Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

591 publications using GAP in the category "Combinatorics"

[AV20] Abas, M. and Vetrík, T., Metric dimension of Cayley digraphs of split metacyclic groups, Theoret. Comput. Sci., 809 (2020), 61–72.

[AAG19] Abbas, A., Assi, A., and García-Sánchez, P. A., Canonical bases of modules over one dimensional $\boldK$-algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2) (2019), 1121–1139.

[AI15] Abdolghafourian, A. and Iranmanesh, M. A., Divisibility graph for symmetric and alternating groups, Comm. Algebra, 43 (7) (2015), 2852–2862.

[AIN17] Abdolghafourian, A., Iranmanesh, M. A., and Niemeyer, A. C., The divisibility graph of finite groups of Lie type, J. Pure Appl. Algebra, 221 (10) (2017), 2482–2493.

[AH09] Abdollahi, A. and Hassanabadi, A. M., Non-cyclic graph associated with a group, J. Algebra Appl., 8 (2) (2009), 243–257.

[AJJ16] Abdollahi, A., Janbaz, S., and Jazaeri, M., Groups all of whose undirected Cayley graphs are determined by their spectra, J. Algebra Appl., 15 (9) (2016), 1650175, 15.

[AJ14] Abdollahi, A. and Jazaeri, M., Groups all of whose undirected Cayley graphs are integral, European J. Combin., 38 (2014), 102–109.

[ADJ17] Abdollahi, A., van Dam, E. R., and Jazaeri, M., Distance-regular Cayley graphs with least eigenvalue $-2$, Des. Codes Cryptogr., 84 (1-2) (2017), 73–85.

[AV09] Abdollahi, A. and Vatandoost, E., Which Cayley graphs are integral?, Electron. J. Combin., 16 (1) (2009), Research Paper 122, 17.

[AZ15] Abdollahi, A. and Zallaghi, M., Character sums for Cayley graphs, Comm. Algebra, 43 (12) (2015), 5159–5167.

[AZ19] Abdollahi, A. and Zallaghi, M., Non-abelian finite groups whose character sums are invariant but are not Cayley isomorphism, J. Algebra Appl., 18 (1) (2019), 1950013, 15.

[AZ10] Abdollahi, A. and Zarrin, M., Non-nilpotent graph of a group, Comm. Algebra, 38 (12) (2010), 4390–4403.

[AC+13] Abel, R. J. R., Combe, D., Nelson, A. M., and Palmer, W. D., GBRDs over supersolvable groups and solvable groups of order prime to 3, Des. Codes Cryptogr., 69 (2) (2013), 189–201.

[AC+17] Abel, R. J. R., Combe, D., Nelson, A. M., and Palmer, W. D., Block designs signed over groups of order $2^n3^m$, Discrete Math., 340 (12) (2017), 2925–2940.

[A04] AbuGhneim, O. A., On nonabelian McFarland difference sets, in Proceedings of the Thirty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 168 (2004), 159–175.

[A16] AbuGhneim, O. A., All $(64, 28, 12)$ difference sets and related structures, Ars Combin., 125 (2016), 271–285.

[AFK15] Afkhami, M., Farrokhi D. G. , M., and Khashyarmanesh, K., Planar, toroidal, and projective commuting and noncommuting graphs, Comm. Algebra, 43 (7) (2015), 2964–2970.

[AB04] Aguglia, A. and Bonisoli, A., On the non-existence of a projective plane of order 15 with an $A_4$-invariant oval, Discrete Math., 288 (1-3) (2004), 1–7.

[AG07] Aguglia, A. and Giuzzi, L., Orthogonal arrays from Hermitian varieties, Innov. Incidence Geom., 5 (2007), 129–144.

[AG08] Aguglia, A. and Giuzzi, L., An algorithm for constructing some maximal arcs in $\rm PG(2,q^2)$, Results Math., 52 (1-2) (2008), 17–33.

