimensionalMorphism(mor), Right2DimensionalMorphism(mor) and Down2DimensionalMorphism(mor). These four morphisms are required to commute with the four boundary maps and to preserve the rest of the structure. The current version of IsCrossedSquareMorphism does not perform all the required checks.

Example
```

gap> ad20 := GroupHomomorphismByImages(d20, d20, [p1,p2], [p1,p2^p1]);;
gap> ad10a := GroupHomomorphismByImages (d10a, d10a, [p1~2,p2], [p1~2,p2^p1]);;
gap> ad10b := GroupHomomorphismByImages (d10b, d10b, [p1~2,p12], [p1~2,p12^p1]);;
gap> idc5d := IdentityMapping(c5d);;
gap> up := Up2DimensionalGroup(XSconj);;
gap> lt := Left2DimensionalGroup(XSconj); ;
gap> rt := Right2DimensionalGroup(XSconj);;
gap> dn := Down2DimensionalGroup(XSconj);;
gap> mup := XModMorphismByGroupHomomorphisms(up, up, idc5d, ad10a);
[[c5d->d10a] => [c5d->d10a]]
gap> mlt := XModMorphismByGroupHomomorphisms(lt, lt, idc5d, ad10b);
[[c5d->d10b] => [c5d->d10b]]
gap> mrt := XModMorphismByGroupHomomorphisms(rt, rt, ad10a, ad20);
[[d10a->d20] => [d10a->d20]]
gap> mdn := XModMorphismByGroupHomomorphisms(dn, dn, ad10b, ad20);
[[d10b->d20] => [d10b->d20]]
gap> autoconj := CrossedSquareMorphism(XSconj, XSconj, [mup,mlt,mrt,mdn]);;
gap> ord := Order(autoconj); ;
gap> Display (autoconj);
Morphism of crossed squares :-
: Source = [c5d->d10a,d10b->d20]
: Range $=[c 5 d->d 10 a, d 10 b->d 20]$
order $=5$
up-left: $[[(1,3,5,7,9)(2,4,6,8,10)]$,
[($1,3,5,7,9)(2,4,6,8,10)]]$
up-right:
$[\quad[(1,3,5,7,9)(2,4,6,8,10),(2,10)(3,9)(4,8)(5,7)]$,
$[(1,3,5,7,9)(2,4,6,8,10),(1,3)(4,10)(5,9)(6,8)]$]
: down-left:
$[[(1,3,5,7,9)(2,4,6,8,10),(1,10)(2,9)(3,8)(4,7)(5,6)]$,
$[(1,3,5,7,9)(2,4,6,8,10),(1,2)(3,10)(4,9)(5,8)(6,7)]]$
down-right:
$[[(1,2,3,4,5,6,7,8,9,10),(2,10)(3,9)(4,8)(5,7)]$,
$[(1,2,3,4,5,6,7,8,9,10),(1,3)(4,10)(5,9)(6,8)]$]
gap> IsAutomorphismHigherDimensionalDomain(autoconj);
true
gap> KnownPropertiesOfObject(autoconj);
["CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",
"IsSingleValued", "IsInjective", "IsSurjective",
"IsPreCrossedSquareMorphism", "IsCrossedSquareMorphism",
"IsEndomorphismHigherDimensionalDomain",
"IsAutomorphismHigherDimensionalDomain"]

```

\subsection*{8.3.4 InclusionMorphismHigherDimensionalDomains}

\subsection*{8.4 Definitions and constructions for cat \(^{2}\)-groups and their morphisms}

We give here three equivalent definitions of \(\mathrm{cat}^{2}\)-groups. When we come to define cat \({ }^{h}\)-groups we shall give a similar set of definitions.

Firstly, we take the definition of a cat \(^{2}\)-group from Section 5 of Brown and Loday [BL87], suitably modified. A cat \({ }^{2}\)-group \(\mathscr{C}=\left(C_{[2]}, C_{\{2\}}, C_{\{1\}}, C_{\emptyset}\right)\) comprises four groups (one for each of the subsets of [2]) and 15 homomorphisms, as shown in the following diagram:


The following axioms are satisfied by these homomorphisms:
- the four sides of the square (up, left, right, down) are cat \({ }^{1}\)-groups, denoted \(\ddot{\mathscr{C}}_{1}, \ddot{\mathscr{C}}_{2}, \dot{\mathscr{C}}_{1}, \dot{\mathscr{C}}_{2}\);
- \(\dot{t}_{1} \circ \ddot{h}_{2}=\dot{h}_{2} \circ \ddot{t}_{1}, \dot{t}_{2} \circ \ddot{h}_{1}=\dot{h}_{1} \circ \ddot{t}_{2}, \dot{e}_{1} \circ \dot{t}_{2}=\ddot{t}_{2} \circ \ddot{e}_{1}, \dot{e}_{2} \circ \dot{t}_{1}=\ddot{t}_{1} \circ \ddot{e}_{2}, \dot{e}_{1} \circ \dot{h}_{2}=\ddot{h}_{2} \circ \ddot{e}_{1}, \dot{e}_{2} \circ \dot{h}_{1}=\ddot{h}_{1} \circ \ddot{e}_{2}\);
- \(\dot{t}_{1} \circ \ddot{t}_{2}=\dot{t}_{2} \circ \ddot{t}_{1}=t_{[2]}, \dot{h}_{1} \circ \ddot{h}_{2}=\dot{h}_{2} \circ \ddot{h}_{1}=h_{[2]}, \dot{e}_{1} \circ \ddot{e}_{2}=\dot{e}_{2} \circ \ddot{e}_{1}=e_{[2]}\), making the diagonal a pre-cat \({ }^{1}\)-group ( \(e_{[2]} ; t_{[2]}, h_{[2]}: C_{[2]} \rightarrow C_{\emptyset}\) ).

It follows from these identities that \(\left(\ddot{t}_{1}, \dot{t}_{1}\right),\left(\ddot{h}_{1}, \dot{h}_{1}\right)\) and \(\left(\ddot{e}_{1}, \dot{e}_{1}\right)\) are morphisms of cat \({ }^{1}\)-groups, and similarly in the vertical direction.

Secondly, we give the simplest of the three definitions, adapted from Ellis-Steiner [ES87]. A cat \({ }^{2}\) group \(\mathscr{C}\) consists of groups \(G, R_{1}, R_{2}\) and six homomorphisms \(t_{1}, h_{1}: G \rightarrow R_{2}, e_{1}: R_{2} \rightarrow G, t_{2}, h_{2}\) : \(G \rightarrow R_{1}, e_{2}: R_{1} \rightarrow G\), satisfying the following axioms for all \(1 \leqslant i \leqslant 2\),
- \(\left(t_{i} \circ e_{i}\right) r=r,\left(h_{i} \circ e_{i}\right) r=r, \forall r \in R_{[2] \backslash\{i\}}, \quad\left[\operatorname{ker} t_{i}, \operatorname{ker} h_{i}\right]=1\),
\(\cdot\left(e_{1} \circ t_{1}\right) \circ\left(e_{2} \circ t_{2}\right)=\left(e_{2} \circ t_{2}\right) \circ\left(e_{1} \circ t_{1}\right), \quad\left(e_{1} \circ h_{1}\right) \circ\left(e_{2} \circ h_{2}\right)=\left(e_{2} \circ h_{2}\right) \circ\left(e_{1} \circ h_{1}\right)\),
- \(\left(e_{1} \circ t_{1}\right) \circ\left(e_{2} \circ h_{2}\right)=\left(e_{2} \circ h_{2}\right) \circ\left(e_{1} \circ t_{1}\right), \quad\left(e_{2} \circ t_{2}\right) \circ\left(e_{1} \circ h_{1}\right)=\left(e_{1} \circ h_{1}\right) \circ\left(e_{2} \circ t_{2}\right)\).

Our third definition defines a cat \(^{2}\)-group as a "cat \({ }^{1}\)-group of cat \({ }^{1}\)-groups". A cat \({ }^{2}\)-group \(\mathscr{C}\) consists of two cat \({ }^{1}\)-groups \(\mathscr{C}_{1}=\left(e_{1} ; t_{1}, h_{1}: G_{1} \rightarrow R_{1}\right)\) and \(\mathscr{C}_{2}=\left(e_{2} ; t_{2}, h_{2}: G_{2} \rightarrow R_{2}\right)\) and cat \({ }^{1}\)-morphisms \(t=(\ddot{t}, \dot{i}), h=(\ddot{h}, \dot{h}): \mathscr{C}_{1} \rightarrow \mathscr{C}_{2}, e=(\ddot{e}, \dot{e}): \mathscr{C}_{2} \rightarrow \mathscr{C}_{1}\), subject to the following conditions:
\((t \circ e)\) and \((h \circ e)\) are the identity mapping on \(\mathscr{C}_{2}, \quad[\operatorname{ker} t, \operatorname{ker} h]=\left\{1_{\mathscr{C}_{1}}\right\}\),
where \(\operatorname{ker} t=(\operatorname{ker} \ddot{t}, \operatorname{ker} \dot{t})\), and similarly for \(\operatorname{ker} h\).
A recent paper Computing 3-Dimensional Groups :L Crossed Squares and Cat2-Groups, by Arvasi, Odabas and Wensley [AOWar], contains tables listing the numbers of isomorphism classes of cat2-groups on groups of order at most 30 - a total of 1007 cat2-groups.

\subsection*{8.4.1 Cat2Group}
```

\triangleright Cat2Group(args) (function)
\triangleright PreCat2Group(args) (function)
\triangleright IsCat2Group(C)
\triangleright PreCat2GroupByPreCat1Groups(L)
(property)
(operation)

```

The global functions Cat2Group and PreCat2Group are normally called with two arguments - the generating up and left cat \({ }^{1}\)-groups - or with a single argument which is a crossed square. The operation PreCat2GroupByPreCat1Groups has five arguments - the up, left, right, down and diagonal cat \({ }^{1}\) groups.

The two cat \({ }^{2}\)-groups C2a, C2b constructed in the following example are isomorphic. They differ in the down-left group P.
```

gap> a := (1,2,3,4,5,6);; b := (2,6) (3,5);;
gap> G := Group(a, b);; SetName(G, "d12");
gap> t1 := GroupHomomorphismByImages(G, G, [a,b], [a^3,b]);;
gap> up := PreCat1GroupByEndomorphisms(t1, t1);;
gap> t2 := GroupHomomorphismByImages(G, G, [a,b], [a^4,b]);;
gap> left := PreCat1GroupByEndomorphisms(t2, t2);;
gap> C2a := Cat2Group(up, left);
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group ([(1,4) (2,5) (3,6), (2,6) (3,5)])]
2 : [d12 => Group ([(1,5,3) (2,6,4), (2,6)(3,5)])]
gap> IsCat2Group(C2a);
true
gap> genR := [(1,4)(2,5)(3,6), (2,6)(3,5)];;
gap> R := Subgroup(G, genR);;
gap> genQ := [(1,3,5) (2,4,6), (2,6)(3,5)];;
gap> Q := Subgroup(G, genQ);;
gap> Pa := Group(b);; SetName(Pa, "c2a");
gap> Pb := Group((7,8));; SetName(Pb, "c2b");
gap> t3 := GroupHomomorphismByImages(R, P, genR, [(),(7,8)]);;
gap> e3 := GroupHomomorphismByImages(P, R, [(7,8)], [(2,6) (3,5)]);;
gap> right := PreCat1GroupByTailHeadEmbedding(t3, t3, e3);;
gap> t4 := GroupHomomorphismByImages(Q, P, genQ, [(), (7,8)]);;
gap> e4 := GroupHomomorphismByImages(P, Q, [(7,8)], [(2,6)(3,5)]);;
gap> down := PreCat1GroupByTailHeadEmbedding(t4, t4, e4);;
gap> t0 := t1 * t3;;
gap> e0 := GroupHomomorphismByImages(P, G, [(7,8)], [(2,6) (3,5)]);;
gap> diag := PreCat1GroupByTailHeadEmbedding(t0, t0, e0);;
gap> C2b := PreCat2GroupByPreCat1Groups(up, left, right, down, diag);
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group ([(1,4) (2,5) (3,6), (2,6) (3,5)])]
2 : [d12 => Group ([(1,5,3)(2,6,4), (2,6)(3,5)])]

```
```

gap> IsPreCatnGroupWithIdentityEmbeddings(C2b);
false

```

\subsection*{8.4.2 DirectProduct}

The direct product \(\mathscr{C}_{1} \times \mathscr{C}_{2}\) has as its four up, left, right and down cat \({ }^{1}\)-groups the direct products of those in \(\mathscr{C}_{1}\) and \(\mathscr{C}_{2}\). The embeddings and projections are constructed automatically, and placed in the DirectProductInfo attribute, together with the two objects \(\mathscr{C}_{1}\) and \(\mathscr{C}_{2}\).

