GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

GAP package GrpConst

Constructing the Groups of a Given Order

Authors

Hans Ulrich Besche, Bettina Eick

Maintainer

Max Horn

Short Description

The GrpConst package contains methods to construct up to isomorphism the groups of a given order. The FrattiniExtensionMethod constructs all soluble groups of a given order. On request it gives only those that are (or are not) nilpotent or supersolvable or that do (or do not) have normal Sylow subgroups for some given set of primes. The CyclicSplitExtensionMethod constructs all groups having a normal Sylow subgroup for orders of the type p^n *q. The method relies on the availability of a list of all groups of order p^n. The UpwardsExtensions algorithm takes as input a permutation group G and a positive integer s and returns a list of permutation groups, one for each extension of G by a soluble group of order a divisor of s. This method can used to construct the non-solvable groups of a given order by taking the perfect groups of certain orders as input for G. The programs in this package have been used to construct a large part of the Small Groups library.

Version

Current version number 2.6.1   (Released 09/08/2018)

Status

accepted    (communicated by Charles Wright (Eugene), accepted 07/1999)

Dependencies

GAP version: >=4.7
Needed other packages: autpgrp(>=1.6), irredsol(>=1.2),

Online documentation

GrpConst: [ HTML] version   [ PDF] version  

Download

[README]    grpconst-2.6.1[.tar.gz  (216K)]   [.tar.bz2  (216K)]   [-win.zip  (236K)]   [.zip  (236K)]  

Source code repository

git : https://github.com/gap-packages/grpconst

Issue tracker

https://github.com/gap-packages/grpconst/issues

Contact

Bettina Eick
Address:
Institut Computational Mathematics
TU Braunschweig
Pockelsstr. 14
D-38106 Braunschweig
Germany
WWW: http://www.icm.tu-bs.de/~beick
E-mail: beick@tu-bs.de

Max Horn
Address:
AG Algebra
Mathematisches Institut
Justus-Liebig-Universität Gießen
Arndtstraße 2
35392 Gießen
Germany
WWW: http://www.quendi.de/math
E-mail: max.horn@math.uni-giessen.de