[AG10] Aguiló-Gost, F. and García-Sánchez, P. A., Factoring in embedding dimension three numerical semigroups, Electron. J. Combin., 17 (1) (2010), Research Paper 138, 21.

[AGL15] Aguiló-Gost, F., García-Sánchez, P. A., and Llena, D., On the number of $ßfL$-shapes in embedding dimension four numerical semigroups, Discrete Math., 338 (12) (2015), 2168–2178.

[AL18] Aguiló-Gost, F. and Llena, D., Computing denumerants in numerical 3-semigroups, Quaest. Math., 41 (8) (2018), 1083–1116.

[AD+19] Aguirre-Guerrero, D., Ducoffe, G., Fàbrega, L., Vilà, P., and Coudert, D., Low time complexity algorithms for path computation in Cayley graphs, Discrete Appl. Math., 259 (2019), 218–225.

[AT14] Ahmadi, H. and Taeri, B., On the planarity of a graph related to the join of subgroups of a finite group, Bull. Iranian Math. Soc., 40 (6) (2014), 1413–1431.

[AM14] Akbari, M. and Moghaddamfar, A. R., The existence or nonexistence of non-commuting graphs with particular properties, J. Algebra Appl., 13 (1) (2014), 1350064, 11.

[AKT19] Akhlaghi, Z., Khedri, K., and Taeri, B., Finite groups with $K_5$-free prime graphs, Comm. Algebra, 47 (7) (2019), 2577–2603.

[AST19] Akiyama, K., Suetake, C., and Tanaka, M., The nonexistence of projective planes of order 12 with a collineation group of order 9, Australas. J. Combin., 74 (2019), 112–160.

[A20] Alavi, S. H., Flag-transitive block designs and finite simple exceptional groups of Lie type, Graphs Combin., 36 (4) (2020), 1001–1014.

[AB+20] Alavi, S. H., Bayat, M., Choulaki, J., and Daneshkhah, A., Flag-transitive block designs with prime replication number and almost simple groups, Des. Codes Cryptogr., 88 (5) (2020), 971–992.

[ABD20] Alavi, S. H., Bayat, M., and Daneshkhah, A., Flag-transitive block designs and unitary groups, Monatsh. Math., 193 (3) (2020), 535–553.

[ABD20] Alavi, S. H., Bayat, M., and Daneshkhah, A., Symmetric designs and projective special linear groups of dimension at most four, J. Combin. Des., 28 (9) (2020), 688–709.

[AB+19] Alavi, S. H., Bayat, M., Daneshkhah, A., and Zarin, S. Z., Symmetric designs and four dimensional projective special unitary groups, Discrete Math., 342 (4) (2019), 1159–1169.

[ADO19] Alavi, S. H., Daneshkhah, A., and Okhovat, N., On flag-transitive automorphism groups of symmetric designs, Ars Math. Contemp., 17 (2) (2019), 617–626.

[ADP20] Alavi, S. H., Daneshkhah, A., and Praeger, C. E., Symmetries of biplanes, Des. Codes Cryptogr., 88 (11) (2020), 2337–2359.

[AR20] Alazemi, A. and Raney, M., On triangular matroids induced by $n_3$-configurations, Open Math., 18 (1) (2020), 1565–1579.

[AA+05] Albert, M. H., Aldred, R. E. L., Atkinson, M. D., Handley, C. C., Holton, D. A., and McCaughan, D. J., Sorting classes, Electron. J. Combin., 12 (2005), Research Paper 31, 25.

[AAB12] Albert, M. H., Atkinson, M. D., and Brignall, R., The enumeration of three pattern classes using monotone grid classes, Electron. J. Combin., 19 (3) (2012), Paper 20, 34.

[AL09] Albert, M. H. and Linton, S. A., Growing at a perfect speed, Combin. Probab. Comput., 18 (3) (2009), 301–308.