Example
```

gap> C2ab := DirectProductOp([C2a, C2b], C2a);
(pre-)cat2-group with generating (pre-)cat1-groups:
1: [Group([(1,2,3,4,5,6), (2,6)(3,5), (7, 8, 9,10,11,12), (8,12)(9,11)
]) => Group([(1,4)(2,5)(3,6), (2,6)(3,5), (7,10)(8,11)(9,12),
(8,12)(9,11)])]
2 : [Group([(1,2,3,4,5,6), (2,6)(3,5), (7, 8, 9,10,11,12), (8,12)(9,11)
]) => Group([(1,5,3)(2,6,4), (2,6)(3,5), (7, 9,11)(8,10,12),
(8,12)(9,11)])]
gap> StructureDescription(C2ab);
["C2 x C2 x S3 x S3", "C2 x C2 x C2 x C2", "S3 x S3", "C2 x C2"]
gap> SetName(C2ab, "C2ab");
gap> Embedding(C2ab, 1);
<mapping: (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group([(1,4) (2,5) (3,6), (2,6)(3,5)])]
2 : [d12 => Group([(1,5,3) (2,6,4), (2,6)(3,5)])] -> C2ab >
gap> Projection(C2ab, 2);
<mapping: C2ab -> (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group([(1,4)(2,5)(3,6), (2,6)(3,5)])]
2 : [d12 => Group([(1,5,3) (2,6,4), (2,6)(3,5)])] >

```

\subsection*{8.4.3 DisplayLeadMaps}
```

\triangleright DisplayLeadMaps(C0)

```
(operation)

This operation provides an alternative to Display giving a shorter output. Generators of the upleft group are output, together with their images under the up and left tail and head maps.
```

 Example
    ```
```

gap> DisplayLeadMaps(C2b);

```
gap> DisplayLeadMaps( C2b );
(pre-)cat2-group with up-left group: [ (1,2,3,4,5,6), (2,6)(3,5) ]
(pre-)cat2-group with up-left group: [ (1,2,3,4,5,6), (2,6)(3,5) ]
    up tail=head images: [ (1,4) (2,5) (3,6), (2,6) (3,5) ]
    up tail=head images: [ (1,4) (2,5) (3,6), (2,6) (3,5) ]
    left tail=head images: [ (1,5,3)(2,6,4), (2,6)(3,5) ]
```

 left tail=head images: [(1,5,3)(2,6,4), (2,6)(3,5)]
    ```

\subsection*{8.4.4 Transpose3DimensionalGroup (for cat2-groups)}
- Transpose3DimensionalGroup (SO)
(attribute)

The transpose of a cat \({ }^{2}\)-group \(\mathscr{C}\) with groups \([G, R, Q, P]\) is the cat \({ }^{2}\)-group \(\tilde{\mathscr{C}}\) with groups \([G, Q, R, P]\).

\section*{Example}
```

gap> TC2a := Transpose3DimensionalGroup(C2a);
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group([(1,5,3) (2,6,4), (2,6)(3,5)])]
2 : [d12 => Group([(1,4)(2,5)(3,6), (2,6)(3,5)])]

```

\subsection*{8.4.5 Cat2GroupMorphism}
```

\triangleright ~ C a t 2 G r o u p M o r p h i s m (a r g s) ~ (f u n c t i o n) ~

```
\(\triangleright\) Cat2GroupMorphismByCat1GroupMorphisms(src, rng, upmor, ltmor) (operation)
\(\triangleright\) Cat2GroupMorphismByGroupHomomorphisms(src, rng, homs) (operation)
- PreCat2GroupMorphism(args)
    (function)
\(\triangleright\) PreCat2GroupMorphismByPreCat1GroupMorphisms(src, rng, upmor, ltmor) (operation)
\(\triangleright\) PreCat2GroupMorphismByGroupHomomorphisms(src, rng, homs)
(operation)

A (pre-)cat \({ }^{2}\)-group morphism \(\mu: \mathscr{C}=(G, R, Q, P) \rightarrow \mathscr{C}^{\prime}=\left(G^{\prime}, R^{\prime}, Q^{\prime}, P^{\prime}\right)\) is a list of four group homomorphisms \(\gamma: G \rightarrow G^{\prime}, \rho: R \rightarrow R^{\prime}, \xi: Q \rightarrow Q^{\prime}\) and \(\pi: P \rightarrow P^{\prime}\) which commute with all the tail, head and embedding maps so that \((\gamma, \rho),(\gamma, \xi),(\rho, \pi)\) and \((\xi, \pi)\) are all (pre-)cat \({ }^{1}\)-group morphisms.

For the operations (Pre)Cat2GroupMorphismByPreCat1GroupMorphisms the third and fourth parameters upmor, ltmor are two cat \({ }^{1}\)-group morphisms with source the up and left cat \({ }^{1}\)-groups in \(\mathscr{C}\).

For the operations (Pre)Cat2GroupMorphismByGroupHomomorphisms the third parameter mors is the list \([\gamma, \rho, \xi, \pi]\).

The example constructs an automorphism of c2a is two ways, using the two methods described above, an d verifies that the result is the same in each case.

\section*{Example}
```

gap> gamma := GroupHomomorphismByImages(G, G, [a,b], [a^-1,b]);;
gap> rho := IdentityMapping(R);;
gap> xi := GroupHomomorphismByImages(Q, Q, [a^2,b], [a^-2,b]);;
gap> pi := IdentityMapping(Pa);;
gap> homs := [gamma, rho, xi, pi];;
gap> mor1 := Cat2GroupMorphismByGroupHomomorphisms(C2a, C2a, homs);
<mapping: (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [d12 => Group([(1,4) (2,5)(3,6), (2,6)(3,5)])]
2 : [d12 => Group([(1,5,3)(2,6,4), (2,6)(3,5)])] -> (pre-)cat
2-group with generating (pre-)cat1-groups:
1 : [d12 => Group([(1,4) (2,5) (3,6), (2,6)(3,5)])]
2 : [d12 => Group([(1,5,3) (2,6,4), (2,6)(3,5)])] >
gap> upmor := Cat1GroupMorphism(up, up, gamma, rho);;
gap> ltmor := Cat1GroupMorphism(left, left, gamma, xi);;

```
```

gap> mor2 := Cat2GroupMorphismByCat1GroupMorphisms(C2a, C2a, upmor, ltmor);;
gap> mor1 = mor2;
true

```

\subsection*{8.4.6 Cat2GroupOfCrossedSquare}
\(\triangleright\) Cat2GroupOfCrossedSquare (xsq) (attribute)
\(\triangleright\) CrossedSquareOfCat2Group (CC)
(attribute)

These functions provide for conversion between crossed squares and cat \({ }^{2}\)-groups. (They are the 3-dimensional equivalents of Cat1GroupOfXMod (2.5.3) and XModOfCat1Group (2.5.3).) The actor crossed square XSact was constructed in section ActorCrossedSquare (8.2.5).

Example
```

gap> xsC2a := CrossedSquareOfCat2Group(C2a);
crossed square with crossed modules:
up = [Group(()) -> Group([(1,4) (2,5) (3,6)])]
left = [Group(()) -> Group([(1,3,5)(2,4,6)])]
right = [Group([(1,4)(2,5)(3,6)]) -> Group([(2,6)(3,5)])]
down = [Group([(1,3,5)(2,4,6)]) -> Group([(2,6)(3,5)])]
gap> IdGroup(xsC2a);
[[1, 1], [2, 1], [3, 1], [2, 1]]
gap> SetName(Source(Right2DimensionalGroup(XSact)), "c5:c4");
gap> SetName(Range(Right2DimensionalGroup(XSact)), "c5:c4");
gap> Name(XSact);
"[d10a->c5:c4,d20->c5:c4]"
gap> C2act := Cat2GroupOfCrossedSquare(XSact);
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [((c5:c4 |X c5:c4) |X (d20 |X d10a))=>(c5:c4 |X c5:c4)]
2 : [((c5:c4 |X c5:c4) |X (d20 |X d10a))=>(c5:c4 |X d20)]
gap> Size3d(C2act);
[80000, 400, 400, 20]

```

\subsection*{8.4.7 Subdiagonal2DimensionalGroup}
\(\triangleright\) Subdiagonal2DimensionalGroup(obj)
The diagonal of a crossed square is always a crossed module, but the diagonal of a cat \({ }^{2}\)-group need only be a pre-cat \({ }^{1}\)-group. There is, however, a sub-cat \({ }^{1}\)-group of this diagonal which, in the case of a cat \(^{2}\)-group constructed from a crossed square, is \((P \ltimes L=>P)\). (The name of this operation is very provisional.)
```

gap> G24 := SmallGroup(24, 10);;

```
```

gap> w := G24.1;; x := G24.2;; y := G24.3;; z := G24.4;; o := One(G24);;
gap> R := Subgroup(G24, [x,y]);;
gap> txy := GroupHomomorphismByImages(G24, R, [w,x,y,z], [o,x,y,o]);;
gap> exy := GroupHomomorphismByImages(R, G24, [x,y], [x,y]);;
gap> C1xy := PreCat1GroupByTailHeadEmbedding(txy, txy, exy);;
gap> Q := Subgroup(G24, [w,y]);;
gap> twy := GroupHomomorphismByImages(G24, Q, [w,x,y,z], [w,o,y,o]);;
gap> ewy := GroupHomomorphismByImages(Q, G24, [w,y], [w,y]);;
gap> C1wy := PreCat1GroupByTailHeadEmbedding(twy, twy, ewy);;
gap> C2wxy := PreCat2Group(C1xy, C1xy);;
gap> dg := Diagonal2DimensionalGroup(C2wxy);;
gap> IsCat1Group(dg);
false
gap> C1sub := Subdiagonal2DimensionalGroup(C2wxy);;
gap> IsCat1Group(C1sub);
true
gap> IsSub2DimensionalGroup(dg, C1sub);
true

```

\subsection*{8.5 Enumerating cat \({ }^{2}\)-groups with a given source}

This section mirrors that for cat \({ }^{1}\)-groups (2.6). As the size of a group \(G\) increases, the number of \(\mathrm{cat}^{2}\)-groups with source \(G\) increases rapidly. However, one is usually only interested in the isomorphism classes of \(\mathrm{cat}^{2}\)-groups with source \(G\). An iterator AllCat2GroupsIterator is provided, which runs through the various cat \(^{2}\)-groups. This iterator finds, for each unordered pair of subgroups \(R, Q\) of \(G\), the \({c t^{2}}^{2}\)-groups whose Up2DimensionalGroup has range \(R\), and whose Left2DimensionalGroup has range \(Q\). It does this by running through UnoderedPairsIterator(AllSubgroupsIterator (G)) provided by the Utils package, and then using the iterator AllCat2GroupsWithImagesIterator ( \(\mathrm{G}, \mathrm{R}, \mathrm{Q}\) ).