[ABC03] Alejandro, P. P., Bailey, R. A., and Cameron, P. J., Association schemes and permutation groups, Discrete Math., 266 (1-3) (2003), 47–67
(The 18th British Combinatorial Conference (Brighton, 2001)).

[AK16] Alekseeva, O. A. and Kondratʹev, A. S., Finite groups whose prime graphs are triangle-free. II, Tr. Inst. Mat. Mekh., 22 (1) (2016), 3–13.

[AB+00] Alexander, J., Balasubramanian, R., Martin, J., Monahan, K., Pollatsek, H., and Sen, A., Ruling out $(160,54,18)$ difference sets in some nonabelian groups, J. Combin. Des., 8 (4) (2000), 221–231.

[AS08] Ali, M. H. and Schaps, M., Lifting McKay graphs and relations to prime extensions, Rocky Mountain J. Math., 38 (2) (2008), 373–393.

[ABC17] Aljohani, M., Bamberg, J., and Cameron, P. J., Synchronization and separation in the Johnson schemes, Port. Math., 74 (3) (2017), 213–232.

[AR19] Anitha, T. and Rajkumar, R., On the power graph and the reduced power graph of a finite group, Comm. Algebra, 47 (8) (2019), 3329–3339.

[ABK15] Araújo, J., Bentz, W., and Konieczny, J., The commuting graph of the symmetric inverse semigroup, Israel J. Math., 207 (1) (2015), 103–149.

[AB+15] Araújo, J., Bentz, W., Mitchell, J. D., and Schneider, C., The rank of the semigroup of transformations stabilising a partition of a finite set, Math. Proc. Cambridge Philos. Soc., 159 (2) (2015), 339–353.

[ACS17] Araújo, J., Cameron, P. J., and Steinberg, B., Between primitive and 2-transitive: synchronization and its friends, EMS Surv. Math. Sci., 4 (2) (2017), 101–184.

[AKK11] Araújo, J., Kinyon, M., and Konieczny, J., Minimal paths in the commuting graphs of semigroups, European J. Combin., 32 (2) (2011), 178–197.

[A03] Araya, M., More mutually disjoint Steiner systems $S(5,8,24)$, J. Combin. Theory Ser. A, 102 (1) (2003), 201–203.

[AHK04] Araya, M., Harada, M., and Kharaghani, H., Some Hadamard matrices of order 32 and their binary codes, J. Combin. Des., 12 (2) (2004), 142–146.

[APS19] Ariki, S., Park, E., and Speyer, L., Specht modules for quiver Hecke algebras of type $C$, Publ. Res. Inst. Math. Sci., 55 (3) (2019), 565–626.

[AB16] Arquette, D. M. and Bulutoglu, D. A., The linear programming relaxation permutation symmetry group of an orthogonal array defining integer linear program, LMS J. Comput. Math., 19 (1) (2016), 206–216.

[AA19] Asadian, B. and Ahanjideh, N., Non-solvable groups and the two-prime hypothesis on conjugacy class sizes, Comm. Algebra, 47 (5) (2019), 2118–2130.

[AA18] Asboei, A. K. and Amiri, S. S. S., Some alternating and symmetric groups and related graphs, Beitr. Algebra Geom., 59 (1) (2018), 21–24.

[BT19] Bahrami, Z. and Taeri, B., Further results on the join graph of a finite group, Turkish J. Math., 43 (5) (2019), 2097–2113.

[BCC08] Bailey, R. A., Cameron, P. J., and Connelly, R., Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes, Amer. Math. Monthly, 115 (5) (2008), 383–404.

[BC+06] Bailey, R. A., Cameron, P. J., Dobcsányi, P., Morgan, J. P., and Soicher, L. H., Designs on the web, Discrete Math., 306 (23) (2006), 3014–3027.

[B06] Bailey, R. F., Uncoverings-by-bases for base-transitive permutation groups, Des. Codes Cryptogr., 41 (2) (2006), 153–176.

[B15] Bailey, R. F., The metric dimension of small distance-regular and strongly regular graphs, Australas. J. Combin., 62 (2015), 18–34.

[BC+13] Bailey, R. F., Cáceres, J., Garijo, D., González, A., Márquez, A., Meagher, K., and Puertas, M. L., Resolving sets for Johnson and Kneser graphs, European J. Combin., 34 (4) (2013), 736–751.

[BD07] Bailey, R. F. and Dixon, J. P., Distance enumerators for permutation groups, Comm. Algebra, 35 (10) (2007), 3045–3051.

[BP12] Bailey, R. F. and Prellberg, T., Decoding generalised hyperoctahahedral groups and asymptotic analysis of correctible error patterns, Contrib. Discrete Math., 7 (1) (2012), 1–14.

[BS10] Bailey, R. F. and Stevens, B., Hamiltonian decompositions of complete $k$-uniform hypergraphs, Discrete Math., 310 (22) (2010), 3088–3095.

[BR15] Ballantyne, J. and Rowley, P., Local fusion graphs and sporadic simple groups, Electron. J. Combin., 22 (3) (2015), Paper 3.18, 13.

[BD+15] Bamberg, J., Devillers, A., Fawcett, J. B., and Praeger, C. E., Locally triangular graphs and rectagraphs with symmetry, J. Combin. Theory Ser. A, 133 (2015), 1–28.

[BGS15] Bamberg, J., Glasby, S. P., and Swartz, E., AS-configurations and skew-translation generalised quadrangles, J. Algebra, 421 (2015), 311–330.

[BN+19] Bannai, E., Nakahara, M., Zhao, D., and Zhu, Y., On the explicit constructions of certain unitary $t$-designs, J. Phys. A, 52 (49) (2019), 495301, 17.

[BN+20] Bannai, E., Navarro, G., Rizo, N., and Tiep, P. H., Unitary $t$-groups, J. Math. Soc. Japan, 72 (3) (2020), 909–921.

[BC12] Barakat, M. and Cuntz, M., Coxeter and crystallographic arrangements are inductively free, Adv. Math., 229 (1) (2012), 691–709.

[BB+07] Bates, C., Bundy, D., Hart, S., and Rowley, P., Commuting involution graphs for sporadic simple groups, J. Algebra, 316 (2) (2007), 849–868.

[BH+09] Baumeister, B., Haase, C., Nill, B., and Paffenholz, A., On permutation polytopes, Adv. Math., 222 (2) (2009), 431–452.

[B05] Becker, P. E., Investigation of solvable (120, 35, 10) difference sets, J. Combin. Des., 13 (2) (2005), 79–107.

[BKK07] Beidar, K. I., Ke, W., and Kiechle, H., Automorphisms of certain design groups. II, J. Algebra, 313 (2) (2007), 672–686.

[B15] Belousov, I. N., On automorphisms of a distance-regular graph with intersection array $\39, 36, 1; 1, 2, 39\$, Tr. Inst. Mat. Mekh., 21 (3) (2015), 54–62.

[BM17] Belousov, I. N. and Makhnev, A. A., Automorphism groups of small distance regular graphs, Algebra Logika, 56 (4) (2017), 395–405.

[BFM15] Beltrán, A., Felipe, M. J., and Melchor, C., Graphs associated to conjugacy classes of normal subgroups in finite groups, J. Algebra, 443 (2015), 335–348.

[BFM16] Beltrán, A., Felipe, M. J., and Melchor, C., Normal subgroups whose conjugacy class graph has diameter three, Bull. Aust. Math. Soc., 94 (2) (2016), 266–272.

[BM05] Benini, A. and Morini, F., Partially balanced incomplete block designs from weakly divisible nearrings, Discrete Math., 301 (1) (2005), 34–45.

[BF+97] Berenbom, J., Fendel, J., Gilbert, G. T., and Hatcher, R. L., Sliding piece puzzles with oriented tiles, Discrete Math., 175 (1-3) (1997), 23–33.