\subsection*{8.5.1 AllCat2GroupsWithImagesIterator}
\begin{tabular}{lr}
\(\triangleright\) AllCat2GroupsWithImagesIterator \((G, R, Q)\) & (operation) \\
\(\triangleright\) AllCat2GroupsWithImagesNumber \((G, R, Q)\) & (attribute) \\
\(\triangleright\) AllCat2GroupsWithImages \((G, R, Q)\) & (operation) \\
\(\triangleright\) AllCat2GroupsWithImagesUpToIsomorphism \((G, R, Q)\) & (operation)
\end{tabular}

The iterator AllCat2GroupsWithImagesIterator \((G)\) iterates through all the cat \({ }^{2}\) groups with source \(G\) and generating cat \(^{1}\)-groups \((G=>R)\) and ( \(G=>Q\) ). The attribute AllCat2GroupsWithImagesNumber (G) runs through this iterator to determine the number \(n\) of these cat \({ }^{2}\)-groups. The operation AllCat2GroupsWithImages ( \(G\) ) returns a list containing these \(n\) cat \(^{2}\)-groups. Since these lists can get very long, this operation should only be used for simple cases. The operation AllCat2GroupsWithImagesUpToIsomorphism(G) returns representatives of the isomorphism classes of these \(\mathrm{cat}^{2}\)-groups.
```

gap> G8 := Group((1,2), (3,4), (5,6));;

```
```

gap> A := Subgroup(G8, [(1,2)]);;
gap> B := Subgroup(G8, [(3,4)]);;
gap> AllCat2GroupsWithImagesNumber(G8, A, A);
4
gap> all := AllCat2GroupsWithImages(G8, A, A);;
gap> for C2 in all do DisplayLeadMaps(C2); od;
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (1,2), ()]
left tail=head images: [(1,2), (1,2), ()]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), ()]
left tail=head images: [(1,2), (), ()]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), (1,2)]
left tail=head images: [(1,2), (), (1,2)]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (1,2), (1,2)]
left tail=head images: [(1,2), (1,2), (1,2)]
gap> AllCat2GroupsWithImagesNumber(G8, A, B);
16
gap> iso := AllCat2GroupsWithImagesUpToIsomorphism(G8, A, B);;
gap> for C2 in iso do DisplayLeadMaps(C2); od;
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), ()]
left tail=head images: [(), (3,4), ()]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), ()]
left tail/head images: [(), (3,4), ()], [(), (3,4), (3,4)]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail/head images: [(1,2), (), ()], [(1,2), (), (1,2)]
left tail/head images: [(), (3,4), ()], [(), (3,4), (3,4)]

```

\subsection*{8.5.2 AllCat2GroupsWithFixedUp}
\(\triangleright\) AllCat2GroupsWithFixedUp (C) (operation)
- AllCat2GroupsWithFixedUpAndLeftRange ( \(C, R\) )

The operation AllCat2GroupsWithFixedUp(C) constructs all the cat \({ }^{2}\)-groups with a fixed Up2DimensionalGroup \(C\). In the second operation the user may also specify the range of the Left2DimensionalGroup.
```

gap> up := Up2DimensionalGroup(iso[1]);
[Group([(1,2), (3,4), (5,6)])=>Group([(1,2), (), ()])]
gap> AllCat2GroupsWithFixedUp(up);;
gap> Length(last);
28
gap> L := AllCat2GroupsWithFixedUpAndLeftRange(up, B);;
gap> for C in L do DisplayLeadMaps(C); od;
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]

```
```

 up tail=head images: [(1,2), (), ()]
 left tail=head images: [(), (3,4), ()]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), ()]
left tail/head images: [(), (3,4), ()], [(), (3,4), (3,4)]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), ()]
left tail/head images: [(), (3,4), (3,4)], [(), (3,4), ()]
(pre-)cat2-group with up-left group: [(1,2), (3,4), (5,6)]
up tail=head images: [(1,2), (), ()]
left tail=head images: [(), (3,4), (3,4)]

```

\subsection*{8.5.3 AllCat2GroupsMatrix}
```

\triangleright AllCat2GroupsMatrix(G)

```
(attribute)

The operation AllCat2GroupsMatrix (G) constructs a symmetric matrix \(M\) with rows and columns labelled by the cat \({ }^{1}\)-groups \(C_{i}\) on \(G\), where \(M_{i j}\) is 1 if \(C_{i}, C_{j}\) combine to form a cat \({ }^{2}\)-group, and 0 otherwise. The matrix is automatically printed out with dots in place of zeroes

In the example we see that the dihedral group \(D_{12}\) has 12 cat \(^{1}\)-groups and 41 cat \(^{2}\)-groups, 12 of which are symmetric. This operation is intended to be used to illustrate how cat \({ }^{2}\)-groups are formed, and should only be used with groups of low order.

The attribute AllCat2GroupsNumber (G) returns the number \(n\) of these cat \({ }^{2}\)-groups.
```

gap> AllCat2GroupsMatrix(d12); ;
number of cat2-groups found = 41
1.....1..1.1
.1.....1.1.1
..1.....11.1
...1....1.11
....1.1...11
.....1.1..11
1...1.1..111
.1...1.1.111
..11....1111
111...1111.1
...111111.11
1111111111111
gap> AllCat2GroupsNumber(d12);
41

```

\subsection*{8.5.4 AllCat2GroupsIterator}
```

\triangleright ~ A l l C a t 2 G r o u p s I t e r a t o r (G) ~ (o p e r a t i o n) ~
\triangleright AllCat2Groups(G)
(operation)
\triangleright AllCat2GroupsUpToIsomorphism(G)
(operation)

```

The iterator AllCat2GroupsIterator (G) iterates through all the \(\mathrm{cat}^{2}\)-groups with source \(G\). The operation AllCat2Groups \((G)\) returns a list containing these \(n \mathrm{cat}^{2}\)-groups. Since these lists can get very long, this operation should only be used for simple cases. The operation AllCat2GroupsUpToIsomorphism(G) returns representatives of the isomorphism classes of these subgroups. The operation AllCat2GroupFamilies (G) returns a list of lists. The \(k\)-th list contains the positions of the cat \({ }^{2}\)-groups in AllCat2Groups ( \(G\) ) which are isomorphic to the \(k\)-th representative. So, for d12, the 41 cat \(^{2}\)-groups form 10 classes, and the sizes of these classes are [ \(6,6,6,6,3,6,3,2,2,1]\). Four of these classes contain symmetric cat \({ }^{2}\)-groups.

The field CatnGroupNumbers (G).cat2 is the number of \(\mathrm{cat}^{2}\)-groups on \(G\), while CatnGroupNumbers (G).iso2 is the number of isomorphism classes of these cat \({ }^{2}\)-groups. Also CatnGroupNumbers (G).symm is the number of cat \({ }^{2}\)-groups whose Up2DimensionalGroup is the same as the Left2DimensionalGroup, while CatnGroupNumbers (G). siso is the number of isomorphism classes of these symmetric cat \({ }^{2}\)-groups.

Provided that CatnGroupLists (G) .omit is not set to true, sorted lists of generating pairs, and of the classes they belong to, are added to the record CatnGroupLists. For example \([5,7]\) in these lists for d 12 indicates that there is a \(\mathrm{cat}^{2}\)-group generated by the fifth and seventh cat \({ }^{1}\)-groups and that this is in the second class whose representative is [1, 7]. Classes [1, 5, 8, 10] contain symmetric cat \({ }^{2}\)-groups.

\section*{Example}
```

gap> AllCat2GroupsNumber(d12);
41
gap> reps2 := AllCat2GroupsUpToIsomorphism(d12);;
gap> Length(reps2);
10
gap> List(reps2, C -> StructureDescription(C));
[["D12", "C2", "C2", "C2"], ["D12", "C2", "C2 x C2", "C2"],
["D12", "C2", "S3", "C2"], ["D12", "C2", "D12", "C2"],
["D12", "C2 x C2", "C2 x C2", "C2 x C2"], ["D12", "C2 x C2", "S3", "C2"]
, ["D12", "C2 x C2", "D12", "C2 x C2"], ["D12", "S3", "S3", "S3"],
["D12", "S3", "D12", "S3"], ["D12", "D12", "D12", "D12"]]
gap> fams := AllCat2GroupFamilies(d12);
[[1, 2, 3, 4, 5, 6], [7, 8, 10, 11, 13, 14], [16, 17, 18, 23, 24, 25],
[30, 31, 32, 33, 34, 35], [9, 12, 15], [19, 20, 21, 26, 27, 28],
[36, 37, 38], [22, 29], [39, 40], [41]]
gap> CatnGroupNumbers(d12);
rec(cat1 := 12, cat2 := 41, idem := 21, iso1 := 4, iso2 := 10,
isopredg := 0, predg := 0, siso := 4, symm := 12)
gap> CatnGroupLists(d12);
rec(allcat2pos := [1, 7, 9, 16, 19, 22, 30, 36, 39, 41],
cat2classes :=
[[[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6]],
[[1, 7], [5, 7], [2, 8], [6, 8], [3, 9], [4, 9]],
[[1, 10], [2, 10], [3, 10], [4, 11], [5, 11], [6, 11]],
[[1, 12], [2, 12], [3, 12], [4, 12], [5, 12], [6, 12]],
[[7, 7], [8, 8], [9, 9]],

```
```

 [[7, 10], [8, 10], [9, 10], [7, 11], [8, 11], [9, 11]],
 [[7, 12], [8, 12], [9, 12]], [[10, 10], [11, 11]],
 [[10, 12], [11, 12]], [[12, 12]]],
 cat2pairs := [[1, 1], [1, 7], [1, 10], [1, 12], [2, 2],
[2, 8], [2, 10], [2, 12], [3, 3], [3, 9], [3, 10],
[3, 12], [4, 4], [4, 9], [4, 11], [4, 12], [5, 5],
[5, 7], [5, 11], [5, 12], [6, 6], [6, 8], [6, 11],
[6, 12], [7, 7], [7, 10], [7, 11], [7, 12], [8, 8],
[8, 10], [8, 11], [8, 12], [9, 9], [9, 10], [9, 11],
[9, 12], [10, 10], [10, 12], [11, 11], [11, 12], [12, 12]],
omit := false, pisopos := [], sisopos := [1, 5, 8, 10])

```

\section*{Chapter 9}

\section*{Crossed cubes and Cat \({ }^{3}\)-groups}

The term 4d-group refers to a set of equivalent categories of which the most common are the categories of crossed cubes and cat \({ }^{3}\)-groups. A 4d-mapping is a function between two 4 d -groups which preserves all the structure.

The material in this chapter should be considered very experimental. As yet there are no functions for crossed cubes.

\subsection*{9.1 Functions for (pre-) cat \(^{3}\)-groups}

We shall use the following standard orientation of a cat \({ }^{3}\)-group \(\mathscr{E}\) on a group \(G\). \(\mathscr{E}\) contains 8 groups; 12 cat \(^{1}\)-groups and 6 cat \(^{2}\)-groups forming the vertices; edges and faces of a cube, as shown in the following diagram.


By definition, \(\mathscr{E}\) is generated by three commuting cat \({ }^{1}\)-groups \((G \Rightarrow R),(G \Rightarrow Q)\) and \((G \Rightarrow H)\), but it is more convenient to think of \(\mathscr{E}\) as generated by two cat \({ }^{2}\)-groups
- \(\operatorname{front}(\mathscr{E})\), generated by \((G \Rightarrow R)\) and \((G \Rightarrow Q)\);
- left \((\mathscr{E})\), generated by \((G \Rightarrow Q)\) and \((G \Rightarrow H)\).

Because the tail, head and embedding maps all commute, it follows that \(u p(\mathscr{E})\), generated by \((G \Rightarrow H)\) and \((G \Rightarrow R)\), is a third cat \(^{2}\)-group. The three remaining faces (cat \({ }^{2}\)-groups) \(\operatorname{right}(\mathscr{E})\), \(\operatorname{down}(\mathscr{E})\) and
\(\operatorname{back}(\mathscr{E})\) are then easily constructed. We shall always use the order [front,up,left,right,down,back] for the six faces.

\subsection*{9.1.1 Cat3Group}
```

\triangleright ~ C a t 3 G r o u p (a r g s) ~ (f u n c t i o n) ~ ()
\triangleright ~ P r e C a t 3 G r o u p (a r g s) ~ (f u n c t i o n) ~ ()
\triangleright IsCat3Group(C)
(property)
\triangleright PreCat3GroupByPreCat2Groups(L)

The global functions Cat3Group and PreCat3Group are normally take as arguments a pair of cat ${ }^{2}$-groups or a trio of cat ${ }^{1}$-groups. In subsection AllCat2GroupsIterator (8.5.4) the list of pairs CatnGroupLists (d12). pairs contains the three entries $[6,8],[8,11]$ and $[6,11]$. It follows that the sixth, eighth and eleventh cat ${ }^{1}$-groups for $d 12$ generate a cat ${ }^{3}$-group.