[BM+15] Berman, L. W., Monson, B., Oliveros, D., and Williams, G. I., The monodromy group of a truncated simplex, J. Algebraic Combin., 42 (3) (2015), 745–761.

[BD+09] Betten, A., Delandtsheer, A., Law, M., Niemeyer, A. C., Praeger, C. E., and Zhou, S., Finite line-transitive linear spaces: theory and search strategies, Acta Math. Sin. (Engl. Ser.), 25 (9) (2009), 1399–1436.

[BTZ19] Betten, A., Topalova, S., and Zhelezova, S., Parallelisms of $\rm PG(3,4)$ invariant under cyclic groups of order 4, in Algebraic informatics, Springer, Cham, Lecture Notes in Comput. Sci., 11545 (2019), 88–99.

[BS08] Bhattacharya, C. and Smith, K. W., Factoring $(16,6,2)$ Hadamard difference sets, Electron. J. Combin., 15 (1) (2008), Research Paper 112, 16.

[BM17] Biliotti, M. and Montinaro, A., On flag-transitive symmetric designs of affine type, J. Combin. Des., 25 (2) (2017), 85–97.

[BMR19] Biliotti, M., Montinaro, A., and Rizzo, P., Nonsymmetric 2-$(v,k,\lambda)$ designs, with $(r,\lambda)=1$, admitting a solvable flag-transitive automorphism group of affine type, J. Combin. Des., 27 (12) (2019), 784–800.

[BTW06] Billera, L. J., Thomas, H., and van Willigenburg, S., Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions, Adv. Math., 204 (1) (2006), 204–240.

[BD16] Bishnoi, A. and De Bruyn, B., A new near octagon and the Suzuki tower, Electron. J. Combin., 23 (2) (2016), Paper 2.35, 24.

[BD16] Bishnoi, A. and De Bruyn, B., On semi-finite hexagons of order $(2,t)$ containing a subhexagon, Ann. Comb., 20 (3) (2016), 433–452.

[BD17] Bishnoi, A. and De Bruyn, B., Characterizations of the Suzuki tower near polygons, Des. Codes Cryptogr., 84 (1-2) (2017), 115–133.

[BD17] Bishnoi, A. and De Bruyn, B., On generalized hexagons of order $(3,t)$ and $(4,t)$ containing a subhexagon, European J. Combin., 62 (2017), 115–123.

[BD18] Bishnoi, A. and De Bruyn, B., The $\rm L_3(4)$ near octagon, J. Algebraic Combin., 48 (1) (2018), 157–178.

[BI17] Bishnoi, A. and Ihringer, F., The non-existence of distance-2 ovoids in $ßfH(4)^D$, Contrib. Discrete Math., 12 (1) (2017), 157–161.

[BM17] Bitkina, V. V. and Makhnev, A. A., On the automorphism group of a distance regular graph with intersection array $\35,32,1;1,4,35\$, Algebra Logika, 56 (6) (2017), 671–681.

[BGP11] Blanco, V., García-Sánchez, P. A., and Puerto, J., Counting numerical semigroups with short generating functions, Internat. J. Algebra Comput., 21 (7) (2011), 1217–1235.

[B10] Bogaerts, M., New upper bounds for the size of permutation codes via linear programming, Electron. J. Combin., 17 (1) (2010), Research Paper 135, 9.

[BN19] Bogya, N. and Nagy, G. P., Light dual multinets of order six in the projective plane, Acta Math. Hungar., 159 (2) (2019), 520–536.

[BKP19] Bojarski, J., Kisielewicz, A., and Przesławski, K., Nearly neighbourly families of standard boxes, Electron. J. Combin., 26 (4) (2019), Paper No. 4.44, 39.

[BG+96] Bokowski, J., Guedes de Oliviera, A., Thiemann, U., and Veloso da Costa, A., On the cube problem of Las Vergnas, Geom. Dedicata, 63 (1) (1996), 25–43.