```
gap> all1 := AllCat1Groups( d12 );;
gap> C68 := Cat2Group( all1[6], all1[8] );;
gap> C811 := Cat2Group( all1[8], all1[11] );;
gap> C3Ga := Cat3Group( C68, C811 );
cat3-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,6)(2,5)(3,4) ] )]
2 : [d12 => Group( [ (1,4) (2,5) (3,6), (1,3) (4,6) ] )]
3 : [d12 => Group( [ (1,5,3)(2,6,4), (1,4)(2,3)(5,6) ] )]
gap> C3Gb := Cat3Group( all1[6], all1[8], all1[11] );
cat3-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,6) (2,5) (3,4) ] )]
2 : [d12 => Group( [ (1,4) (2,5)(3,6), (1,3)(4,6) ] )]
3 : [d12 => Group( [ (1,5,3) (2,6,4), (1,4)(2,3)(5,6) ] )]
gap> C3Ga = C3Gb;
true
```


9.1.2 Front3DimensionalGroup

```
\triangleright Front3DimensionalGroup(C3) (attribute)
\trianglerightUp3DimensionalGroup(C3) (attribute)
\triangleright ~ L e f t 3 D i m e n s i o n a l G r o u p ( C 3 ) ~ ( a t t r i b u t e ) ~
\triangleright ~ R i g h t 3 D i m e n s i o n a l G r o u p ( C 3 ) ~ ( a t t r i b u t e ) ~
\triangleright ~ D o w n 3 D i m e n s i o n a l G r o u p ( C 3 ) ~ ( a t t r i b u t e ) ~
\triangleright ~ B a c k 3 D i m e n s i o n a l G r o u p ( C 3 ) ~ ( a t t r i b u t e ) ~
```

The six faces of a cat ${ }^{3}$-group are stored as these attributes.
Example

```
gap> C116 := Cat2Group( all1[11], all1[6] );;
gap> Up3DimensionalGroup( C3Ga ) = C116;
true
```


9.2 Enumerating cat ${ }^{3}$-groups with a given source

Once the list CatnGroupLists (G) . pairs has been obtained we may seek all triples $[i, j],[j, k]$ and $[k, i]$ or $[i, k]$ of pairs in this list and then, for each such triple, construct a cat ${ }^{3}$-group generated by the i-th, j-th and k-th cat ${ }^{1}$-group on G.

9.2.1 AllCat3GroupTriples


```
\triangleright AllCat3GroupsNumber(G)

The list of triples returned by the operation AllCat3GroupTriples is saved as CatnGroupLists (G).cat3triples. The length of this list is the number of cat \({ }^{3}\)-groups on \(G\), and is saved as CatnGroupNumbers (G).cat3.

As yet there is no operation AllCat3GroupsUpToIsomorphism(G).
Example
```

gap> triples := AllCat3GroupTriples(d12);;
gap> CatnGroupNumbers(d12).cat3;
94
gap> triples[46];
[5, 7, 11]
gap> all1 := AllCat1Groups(d12);;
gap> Cat3Group(all1[5], all1[7], all1[11]);
cat3-group with generating (pre-)cat1-groups:
1 : [d12 => Group([(), (1,4)(2,3)(5,6)])]
2 : [d12 => Group([(1,4) (2,5)(3,6), (2,6)(3,5)])]
3 : [d12 => Group([(1,5,3) (2,6,4), (1,4)(2,3)(5,6)])]

```

\subsection*{9.3 Definition and constructions for cat \({ }^{n}\)-groups and their morphisms}

In this chapter and the previous one we are interested in \(\mathrm{cat}^{2}\)-groups and cat \({ }^{3}\)-groups, and it is convenient in this section to give the more general definition. There are three equivalent descriptions of a cat \({ }^{n}\)-group.

A cat \({ }^{n}\)-group consists of the following.
- \(2^{n}\) groups \(G_{A}\), one for each subset \(A\) of \([n]\), the vertices of an \(n\)-cube.
- Group homomorphisms forming \(n 2^{n-1}\) commuting cat \({ }^{1}\)-groups,
\[
\mathscr{C}_{A, i}=\left(e_{A, i} ; t_{A, i}, h_{A, i}: G_{A} \rightarrow G_{A \backslash\{i\}}\right), \quad \text { for all } \quad A \subseteq[n], i \in A,
\]
the edges of the cube.
- These cat \({ }^{1}\)-groups combine (in sets of 4 ) to form \(n(n-1) 2^{n-3} \operatorname{cat}^{2}\)-groups \(\mathscr{C}_{A,\{i, j\}}\) for all \(\{i, j\} \subseteq\) \(A \subseteq[n], i \neq j\), the faces of the cube.

Note that, since the \(t_{A, i}, h_{A, i}\) and \(e_{A, i}\) commute, composite homomorphisms \(t_{A, B}, h_{A, B}: G_{A} \rightarrow G_{A \backslash B}\) and \(e_{A, B}: G_{A \backslash B} \rightarrow G_{A}\) are well defined for all \(B \subseteq A \subseteq[n]\).

Secondly, we give the simplest of the three descriptions, again adapted from Ellis-Steiner [ES87].
A cat \({ }^{n}\)-group \(\mathscr{C}\) consists of \(2^{n}\) groups \(G_{A}\), one for each subset \(A\) of \([n]\), and \(3 n\) homomorphisms
\[
t_{[n], i}, h_{[n], i}: G_{[n]} \rightarrow G_{[n] \backslash\{i\}}, e_{[n], i}: G_{[n] \backslash\{i\}} \rightarrow G_{[n]}
\]
satisfying the following axioms for all \(1 \leqslant i \leqslant n\),
- the \(\mathscr{C}_{[n], i}=\left(e_{[n], i} ; t_{[n], i}, h_{[n], i}: G_{[n]} \rightarrow G_{[n] \backslash\{i\}}\right)\) are commuting cat \({ }^{1}\)-groups, so that:
- \(\left(e_{1} \circ t_{1}\right) \circ\left(e_{2} \circ t_{2}\right)=\left(e_{2} \circ t_{2}\right) \circ\left(e_{1} \circ t_{1}\right), \quad\left(e_{1} \circ h_{1}\right) \circ\left(e_{2} \circ h_{2}\right)=\left(e_{2} \circ h_{2}\right) \circ\left(e_{1} \circ h_{1}\right)\),
- \(\left(e_{1} \circ t_{1}\right) \circ\left(e_{2} \circ h_{2}\right)=\left(e_{2} \circ h_{2}\right) \circ\left(e_{1} \circ t_{1}\right), \quad\left(e_{2} \circ t_{2}\right) \circ\left(e_{1} \circ h_{1}\right)=\left(e_{1} \circ h_{1}\right) \circ\left(e_{2} \circ t_{2}\right)\).

Our third description defines a cat \({ }^{n}\)-group as a "cat \({ }^{1}\)-group of cat \({ }^{(n-1)}\) - groups".
A cat \({ }^{n}\)-group \(\mathscr{C}\) consists of two cat \({ }^{(n-1)}\)-groups:
- \(\mathscr{A}\) with groups \(G_{A}, A \subseteq[n-1]\), and homomorphisms \(\ddot{t}_{A, i}, \ddot{h}_{A, i}, \ddot{e}_{A, i}\),
- \(\mathscr{B}\) with groups \(H_{B}, B \subseteq[n-1]\), and homomorphisms \(\dot{t}_{B, i}, \dot{h}_{B, i}, \dot{e}_{B, i}\), and
- cat \({ }^{(n-1)}\)-morphisms \(t, h: \mathscr{A} \rightarrow \mathscr{B}\) and \(e: \mathscr{B} \rightarrow \mathscr{A}\) subject to the following conditions:
\[
(t \circ e) \text { and }(h \circ e) \text { are the identity mapping on } \mathscr{B}, \quad[\operatorname{ker} t, \operatorname{ker} h]=\left\{1_{\mathscr{A}}\right\}
\]

\subsection*{9.3.1 PreCatnGroup}

```

\triangleright CatnGroup(L)

The operation (Pre) CatnGroup expects as input a list of cat ${ }^{1}$-groups.

```
gap> PC4 := PreCatnGroup( [ all1[5], all1[7], all1[11], all1[12] ] );
(pre-)cat4-group with generating (pre-)cat1-groups:
1 : [d12 => Group( [ (), (1,4) (2,3)(5,6) ] )]
2 : [d12 => Group( [ (1,4) (2,5) (3,6), (2,6)(3,5) ] )]
3 : [d12 => Group( [ (1,5,3) (2,6,4), (1,4)(2,3)(5,6) ] )]
4 : [d12 => Group( [ (1,2,3,4,5,6), (2,6)(3,5) ] )]
gap> IsCatnGroup( PC4 );
true
gap> HigherDimension( PC4 );
5
```


Chapter 10

Crossed modules of groupoids

The material documented in this chapter is experimental, and is likely to be changed in due course.

10.1 Constructions for crossed modules of groupoids

A typical example of a crossed module \mathscr{X} over a groupoid has for its range a connected groupoid. This is a direct product of a group with a complete graph, and we call the vertices of the graph the objects of the crossed module. The source of \mathscr{X} is a groupoid, with the same objects, which is either discrete or connected. The boundary morphism is constant on objects. For details and other references see [AW10].

10.1.1 SinglePiecePreXModWithObjects

```
\triangleright SinglePiecePreXModWithObjects(pxmod, obs, isdisc)
```

(operation)

At present the experimental operation SinglePiecePreXModWithObjects accepts a precrossed module pxmod, a set of objects obs, and a boolean isdisc which is true when the source groupoid is homogeneous and discrete and false when the source groupoid is connected. Other operations will be added as time permits.

In the example the crossed module DX4 has discrete source, while the crossed module CX4 has connected source. These are groupoid equivalents of XModByNormalSubgroup (2.1.2).

```
gap> s4 := Group( (1,2,3,4), (3,4) );;
gap> SetName( s4, "s4" );
gap> a4 := Subgroup( s4, [ (1,2,3), (2,3,4)] );;
gap> SetName( a4, "a4" );
gap> X4 := XModByNormalSubgroup( s4, a4 );;
gap> DX4 := SinglePiecePreXModWithObjects( X4, [-9, -8,-7], true );
single piece crossed module with objects
    source groupoid:
        homogeneous, discrete groupoid: < a4, [ -9, -8, -7 ] >
    and range groupoid:
        single piece groupoid: < s4, [ -9, -8, -7 ] >
gap> Da4 := Source( DX4 );;
gap> Ds4 := Range( DX4 );;
```

```
gap> CX4 := SinglePiecePreXModWithObjects( X4, [-9,-8,-7], false );
single piece crossed module with objects
    source groupoid:
        single piece groupoid: < a4, [ -9, -8, -7 ] >
    and range groupoid:
        single piece groupoid: < s4, [ -9, -8, -7 ] >
gap> Ca4 := Source( CX4 );;
gap> Cs4 := Range( CX4 );;
```


10.1.2 IsXModWithObjects


```
\triangleright IsPreXModWithObjects(pxmod)
(property)
\triangleright IsDirectProductWithCompleteDigraphDomain(pxmod)
(property)
```

The precrossed module DX4 belongs to the category Is2DimensionalGroupWithObjects and is, of course, a crossed module.

```
gap> Set( KnownPropertiesOfObject( DX4 ) );
[ "CanEasilyCompareElements", "CanEasilySortElements", "IsAssociative",
    "IsDirectProductWithCompleteDigraphDomain", "IsDuplicateFree",
    "IsGeneratorsOfSemigroup", "IsPreXModWithObjects", "IsSinglePieceDomain",
```


10.1.3 IsPermPreXModWithObjects

```
\triangleright IsPermPreXModWithObjects(pxmod) (property)
\triangleright IsPcPreXModWithObjects(pxmod)
\triangleright IsFpPreXModWithObjects(pxmod)
(property)
(property)
```

To test these properties we test the precrossed modules from which they were constructed.
Example

```
gap> IsPermPreXModWithObjects( CX4 );
true
gap> IsPcPreXModWithObjects( CX4 );
false
gap> IsFpPreXModWithObjects( CX4 );
false
```


10.1.4 Root2dGroup

```
\triangleright Root2dGroup(pxmod)
(attribute)
\ModAction(pxmod)
(attribute)
```

The attributes of a precrossed module with objects include the standard Source; Range; Boundary (2.1.9); and XModAction (2.1.9) as with precrossed modules of groups. There is also ObjectList, as in the groupoids package. Additionally there is Root2dGroup which is the underlying precrossed module used in the construction.

Note that XModAction is now a groupoid homomorphism from the source groupoid to a one-object groupoid (with object 0) where the group is the automorphism group of the range groupoid.

Example