[BB14] Bonisoli, A. and Bonvicini, S., On the existence spectrum for sharply transitive $G$-designs, $G$ a $[k]$-matching, Discrete Math., 332 (2014), 60–68.

[BL02] Bonisoli, A. and Labbate, D., One-factorizations of complete graphs with vertex-regular automorphism groups, J. Combin. Des., 10 (1) (2002), 1–16.

[BR03] Bonisoli, A. and Rinaldi, G., Primitive collineation groups of ovals with a fixed point, European J. Combin., 24 (7) (2003), 797–807.

[B08] Bonvicini, S., Frattini-based starters in 2-groups, Discrete Math., 308 (2-3) (2008), 380–381.

[BR10] Bonvicini, S. and Ruini, B., Symmetric bowtie decompositions of the complete graph, Electron. J. Combin., 17 (1) (2010), Research Paper 101, 19.

[B19] Bors, A., Finite groups with an automorphism inverting, squaring or cubing a non-negligible fraction of elements, J. Algebra Appl., 18 (3) (2019), 1950055, 30.

[BD+09] Boyd, S., Diaconis, P., Parrilo, P., and Xiao, L., Fastest mixing Markov chain on graphs with symmetries, SIAM J. Optim., 20 (2) (2009), 792–819.

[B10] Braić, S., Primitive symmetric designs with at most 255 points, Glas. Mat. Ser. III, 45(65) (2) (2010), 291–305.

[BG+10] Braić, S., Golemac, A., Mandić, J., and Vučičić, T., Graphs and symmetric designs corresponding to difference sets in groups of order 96, Glas. Mat. Ser. III, 45(65) (1) (2010), 1–14.

[BG+10] Braić, S., Golemac, A., Mandić, J., and Vučičić, T., Primitive symmetric designs with prime power number of points, J. Combin. Des., 18 (2) (2010), 141–154.

[BG+11] Braić, S., Golemac, A., Mandić, J., and Vučičić, T., Primitive symmetric designs with up to 2500 points, J. Combin. Des., 19 (6) (2011), 463–474.

[BMV15] Braić, S., Mandić, J., and Vučičić, T., Primitive block designs with automorphism group $\rm PSL(2,q)$, Glas. Mat. Ser. III, 50(70) (1) (2015), 1–15.

[BPR00] Bray, J., Parker, C., and Rowley, P., Cayley type graphs and cubic graphs of large girth, Discrete Math., 214 (1-3) (2000), 113–121.

[BC+20] Bray, J. N., Cai, Q., Cameron, P. J., Spiga, P., and Zhang, H., The Hall-Paige conjecture, and synchronization for affine and diagonal groups, J. Algebra, 545 (2020), 27–42.

[B20] Breda d'Azevedo, A., Mapification of $n$-dimensional abstract polytopes and hypertopes, Ars Math. Contemp., 18 (1) (2020), 73–86.

[BCD15] Breda d'Azevedo, A., Catalano, D. A., and Duarte, R., Regular pseudo-oriented maps and hypermaps of low genus, Discrete Math., 338 (6) (2015), 895–921.

[BC+17] Breda d'Azevedo, A., Catalano, D. A., Karabáš, J., and Nedela, R., Quadrangle groups inclusions, Beitr. Algebra Geom., 58 (2) (2017), 369–394.

[BD07] Breda d'Azevedo, A. and Duarte, R., Bipartite-uniform hypermaps on the sphere, Electron. J. Combin., 14 (1) (2007), Research Paper 5, 20.

[BJ09] Breda D'Azevedo, A. and Jones, G. A., Totally chiral maps and hypermaps of small genus, J. Algebra, 322 (11) (2009), 3971–3996.

[BF05] Bretto, A. and Faisant, A., Another way for associating a graph to a group, Math. Slovaca, 55 (1) (2005), 1–8.

[BF11] Bretto, A. and Faisant, A., Cayley graphs and $G$-graphs: some applications, J. Symbolic Comput., 46 (12) (2011), 1403–1412.