```
gap> Set( KnownAttributesOfObject( CX4 ) );
[ "Boundary", "ObjectList", "Range", "Root2dGroup", "Source", "XModAction" ]
gap> Root2dGroup( CX4 );
[a4->s4]
gap> act := XModAction( CX4 );;
gap> Size( Range( act ) );
20736
gap> r := Arrow( Cs4, (1,2,3,4), -4, -5 );;
gap> ImageElm( act, r );
[groupoid homomorphism :
[ [ [(1,2,3) : -6 -> -6], [(2,3,4) : -6 -> -6], [() : -6 -> -5],
    [() : -6 -> -4] ],
    [ [(2,3,4) : -6 -> -6], [(1,3,4) : -6 -> -6], [() : -6 -> -4],
    [() : -6 -> -5] ] ] : 0 -> 0]
gap> s := Arrow( Ca4, (1,2,4), -5, -5 );;
gap> ## calculate s^r
gap> ims := ImageElmXModAction( CX4, s, r );
[(1,2,3) : -4 -> -4]
```

There is much more to be done with these constructions.

Chapter 11

Double Groupoids

A double groupoid is a double category in which all the category structures are groupoids. There is also a pre-crossed module associated to the double groupoid. In a double groupoid, as well as objects and arrows we need a set of squares. A square is bounded by four arrows, two horizantal and two vertical, and there is a horizantal groupoid structure and a vertical groupoid structure on these squares. An element of the source of the pre-crossed module is located at the centre of the square, and its image under the boundary map is equal to the boundary of the square.

The double groupoids constructed here are special in that all four arrows come from the same groupoid. We call these edge-symmetric double groupoids.

It is assumed in this chapter that the reader is familiar with constructions for groupoids given in the Groupoids package, such as SinglePieceBasicDoubleGroupoid. Such groupoids are basic, in that there is no pre-crossed module involvement.

This chapter is experimental, and will be extended as soon as possible.

11.1 Double groupoid squares

Let G be a groupoid with object set Ω. Let \squarebe the set of squares with objects from Ω at each corner; plus two vertical arrows and two horizantal arrows from $\operatorname{Arr}(G)$. Further, let $\mathscr{P}=(\partial: S \rightarrow R)$ be a pre-crossed module, and let $m_{1} \in S$ be placed at the centre of the square. The following picture illustrates the situation:

We think of the square being based at the bottom, right-hand corner, v_{2}. The boundary of the square is the loop $\left(v_{2}, b_{1}^{-1} d_{1}^{-1} a_{1} e_{1}, v_{2}\right)=\left(v_{2}, p_{1}, v_{2}\right)$. The boundary condition which m_{1} has to satisfy is that
$\partial m_{1}=p_{1}$. When defining a horizantal composition, as illustrated by

we have to move m_{1}, based at v_{2}, to the new base v_{3}, and we do this by using the action of the precrossed module of b_{2} on m_{1}. Notice that the boundary condition is satisfied, since the first pre-crossed module axiom applies:

$$
\partial\left(m_{1}^{b_{2}} m_{2}\right)=\partial\left(m_{1}^{b_{2}}\right)\left(\partial m_{2}\right)=b_{2}^{-1}\left(b_{1}^{-1} d_{1}^{-1} a_{1} e_{1}\right) b_{2}\left(b_{2}^{-1} e_{1}^{-1} a_{2} f_{1}\right)=\left(b_{1} b_{2}\right)^{-1} d_{1}^{-1}\left(a_{1} a_{2}\right) f_{1}
$$

Similarly, vertical composition is illustrated by

Again the boundary condition is satisfied:

$$
\partial\left(m_{3} m_{1}^{e_{2}}\right)=\left(\partial m_{3}\right) \partial\left(m_{1}^{e_{2}}\right)=\left(c_{1}^{-1} d_{2}^{-1} b_{1} e_{2}\right) e_{2}^{-1}\left(b_{1}^{-1} d_{1}^{-1} a_{1} e_{1}\right) e_{2}=c_{1}^{-1}\left(d_{1} d_{2}\right)^{-1} a_{1}\left(e_{1} e_{2}\right)
$$

These two compositions commute, so we may construct products such as:

where

$$
m_{3}^{c_{2}} m_{4}\left(m_{1}^{b_{2}} m_{2}\right)^{f_{2}}=\left(m_{3} m_{1}^{e_{2}}\right)^{c_{2}} m_{4} m_{2}^{f_{2}}=\left(c_{1} c_{2}\right)^{-1}\left(d_{1} d_{2}\right)^{-1}\left(a_{1} a_{2}\right)\left(f_{1} f_{2}\right)
$$

For an example we take for our groupoid the product of the group $S_{3}=\langle(7,8),(7,9)\rangle$ with the complete graph on $[-6 \ldots-1]$ and, for our pre-crossed module, the X 12 , isomorphic to $\left(D_{12} \rightarrow\right.$ S_{3}), constructed using XModByCentralExtension (2.1.5). The source of X12 has generating set $\{g=(11,12,13,14,15,16), h=(12,16)(13,15)\}$. We check that the two ways of computing the product of four squares below agree.

Example

```
gap> g := (11,12,13,14,15,16);; h := (12,16)(13,15);;
gap> gend12 := [ g, h ];;
gap> d12 := Group( gend12 );;
gap> SetName( d12, "d12" );
gap> gens3 := [ (7,8,9), (8,9) ];;
gap> s3 := Group( gens3 );;
gap> SetName( s3, "s3" );
gap> pr12 := GroupHomomorphismByImages( d12, s3, gend12, gens3 );;
gap> X12 := XModByCentralExtension( pr12 );;
gap> SetName( X12, "X12" );
gap> Display( X12 );
Crossed module X12 :-
: Source group d12 has generators:
    [ (11,12,13,14,15,16), (12,16)(13,15)]
: Range group s3 has generators:
    [ (7,8,9), (8,9) ]
: Boundary homomorphism maps source generators to:
    [ (7,8,9), (8,9)]
: Action homomorphism maps range generators to automorphisms:
    (7,8,9) --> { source gens --> [ (11,12,13,14,15,16), (11,13)(14,16)] }
    (8,9) --> { source gens --> [ (11,16,15,14,13,12), (12,16)(13,15)] }
    These 2 automorphisms generate the group of automorphisms.
gap> Gs3 := Groupoid( s3, [-6..-1] );;
gap> SetName( Gs3, "Gs3" );
```

```
gap> D1 := SinglePieceDoubleGroupoid( Gs3, X12 );;
gap> D1!.groupoid;
Gs3
gap> D1!.prexmod;
X12
gap> a1 := Arrow(Gs3,(7,8),-6,-5);; a2 := Arrow(Gs3,(8,9),-5,-4);;
gap> b1 := Arrow(Gs3,(7,8,9),-1,-3);; b2 := Arrow(Gs3,(7,9),-3,-4 );;
gap> c1 := Arrow(Gs3,(7,9),-2,-2);; c2 := Arrow(Gs3,(7,8),-2,-3);;
gap> d1 := Arrow(Gs3,(7,9),-6,-1);; d2 := Arrow(Gs3,(8,9),-1,-2);;
gap> e1 := Arrow(Gs3,(8,9),-5,-3);; e2 := Arrow(Gs3,(7,9,8),-3,-2);;
gap> f1 := Arrow(Gs3,(7,8),-4,-4);; f2 := Arrow(Gs3,(8,9),-4,-3);;
gap> ## now define four squares
gap> sq1 := SquareOfArrows( D1, g*h, a1, d1, e1, b1 );
[-6] ---- (7,8) ---> [-5]
    | |
(7,9) (11,16)(12,15)(13,14) (8,9)
    V V
[-1] ---- (7,8,9) ---> [-3]
gap> sq2 := SquareOfArrows( D1, g^2, a2, e1, f1, b2 );;
gap> sq3 := SquareOfArrows( D1, g, b1, d2, e2, c1 );;
gap> sq4 := SquareOfArrows( D1, h, b2, e2, f2, c2 );;
gap> ## then form two horizontal and two vertical products:
gap> sq12 := LeftRightProduct( D1, sq1, sq2 );;
gap> sq34 := LeftRightProduct( D1, sq3, sq4 );;
gap> sq13 := UpDownProduct( D1, sq1, sq3 );;
gap> sq24 := UpDownProduct( D1, sq2, sq4 );;
gap> ## combine in two ways to get a single square:
gap> sq1324 := LeftRightProduct( D1, sq13, sq24 );
[-6] ---- (7,9,8) ---> [-4]
    | |
(7,8,9) (11,15,13)(12,16,14) (7,9,8)
    V V
[-2] ---- (7,9,8) ---> [-3]
gap> sq1234 := UpDownProduct( D1, sq12, sq34 );;
gap> sq1324 = sq1234;
true
```


11.2 Basic double groupoids

As mentioned earlier, double groupoids were introduced in the Groupoids package, but these were basic double groupoids, without any pre-crossed module. The element of a square was simply its boundary. Here we introduce an operation which converts such a basic double groupoid into the more general case considered in this package.

11.2.1 EnhancedBasicDoubleGroupoid

[^0]We need to add a pre-crossed module to the definition of such a double groupoid. We choose $(G \rightarrow G)$ where G is the root group of the underlying groupoid. (This is only valid for groupoids which are the direct product with a complete graph.) The example is taken from section 7.1 of the Groupoids package, converting basic BO to DO, and we check that the same square is produced in each case.

Example

```
gap> g := (1,2,3,4);; h := (1,3);;
gap> gend8 := [ g, h ];;
gap> d8 := Group( gend8 );;
gap> SetName( d8, "d8" );
gap> Gd8 := Groupoid( d8, [-9..-7] );;
gap> SetName( Gd8, "Gd8" );
gap> BO := SinglePieceBasicDoubleGroupoid( Gd8 );;
gap> BO!.groupoid;
Gd8
gap> BO!.objects;
[ -9 .. -7 ]
gap> a0 := Arrow(Gd8,(),-9,-7);; b0 := Arrow(Gd8,(2,4),-9,-8);;
gap> d0 := Arrow(Gd8,g,-9,-9);; e0 := Arrow(Gd8,(1,3),-7,-8);;
gap> bdy0 := b0![1]^-1 * d0![1]^-1 * a0![1] * e0![1];;
gap> bsq0 := SquareOfArrows( B0, bdy0, a0, d0, e0, b0 );
[-9] ---- () ---> [-7]
    | |
(1,2,3,4) (1,4,3,2) (1,3)
    V V
[-9] ---- (2,4) ---> [-8]
gap> DO := EnhancedBasicDoubleGroupoid( BO );;
gap> D0!.prexmod;
[d8->d8]
gap> bsq0 = SquareOfArrows( D0, bdy0, a0, d0, e0, b0 );
true
```


11.3 Commutative double groupoids

A double groupoid square

is commutative if $a_{1} e_{1}=d_{1} b_{1}$, which means that its boundary is the identity. So a double groupoid which consists only of commutative squares must have a pre-crossed module with zero boundary. Commutative squares compose horizantally and vertically provided only that they have the correct common arrow.

11.3.1 DoubleGroupoidWithZeroBoundary

\triangleright DoubleGroupoidWithZeroBoundary(gpd, src)

The data for a double groupoid of commutative squares therefore consists of a groupoid and a source group. We may use the operation PreXModWithTrivialRange (2.3.1) to provide a pre-crossed module. We take for our example the groupoid Gd8 and the pre-crossed module Q16 of section 2.3. We introduce a new right arrow to construct a square which commutes.

Example

```
gap> D16 := DoubleGroupoidWithZeroBoundary( Gs3, d16 );;
gap> D16!.prexmod;
[d16->Group( [ () ] )]
gap> e16 := Arrow( Gs3, (7,9,8), -5, -3 );;
gap> sq16 := SquareOfArrows( D16, (), a1, d1, e16, b1 );
[-6] ---- (7,8) ---> [-5]
    | |
(7,9) () (7,9,8)
    V V
[-1] ---- (7,8,9) ---> [-3]
gap> D16 := DoubleGroupoidWithZeroBoundary( Gs3, d16 );;
gap> D16!.prexmod;
[d16->Group( [ () ] )]
gap> e16 := Arrow( Gs3, (7,9,8), -5, -3 );;
gap> sq16 := SquareOfArrows( D16, (), a1, d1, e16, b1 );
[-6] ---- (7,8) ---> [-5]
    |
        |
(7,9) () (7,9,8)
    V V
[-1] ---- (7,8,9) ---> [-3]
```


Chapter 12

Applications

This chapter was added in April 2018 for version 2.66 of XMod. Initially it describes crossed modules for free loop spaces. Further applications may arise in due course.

12.1 Free Loop Spaces

These functions have been used to produce examples for Ronald Brown's paper Crossed modules, and the homotopy 2-type of a free loop space [Bro18]. The relevant theorem in that paper is as follows.

THEOREM 2.1 Let $\mathscr{M}=(\partial: M \rightarrow P)$ be a crossed module of groups and let $X=B \mathscr{M}$ be the classifying space of \mathscr{M}. Then the components of $L X$, the free loop space on X, are determined by equivalence classes of elements $a \in P$ where a, a^{\prime} are equivalent if and only if there are elements $m \in M, p \in P$ such that $a^{\prime}=p+a-\partial m-p$.

Further the homotopy 2-type of a component of $L X$ given by $a \in P$ is determined by the crossed module of groups $L \mathscr{M}[a]=\left(\partial_{a}: M \rightarrow P(a)\right)$ where:

- $P(a)$ is the subgroup of the cat ${ }^{1}$-group $G=P \ltimes M$ such that $\partial m=[p, a]=-p-a+p+a$;
- $\partial_{a}(m)=\left(\partial m, m^{-1} m^{a}\right)$ for $m \in M$;
- the action of $P(a)$ on M is given by $n^{(p, m)}=n^{p}$ for $n \in M,(p, m) \in P(a)$.

In particular $\pi_{1}(L X, a)$ is isomorphic to cokernel $\left(\partial_{a}\right)$, and $\pi_{2}(L X, a) \cong \pi_{2}(X, *)^{\bar{a}}$, the elements of $\pi_{2}(X, *)$ fixed under the action of \bar{a}, the class of a in $\pi_{1}(X, *)$.

There is an exact sequence $\pi \xrightarrow{\phi} \pi \rightarrow \pi_{1}(L X, a) \rightarrow C_{\bar{a}}\left(\pi_{1}(X, *)\right) \rightarrow 1$, in which $\pi=\pi_{2}(X, *)$, and ϕ is the morphism $m \mapsto m^{-1} m^{a}$.

12.1.1 LoopClasses

```
\triangleright LoopClasses(M)
    (operation)
LoopsXMod(M, a)
\triangleright AllLoopsXMod(M)

The operation LoopClasses computes the equivalence classes \([a]\) described above. These are all unions of conjugacy classes.

The operation LoopsXMod \((\mathrm{M}, \mathrm{a})\) calculates the crossed module \(L \mathscr{M}[a]\) described in the theorem.

The operation AllLoopsXMod (M) returns a list of crossed modules, one for each equivalence class of elements \([a] \subseteq P\).

In the example below the automorphism crossed module X 8 has \(M \cong C_{2}^{3}\) and \(P=\operatorname{PSL}(3,2)\) is the automorphism group of \(M\). There are 6 equivalence classes which, in this case, are identical with the conjugacy classes. For each \(L X\) calculated, the IdGroup (2.8.1) is printed out.

\section*{Example}
```

gap> SetName(k8, "k8");
gap> Y8 := XModByAutomorphismGroup(k8);;
gap> X8 := Image(IsomorphismPerm2DimensionalGroup(Y8));;
gap> SetName(X8, "X8");
gap> Print("X8: ", Size(X8), " : ", StructureDescription(X8), "\n");
X8: [8, 168] : ["C2 x C2 x C2", "PSL(3,2)"]
gap> classes := LoopClasses(X8);;
gap> List(classes, c -> Length(c));
[1, 21, 56, 42, 24, 24]
gap> LX := LoopsXMod(X8, (1,2) (5,6));;
gap> Size2d(LX);
[8, 64]
gap> IdGroup(LX);
[[8, 5], [64, 138]]
gap> SetInfoLevel(InfoXMod, 1);
gap> LX8 := AllLoopsXMod(X8);;
\#I LoopsXMod with a = (), IdGroup = [[8, 5], [1344, 11686]]
\#I LoopsXMod with a = (4,5)(6,7), IdGroup = [[8, 5], [64, 138]]
\#I LoopsXMod with a = (2,3)(4,6,5,7), IdGroup = [[8, 5], [32, 6]]
\#I LoopsXMod with a = (2,4,6)(3,5,7), IdGroup = [[8, 5], [24, 13]]
\#I LoopsXMod with a = (1,2,4,3,6,7,5), IdGroup = [[8, 5], [56, 11]]
\#I LoopsXMod with a = (1,2,4,5,7,3,6), IdGroup = [[8, 5], [56, 11]]
gap> iso := IsomorphismGroups(Range(LX), Range(LX8[2]));;
gap> iso = fail;
false

```

\section*{Chapter 13}

\section*{Interaction with HAP}

This chapter describes functions which allow functions in the package HAP to be called from XMod.

\subsection*{13.1 Calling HAP functions}

In HAP a cat \({ }^{1}\)-group is called a CatOneGroup and the traditional terms source and target are used for the TailMap and HeadMap. A CatOneGroup is a record C with fields C!.sourceMap and C!.targetMap.

\subsection*{13.1.1 SmallCat1Group}
\(\triangleright\) SmallCat1Group (n, i, j)
(operation)

This operation calls the HAP function SmallCatOneGroup \((n, i, j)\) which returns a CatOneGroup from the HAP database. This is then converted into an XMod cat \({ }^{1}\)-group. Note that the numbering is not the same as that used by the XMod operation Cat1Select. In the example C12 is the converted form of H 12 .
```

gap> H12 := SmallCatOneGroup(12, 4, 3);
Cat-1-group with underlying group Group([f1, f2, f3]).
gap> C12 := SmallCat1Group(12, 4, 3);
[Group([f1, f2, f3])=>Group([f1, f2, <identity> of ...])]

```

\subsection*{13.1.2 CatOneGroupToXMod}
```

\triangleright CatOneGroupToXMod(C)

These two functions convert between the two alternative implementations.

```
Example
gap> C12 := CatOneGroupToXMod( H12 );
[Group( [ f1, f2, f3 ] )=>Group( [ f1, f2, <identity> of ... ] )]
```

```
gap> C18 := Cat1Select( 18, 4, 3 );
[(C3 x C3) : C2=>Group( [ f1, <identity> of ..., f3 ] )]
gap> H18 := Cat1GroupToHAP( C18 );
Cat-1-group with underlying group (C3 x C3) : C2 .
```


13.1.3 IdCat1Group

\triangleright IdCat1Group (C)
(operation)

This function calls the HAP function IdCatOneGroup on a cat ${ }^{1}$-group C. This returns $[n, i, j]$ if the cat ${ }^{1}$-group is the j-th structure on the $\operatorname{Small} \operatorname{Group}(n, i)$.

Example
gap> IdCatOneGroup (H18);
[18, 4, 4]
gap> IdCat1Group (C18);
[18, 4, 4]

Chapter 14

Utility functions

By a utility function we mean a GAP function which is

- needed by other functions in this package,
- not (as far as we know) provided by the standard GAP library,
- more suitable for inclusion in the main library than in this package.

Sections on Printing Lists and Distinct and Common Representatives were moved to the Utils package with version 2.56.

14.1 Mappings

The following two functions have been moved to the gpd package, but are still documented here.

14.1.1 InclusionMappingGroups

```
\triangleright InclusionMappingGroups(G, H)
\(\triangleright\) MappingToOne ( \(G, H\) )

This set of utilities concerns mappings. The map incd8 is the inclusion of d8 in d16 used in Section 3.4. MappingToOne ( \(\mathrm{G}, \mathrm{H}\) ) maps the whole of \(G\) to the identity element in \(H\).

Example
```

gap> Print(incd8, "\n");
[(11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15)] ->
[(11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15)]
gap> imd8 := Image(incd8);;
gap> MappingToOne(c4, imd8);
[(11,13,15,17)(12,14,16,18)] -> [()]

```

\subsection*{14.1.2 InnerAutomorphismsByNormalSubgroup}
\(\triangleright\) InnerAutomorphismsByNormalSubgroup (G, N)
(operation)

Inner automorphisms of a group \(G\) by the elements of a normal subgroup \(N\) are calculated, often with \(G=N\).

\section*{Example}
```

gap> autd8 := AutomorphismGroup(d8);;
gap> innd8 := InnerAutomorphismsByNormalSubgroup(d8, d8);;
gap> GeneratorsOfGroup(innd8);
[~ (1,2,3,4), ^(1,3)]

```

\subsection*{14.1.3 IsGroupOfAutomorphisms}
\(\triangleright\) IsGroupOfAutomorphisms (A)
(property)

Tests whether the elements of a group are automorphisms.
```

 Example
 gap> IsGroupOfAutomorphisms(innd8);
true

```

\subsection*{14.2 Abelian Modules}

\subsection*{14.2.1 AbelianModuleObject}
```

\triangleright AbelianModuleObject(grp, act) (operation)

```

```

\triangleright ~ A b e l i a n M o d u l e G r o u p (o b j) ~ (a t t r i b u t e))
\triangleright ~ A b e l i a n M o d u l e A c t i o n (o b j) ~ (a t t r i b u t e))

```

An abelian module is an abelian group together with a group action. These are used by the crossed module constructor XModByAbelianModule (2.1.7).

The resulting Xabmod is isomorphic to the output from XModByAutomorphismGroup (k4);
Example
```

gap> x := (6,7) (8,9);; y := (6,8) (7,9);; z := (6,9)(7,8);;
gap> k4a := Group(x, y);; SetName(k4a, "k4a");
gap> gens3a := [(1,2), (2,3)];;
gap> s3a := Group(gens3a);; SetName(s3a, "s3a");
gap> alpha := GroupHomomorphismByImages(k4a, k4a, [x,y], [y,x]);;
gap> beta := GroupHomomorphismByImages(k4a, k4a, [x,y], [x,z]);;
gap> auta := Group(alpha, beta);;
gap> acta := GroupHomomorphismByImages(s3a, auta, gens3a, [alpha,beta]);;
gap> abmod := AbelianModuleObject(k4a, acta);;
gap> Xabmod := XModByAbelianModule(abmod);

```
```

[k4a->s3a]
gap> Display(Xabmod);
Crossed module [k4a->s3a] :-
: Source group k4a has generators:
[(6,7) (8,9), (6,8) (7,9)]
: Range group s3a has generators:
[(1,2), (2,3)]
: Boundary homomorphism maps source generators to:
[(), ()]
Action homomorphism maps range generators to automorphisms:
(1,2) --> { source gens --> [(6,8)(7,9), (6,7) (8,9)] }
(2,3) --> { source gens --> [(6,7) (8,9), (6,9)(7,8)] }

```
    These 2 automorphisms generate the group of automorphisms.

\section*{Chapter 15}

\section*{Development history}

This chapter, which contains details of the major changes to the package as it develops, was first created in April 2002. Details of the changes from XMod 1 to XMod 2.001 are far from complete. Starting with version 2.009 the file CHANGES lists the minor changes as well as the more fundamental ones.

The inspiration for this package was the need, in the mid-1990's, to calculate induced crossed modules (see [BW95], [BW96], [BW03]). GAP was chosen over other computational group theory systems because the code was freely available, and it was possible to modify the Tietze transformation code so as to record the images of the original generators of a presentation as words in the simplified presentation. (These modifications are now a standard part of the Tietze transformation package in GAP.)

\subsection*{15.1 Changes from version to version}

\subsection*{15.1.1 Version 1 for GAP 3}

The first version of XMod became an accepted package for GAP 3.4.3 in December 1996.

\subsection*{15.1.2 Version 2}

Conversion of XMod 1 from GAP 3.4.3 to the new GAP syntax began soon after GAP 4 was released, and had a lengthy gestation. The new GAP syntax encouraged a re-naming of many of the function names. An early decision was to introduce generic categories \(2 d\) Domain for (pre-)crossed modules and (pre-)cat1-groups, and 2dMapping for the various types of morphism. In 2.009 3dDomain was used for crossed squares and cat2-groups, and 3dMapping for their morphisms. A generic name for derivations and sections is also required, and Up2dMapping is currently used.

\subsection*{15.1.3 Version 2.001 for GAP 4}

This was the first version of XMod for GAP 4, completed in April 2002 in time for the release of GAP 4.3. Functions for actors and induced crossed modules were not included, nor many of the functions for derivations and sections, for example InnerDerivation.

\subsection*{15.1.4 Induced crossed modules}

During May 2002 converted the code for induced crossed modules. (Induced cat1-groups may be converted one day.)

\subsection*{15.1.5 Versions 2.002-2.006}

Version 2.004 of April 14th 2004 added the Cat1Select (2.7.1) functionality of version 1 to the Cat1Group (2.4.1) function.

A significant addition in Version 2.005 was the conversion of the actor crossed module functions from the 3.4.4 version. This included AutomorphismPermGroup (6.1.1) for a crossed module; WhiteheadXMod (6.1.2); NorrieXMod (6.1.2); LueXMod (6.1.2); ActorXMod (6.1.2); CentreXMod (4.1.7) of a crossed module; InnerMorphism (6.1.3); and InnerActorXMod (6.1.3).

\subsection*{15.1.6 Versions 2.007-2.010}

These versions contain changes made between September 2004 and October 2007.
- Added basic functions for crossed squares, considered as 3dObjects with crossed pairings, and their morphisms. Groups with two normal subgroups, and the actor of a crossed module, provide standard examples of crossed squares. (Cat2-groups are not yet implemented.)
- Converted the documentation to the format of the GAPDoc package.
- Improved AutomorphismPermGroup (6.1.1) for crossed modules, and introduced a special method for conjugation crossed modules.
- Substantial revisons made to XModByCentralExtension (2.1.5); NorrieXMod (6.1.2); LueXMod (6.1.2); ActorXMod (6.1.2); and InducedXModByCopower (7.2.1).
- Version 2.010, of October 2007, was timed to coincide with the release of GAP 4.4.10, and included a change of filenames; and correct file protection codes.

\subsection*{15.2 Versions for GAP [4.5 .. 4.12]}

Version 2.19, released on 9th June 2012, included the following changes:
- The file makedocrel.g was copied, with appropriate changes, from GAPDoc, and now provides the correct way to update the documentation.
- The first functions for crossed modules of groupoids were introduced.
- A GNU General Public License declaration was added.

\subsection*{15.2.1 AllCat1s}

Version 2.21 contained major changes to the Cat1Select (2.7.1) operation: the list CAT1_LIST of cat1-structures in the data file cat1data.g was changed from permutation groups to pc-groups, with the generators of subgroups; images of the tail map; and images of the head map being given as ExtRepOfObj of words in the generators.

The AllCat1s function was reintroduced from the GAP3 version, and renamed as the operation AllCat1DataGroupsBasic.

In version 2.25 the data in cat1data.g was extended from groups of size up to 48 to groups of size up to 70 . In particular, the 267 groups of size 64 give rise to a total of 1275 cat1-groups. The authors are indebted to Van Luyen Le in Galway for pointing out a number of errors in the version of this list distributed with version 2.24 of this package.

\subsection*{15.2.2 Versions 2.43-2.56}

Version 2.43, released on 11th November 2015, included the following changes:
- The material on isoclinism in Chapter 4 was added.
- The package webpage has moved to https://github.com/cdwensley.
- A GitHub repository was started at: https://github.com/gap-packages/xmod.
- The section on Distinct and Common Representatives was moved to the Utils package.

\subsection*{15.2.3 Version 2.61}

Major changes in names took place, with 2dDomain, 2dGroup, 2dMapping, etc. becoming 2DimensionalDomain, 2DimensionalGroup, 2DimensionalMapping, etc., and similarly for 3dimensional versions. Also HigherDimensionalDomain and related categories, domains, properties, attributes and operations were introduced. At the same time, functions for cat2-groups were introduced by Alper Odabas.

\subsection*{15.2.4 Versions 2.63-2.74}
- Added an implementation of crossed modules of groupoids.
- Lots more work on crossed squares and cat2-groups.
- Added an implementation of group groupoids.

\subsection*{15.2.5 Versions 2.75-2.85}
- Added conversion functions between XMod and Hap and a new chapter in the manual about these functions.
- Added functions for quasi-isomorphisms.

\subsection*{15.2.6 Versions 2.86-2.91}
- Added attributes Size2d for 2d-objects and Size3d for 3d-objects since lists are inappropriate values for the standard function Size.
- Added PreXModWithTrivialRange and started work on double groupoids.

\subsection*{15.3 What needs doing next?}
- Speed up the calculation of Whitehead groups.
- Add more functions for 3dObjects and implement cat2-groups.
- Improve interaction with the package groupoids implementing the group groupoid version of a crossed module, and adding more functions for crossed modules of groupoids.
- Add interaction with IdRel (and possibly XRes and natp) .
- Need InverseGeneralMapping for morphisms and more features for FpXMods, PcXMods, etc.
- Implement actions of a crossed module.
- Implement FreeXMods and an operation Isomorphism2dDomains.
- Allow the construction of a group of morphisms of crossed modules.
- Complete the conversion from Version 1 of the calculation of sections using EndoClasses.
- More crossed square constructions:
- If \(M, N\) are ordinary \(P\)-modules and \(A\) is an arbitrary abelian group on which \(P\) acts trivially, then there is a crossed square with sides
\[
0: A \rightarrow N, \quad 0: A \rightarrow M, \quad 0: M \rightarrow P, \quad 0: N \rightarrow P .
\]
- For a group \(L\), the automorphism crossed module Act \(L=(\imath: L \rightarrow\) Aut \(L)\) splits to form the square with \(\left(l_{1}: L \rightarrow \operatorname{Inn} L\right)\) on two sides, and \(\left(l_{2}: \operatorname{Inn} L \rightarrow\right.\) Aut \(\left.L\right)\) on the other two sides, where \(t_{1}\) maps \(l \in L\) to the inner automorphism \(\beta_{l}: L \rightarrow L, l^{\prime} \mapsto l^{-1} l^{\prime} l\), and \(l_{2}\) is the inclusion of Inn \(L\) in Aut \(L\). The actions are standard, and the crossed pairing is
\[
\boxtimes: \operatorname{Inn} L \times \operatorname{Inn} L \rightarrow L, \quad\left(\beta_{l}, \beta_{l^{\prime}}\right) \mapsto\left[l, l^{\prime}\right] .
\]
- Improve the interaction with the HAP package.
- Implement cat1-groups with objects.
- Lots more work on double groupoids.

\section*{References}
[Alp97] M. Alp. GAP, crossed modules, cat1-groups: applications of computational group theory. PhD thesis, University of Wales, Bangor, 1997. 2
[AOWar] Z. Arvasi, A. Odabas, and C. D. Wensley. Computing 3-dimensional groups : Crossed squares and cat2-groups. J. Symbolic Computation, (to appear). 79
[AW00] M. Alp and C. D. Wensley. Enumeration of cat1-groups of low order. Int. J. Algebra and Computation, 10:407-424, 2000. 5, 53
[AW10] M. Alp and C. D. Wensley. Automorphisms and homotopies of groupoids and crossed modules. Applied Categorical Structures, 18:473-495, 2010. 92
[BH78] R. Brown and P. J. Higgins. On the connection between the second relative homotopy group and some related spaces. Proc. London Math. Soc., 36:193-212, 1978. 5, 62, 63
[BHS11] R. Brown, P. J. Higgins, and R. Sivera. Nonabelian algrebraic topology, volume 15 of Tracts in Mathematics. European Mathematical Society, 2011. 6
[BL87] R. Brown and J.-L. Loday. Van kampen theorems for diagram of spaces. Topology, 26:311335, 1987. 66, 78
[Bro82] R. Brown. Higher-dimensional group theory. In R. Brown and T. L. Thickstun, editors, Low-dimensional topology, volume 48 of London Math. Soc. Lecture Note Series, pages 215-238. Cambridge University Press, 1982. 6
[Bro18] R. Brown. Crossed modules, and the homotopy 2-type of a free loop space. arXiv:1003.5617 [math.AT], pages 1-11, 2018. 101
[BW95] R. Brown and C. D. Wensley. On finite induced crossed modules, and the homotopy 2-type of mapping cones. Theory and Applications of Categories, 1:54-71, 1995. 5, 62, 63, 108
[BW96] R. Brown and C. D. Wensley. Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy 2-types. Theory and Applications of Categories, 2:3-16, 1996. 5, 62, 63, 108
[BW03] R. Brown and C. D. Wensley. Computation and homotopical applications of induced crossed modules. J. Symbolic Computation, 35:59-72, 2003. 108
[EL14] G. J. Ellis and V. L. Le. Homotopy 2-types of low order. Experimental Math., 23:383-389, 2014. 38
[Ell84] G. Ellis. Crossed modules and their higher dimensional analogues. PhD thesis, University of Wales, Bangor, 1984. 5
[ES87] G. Ellis and R. Steiner. Higher dimensional crossed modules and the homotopy groups of (n+1)-ads. J. Pure and Appl. Algebra, 46:117-136, 1987. 66, 78, 91
[GH17] S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code (Version 2017.09.15), 2017. GAP package, https : //github.com/gap-packages/AutoDoc. 2
[Gil90] N. D. Gilbert. Derivations, automorphisms and crossed modules. Comm. in Algebra, 18:2703-2734, 1990. 5
[Hor17] M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within GAP packages (Version 0.2), 2017. GAP package, https://gap-system.github.io/ GitHubPagesForGAP/. 2
[IOU16] E. Ilgaz, A. Odabas, and E. O. Uslu. Isoclinism of crossed modules. J. Symb. Comput., pages 1-17, 2016. https://doi.org/10.1016/j.jsc.2015.08.006. 2, 5, 40
[JNO90] R. James, M. F. Newman, and E. A. O'Brien. The groups of order 128. J. Algebra, 129:136-158, 1990. 40, 48
[LN17] F. Lübeck and M. Neunhöffer. GAPDoc (version 1.6). RWTH Aachen, 2017. GAP package, https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html. 2
[Lod82] J.-L. Loday. Spaces with finitely many non-trivial homotopy groups. J. App. Algebra, 24:179-202, 1982. 5, 17
[MLW50] S. Mac Lane and J. H. C. Whitehead. On the 3-type of a complex. Proc. Nat. Acad. Sci. U.S.A., 37:41-48, 1950. 38
[Moo01] E. J. Moore. Graphs of Groups: Word Computations and Free Crossed Resolutions. PhD thesis, University of Wales, Bangor, 2001. 6
[Nor87] K. J. Norrie. Crossed modules and analogues of group theorems. PhD thesis, King's College, University of London, 1987. 5, 43, 45, 57
[Nor90] K. J. Norrie. Actions and automorphisms of crossed modules. Bull. Soc. Math. France, 118:129-146, 1990. 5, 57
[Whi48] J. H. C. Whitehead. On operators in relative homotopy groups. Ann. of Math., 49:610-640, 1948. 5, 51
[Whi49] J. H. C. Whitehead. Combinatorial homotopy II. Bull. Amer. Math. Soc., 55:453-496, 1949. 5

\section*{Index}

2d-domain, 8
2d-group, 8
2d-mapping, 32
2dimensional-domain with objects, 92
3d-domain, 66
3d-group, 66
3d-mapping, 76
4d-domain, 88
4d-group, 88
abelian module, 106
AbelianModuleAction, 106
AbelianModuleGroup, 106
AbelianModuleObject, 106
actor, 57
ActorCrossedSquare, 70
ActorXMod, 58
AllCat1Groups, 26
AllCat1GroupsIterator, 26
AllCat1GroupsMatrix, 25
AllCat1GroupsUpToIsomorphism, 26
AllCat1GroupsWithImage, 24
AllCat1GroupsWithImageIterator, 24
AllCat1GroupsWithImageNumber, 24
AllCat1GroupsWithImageUpToIsomorphism, 24
AllCat2GroupFamilies, 86
AllCat2Groups, 85
AllCat2GroupsIterator, 85
AllCat2GroupsMatrix, 85
AllCat2GroupsUpToIsomorphism, 85
AllCat2GroupsWithFixedUp, 84
AllCat2GroupsWithFixedUpAndLeftRange, 84
AllCat2GroupsWithImages, 83
AllCat2GroupsWithImagesIterator, 83
AllCat2GroupsWithImagesNumber, 83
AllCat2GroupsWithImagesUpToIsomorphism, 83

AllCat3Groups, 90
AllCat3GroupsNumber, 90
AllCat3GroupTriples, 90
AllDerivations, 54
AllInducedXMods, 64
AllLoopsXMod, 101
AllSections, 56
AllStemGroupFamilies, 48
AllStemGroupIds, 48
AllXMods, 46
AllXModsUpToIsomorphism, 46
AllXModsWithGroups, 46
AreIsoclinicDomains
for crossed modules of groups, 49
for groups, 47
AutoGroup, 12
AutomorphismPermGroup, 57
Back3DimensionalGroup, 89
Boundary
for cat1-groups, 18
for crossed modules, 12
cat \({ }^{1}\)-group, 17
cat \({ }^{2}\)-group, 78
cat \(^{3}\)-group, 88
cat \(^{n}\)-group, 90
Cat1Group, 17
Cat1GroupByPeifferQuotient, 20
Cat1GroupMorphism, 35
Cat1GroupMorphismByGroupHomomorphisms, 35
Cat1GroupMorphismOfXModMorphism, 35
Cat1GroupOfXMod, 23
Cat1GroupToHAP, 103
Cat1Select, 27
CAT1_LIST_MAX_SIZE, 27
CAT1_LIST_NUMBERS, 27
Cat2Group, 79

Cat2GroupMorphism, 81
Cat2GroupMorphismByCat1GroupMorphisms, 81
Cat2GroupMorphismByGroupHomomorphisms, 81
Cat2Group0fCrossedSquare, 82
Cat3Group, 89
CatnGroup, 91
CatnGroupLists
for cat1-groups, 26
for cat2-groups, 86
CatnGroupNumbers
for cat1-groups, 26
for cat2-groups, 86
CatOneGroupToXMod, 103
Centralizer, 43
CentralQuotient, 44
for crossed modules, 73
CentreXMod, 43
CommutatorSubXMod, 42
CompositionMorphism, 37
CoproductInfo, 61
CoproductXMod, 61
CrossActionSubgroup, 42
CrossDiagonalActions, 74
crossed module, 8
crossed module morphism, 32
crossed module of groupoids, 92
crossed module over a groupoid, 92
crossed pairing, 67
crossed square, 58, 66
crossed square morphism, 76
CrossedPairing, 75
CrossedPairingByCommutators, 69
CrossedPairingByConjugators, 70
CrossedPairingByDerivations, 70
CrossedPairingByPreImages, 72
CrossedPairingBySingleXModAction, 69
CrossedPairingMap, 75
CrossedSquare, 72
CrossedSquareByAutomorphismGroup, 70
CrossedSquareByNormalSubgroups, 69
CrossedSquareByNormalSubXMod, 69
CrossedSquareByPullback, 71
CrossedSquareByXMods, 68
CrossedSquareByXModSplitting, 72

CrossedSquareMorphism, 76
CrossedSquareMorphismByGroupHomomorphisms, 76
CrossedSquareMorphismByXModMorphisms, 76
CrossedSquareOfCat2Group, 82
derivation, of crossed module, 51
DerivationByImages, 51
DerivationBySection, 53
DerivationClass, 54
DerivationImage, 51
DerivedSubXMod, 43
Diagonal2DimensionalGroup, 74
DiagonalCat1Group, 19
DirectProduct, 80
for cat1-groups, 21
for crossed modules, 11
Displacement, 41
DisplacementGroup, 41
DisplacementSubgroup, 41
display a 2d-mapping, 33
Display for a 2d-group, 13
Display for a 3d-group, 68
DisplayLeadMaps, 80
DoubleGroupoidWithZeroBoundary, 100
Down2DimensionalGroup, 74
Down2DimensionalMorphism, 76
Down3DimensionalGroup, 89
EnhancedBasicDoubleGroupoid, 98
ExternalSetXMod, 13
FactorPreXMod, 40
FixedPointSubgroupXMod, 43
free loop space, 101
Front3DimensionalGroup, 89
GeneratingAutomorphisms, 57
GroupGroupoid, 29
GroupGroupoidElement, 30
HeadMap, 18
IdCat1Group, 104
IdentityDerivation, 53
IdentityMapping
for pre-xmods, 33
for precat1-morphisms, 35
IdentitySection, 53
IdGroup
for 2d-groups, 28
for crossed modules, 13
ImageElmCrossedPairing, 75
ImageElmXModAction, 12
ImagesList, 55
ImagesTable, 54
inclusion mapping, 105
InclusionMappingGroups, 105
InclusionMorphism2DimensionalDomains
for cat1-groups, 35
for crossed modules, 33
InclusionMorphismHigherDimensionalDomains, 78
induced cat1-groups, 64
induced crossed module, 62
InducedCat1Group, 64
InducedCat1GroupByFreeProduct, 64
InducedXMod, 62
InducedXModByCopower, 62
InducedXModBySurjection, 62
InfoXMod, 6
InitCatnGroupRecords, 26
InnerActorXMod, 60
InnerAutomorphismCat1, 35
InnerAutomorphismsByNormalSubgroup, 106
InnerAutomorphismXMod, 33
InnerMorphism, 60
IntersectionSubXMods, 41
Is2DimensionalDomain, 14
Is2DimensionalGroup, 14
Is2DimensionalGroupWithObjects, 93
Is3dObject, 74
IsAbelian2DimensionalGroup, 44
IsAbelian3DimensionalGroup, 75
IsAbelianModule, 106
IsAbelianModule2DimensionalGroup, 14
IsAspherical2DimensionalGroup, 44
IsAutomorphism3dObject, 76
IsAutomorphismGroup2DimensionalGroup, 14
IsAutomorphismGroup3DimensionalGroup, 75
IsBijective, 76
for pre-xmod morphisms, 33

IsCat1Group, 22
IsCat1GroupMorphism, 35
IsCat2Group, 79
IsCat3Group, 89
IsCentralExtension2DimensionalGroup, 14
IsCentralExtension3DimensionalGroup, 75
IsCrossedSquare, 74
IsCrossedSquareMorphism, 76
IsDerivation, 51
IsDirectProductWithCompleteDigraphDomain, 93
IsEndo2DimensionalMapping, 33
IsEndomorphism3dObject, 76
IsFaithful2DimensionalGroup, 44
IsFp2DimensionalGroup, 14
IsFp3dObject, 74
IsFpPreXModWithObjects, 93
IsGroupOfAutomorphisms, 106
IsIdentityCat1Group, 22
IsInducedXMod, 62
IsInjective for pre-xmod morphisms, 33
IsMonoidOfUp2DimensionalMappingsObj, 54
IsNilpotent2DimensionalGroup, 45
IsNormal for crossed modules, 14
IsNormalSub3DimensionalGroup, 75
IsNormalSubgroup2DimensionalGroup, 14
IsoclinicMiddleLength for crossed modules of groups, 50 for groups, 48
IsoclinicRank for crossed modules of groups, 50 for groups, 48
IsoclinicStemDomain for crossed modules of groups, 49 for groups, 47
Isoclinism for crossed modules, 49 for groups, 47
IsomorphicPreCat1GroupWithIdentityEmbedding, 23
IsomorphismByIsomorphisms, 34
IsomorphismClassRepresentatives2dGroups, 46
IsomorphismFp2DimensionalGroup for pre-cat 1 morphisms, 36

IsomorphismPc2DimensionalGroup
for pre-cat1 morphisms, 36
for pre-xmod morphisms, 34
IsomorphismPerm2DimensionalGroup
for pre-cat 1 morphisms, 36
for pre-xmod morphisms, 34
IsomorphismPerm0bject, 36
IsomorphismToPreCat1GroupWithIdentityEmbedding, 23
IsomorphismXMods, 45
IsPc2DimensionalGroup, 14
IsPc3dObject, 74
IsPcPreXModWithObjects, 93
IsPerm2DimensionalGroup, 14
IsPerm3dObject, 74
IsPermPreXModWithObjects, 93
IsPreCat1GroupMorphism, 35
IsPreCat1GroupWithIdentityEmbedding, 23
IsPreCrossedSquare, 74
IsPreCrossedSquareMorphism, 76
IsPreXCat1Group, 22
IsPreXMod, 14
IsPreXModMorphism, 32
IsPreXModWithObjects, 93
IsSection, 53
IsSimplyConnected2DimensionalGroup, 44
IsSingleValued
for pre-xmod morphisms, 33
IsStemDomain
for crossed modules of groups, 49
for groups, 47
IsSub2DimensionalGroup, 29
IsSubCat1Group, 28
IsSubPreCat1Group, 28
IsSubPreXMod, 28
IsSubXMod, 28
IsSurjective
for pre-xmod morphisms, 33
IsSymmetric3DimensionalGroup, 75
IsTotal
for pre-xmod morphisms, 33
IsTrivialAction2DimensionalGroup, 14
IsTrivialAction3DimensionalGroup, 75
IsUp2DimensionalMapping, 51
IsXMod, 14
IsXModMorphism, 32

IsXModWithObjects, 93
Kernel
for 2d-mappings, 37
Kernel2DimensionalMapping, 37
KernelCokernelXMod, 15
KernelEmbedding, 18
Left2DimensionalGroup, 74
Left2DimensionalMorphism, 76
Left3DimensionalGroup, 89
loop space, 101
LoopClasses, 101
LoopsXMod, 101
LowerCentralSeriesOfXMod, 45
LueXMod, 58
Mapping2ArgumentsByFunction, 75
MappingToOne, 105
morphism, 32
morphism of 2d-group, 32
morphism of 3 d -group, 76
MorphismOf InducedXMod, 62
MorphismOfPullback
for a crossed module by pullback, 34
Name, 74
for cat1-groups, 18
for crossed modules, 13
NaturalMorphismByNormalSubPreXMod, 40
NilpotencyClass2DimensionalGroup, 45
Normalizer, 43
NormalSubXMods, 15
NorrieXMod, 58
ObjectList, 93
operations on morphisms, 37
order of a 2d-automorphism, 33
Peiffer subgroup, 16
PeifferSubgroup, 17
PermAutomorphismAsXModMorphism, 57
pre-crossed module, 16
PreCat1Group, 17
PreCat1GroupByTailHeadEmbedding, 17
PreCat1GroupMorphism, 35
PreCat1GroupMorphismByGroup-
Homomorphisms, 35

PreCat1GroupRecordOfPreXMod, 23
PreCat1GroupWithIdentityEmbedding, 18
PreCat2Group, 79
PreCat2GroupByPreCat1Groups, 79
PreCat2GroupMorphism, 81
PreCat2GroupMorphismByGroupHomomorphisms, 81
PreCat2GroupMorphismByPreCat1GroupMorphisms, 81
PreCat3Group, 89
PreCat3GroupByPreCat2Groups, 89
PreCatnGroup, 91
PreCrossedSquareByPreXMods, 68
PreCrossedSquareMorphismByGroupHomomorphisms, 76
PreCrossedSquareMorphismByPreXModMorphisms, 76
PreXModByBoundaryAndAction, 16
PreXModMorphism, 33
PreXModMorphismByGroupHomomorphisms, 33
PreXModRecordOfPreCat1Group, 23
PreXModWithTrivialRange, 16
PrincipalDerivation, 52
PrincipalDerivations, 56
quasi isomorphisms, 38
QuasiIsomorphism, 39
QuotientQuasiIsomorphism, 39
Range, 76
for 2d-group mappings, 32
for cat1-groups, 18
for crossed modules, 12
RangeEmbedding, 18
RangeHom, 32
regular derivation, 51
RegularActionHomomorphism2DimensionalGroup
for pre-cat1 morphisms, 36
RegularDerivations, 55
RegularSections, 56
restriction mapping, 105
Right2DimensionalGroup, 74
Right2DimensionalMorphism, 76
Right3DimensionalGroup, 89
Root2dGroup, 93
section, of cat1-group, 51

SectionByDerivation, 53
SectionByHomomorphism, 53
selection of a small cat \({ }^{1}\)-group, 26
SinglePiecePreXModWithObjects, 92
Size2d
for cat1-groups, 18
for crossed modules, 13
Size3d
for 3d-objects, 68
SmallCat1Group, 103
SmallerDegreePermutationRepresentation2DimensionalGroup
for perm 2d-groups, 36
Source, 76
for 2d-group mappings, 32
for cat1-groups, 18
for crossed modules, 12
SourceHom, 32
StabilizerSubgroupXMod, 43
StructureDescription
for 2d-groups, 28
SubCat1Group, 21
Subdiagonal2DimensionalGroup, 82
SubPreCat1Group, 21
SubPreXMod, 16
SubQuasiIsomorphism, 39
SubXMod, 14
TailMap, 18
Transpose3DimensionalGroup
for cat2-groups, 81
for crossed squares, 73
TransposeCat1Group, 20
TransposeIsomorphism, 20
TrivialSubXMod, 14
up 2d-mapping of 2d-group, 51
Up2DimensionalGroup, 74
Up2DimensionalMorphism, 76
Up3DimensionalGroup, 89
UpGeneratorImages, 51
UpImagePositions, 51
version 1 for GAP 3, 108
version 2.001 for GAP 4, 108
Whitehead group, 51
Whitehead monoid, 51

Whitehead multiplication, 51
WhiteheadGroupTable, 55
WhiteheadMonoidTable, 54
WhiteheadOrder, 54
WhiteheadPermGroup, 55
WhiteheadProduct, 54
WhiteheadTransformationMonoid, 54
WhiteheadXMod, 58
XMod, 8
XModAction
for crossed modules of groupoids, 93
for crossed modules of groups, 12
XModByAbelianModule, 11
XModByAutomorphismGroup, 9
XModByBoundaryAndAction, 8
XModByCentralExtension, 10
XModByGroupOfAutomorphisms, 9
XModByInnerAutomorphismGroup, 9
XModByNormalSubgroup, 9
XModByPeifferQuotient, 17
XModByPullback, 11
XModByTrivialAction, 9
XModCentre, 60
XModMorphism, 33
XModMorphismByGroupHomomorphisms, 33
XModMorphismOfCat1GroupMorphism, 35
XModOfCat1Group, 23```


[^0]:    $\triangleright$ EnhancedBasicDoubleGroupoid(bdg)