[BFG07] Bretto, A., Faisant, A., and Gillibert, L., $G$-graphs: a new representation of groups, J. Symbolic Comput., 42 (5) (2007), 549–560.

[BG+10] Breuer, T., Guralnick, R. M., Lucchini, A., Maróti, A., and Nagy, G. P., Hamiltonian cycles in the generating graphs of finite groups, Bull. Lond. Math. Soc., 42 (4) (2010), 621–633.

[BC+20] Bright, C., Cheung, K., Stevens, B., Roy, D., Kotsireas, I., and Ganesh, V., A nonexistence certificate for projective planes of order ten with weight 15 codewords, Appl. Algebra Engrg. Comm. Comput., 31 (3-4) (2020), 195–213.

[BR05] Britz, T. and Rutherford, C. G., Covering radii are not matroid invariants, Discrete Math., 296 (1) (2005), 117–120.

[BQ+04] Brooksbank, P., Qin, H., Robertson, E., and Seress, Á., On Dowling geometries of infinite groups, J. Combin. Theory Ser. A, 108 (1) (2004), 155–158.

[BKK03] Brouwer, A. E., Koolen, J. H., and Klin, M. H., A root graph that is locally the line graph of the Petersen graph, Discrete Math., 264 (1-3) (2003), 13–24
(The 2000 $\rmCom^2MaC$ Conference on Association Schemes, Codes and Designs (Pohang)).

[BKR98] Brouwer, A. E., Koolen, J. H., and Riebeek, R. J., A new distance-regular graph associated to the Mathieu group $M_10$, J. Algebraic Combin., 8 (2) (1998), 153–156.

[BH10] Brunk, F. and Huczynska, S., Some Erdős-Ko-Rado theorems for injections, European J. Combin., 31 (3) (2010), 839–860.

[BGM21] Bruns, W., García-Sánchez, P. A., and Moci, L., The monoid of monotone functions on a poset and quasi-arithmetic multiplicities for uniform matroids, J. Algebra, 569 (2021), 377–400.

[BR18] Bulutoglu, D. A. and Ryan, K. J., Integer programming for classifying orthogonal arrays, Australas. J. Combin., 70 (2018), 362–385.

[BW18] Buratti, M. and Wassermann, A., On decomposability of cyclic triple systems, Australas. J. Combin., 71 (2018), 184–195.

[BG20] Burness, T. C. and Giudici, M., On the Saxl graph of a permutation group, Math. Proc. Cambridge Philos. Soc., 168 (2) (2020), 219–248.

[CCS07] Cameron, P., Cilleruelo, J., and Serra, O., On monochromatic solutions of equations in groups, Rev. Mat. Iberoam., 23 (1) (2007), 385–395.

[CPS06] Cameron, P., Prellberg, T., and Stark, D., Asymptotics for incidence matrix classes, Electron. J. Combin., 13 (1) (2006), Research Paper 85, 19.

[C03] Cameron, P. J., Coherent configurations, association schemes and permutation groups, in Groups, combinatorics \& geometry (Durham, 2001), World Sci. Publ., River Edge, NJ (2003), 55–71.

[C05] Cameron, P. J., Partitions and permutations, Discrete Math., 291 (1-3) (2005), 45–54.

[C09] Cameron, P. J., Root systems and optimal block designs, Michigan Math. J., 58 (1) (2009), 181–194.

[C13] Cameron, P. J., Dixon's theorem and random synchronization, Discrete Math., 313 (11) (2013), 1233–1236.

[CG+17] Cameron, P. J., Gadouleau, M., Mitchell, J. D., and Peresse, Y., Chains of subsemigroups, Israel J. Math., 220 (1) (2017), 479–508.

[CG11] Cameron, P. J. and Ghosh, S., The power graph of a finite group, Discrete Math., 311 (13) (2011), 1220–1222.

[CK08] Cameron, P. J. and Kazanidis, P. A., Cores of symmetric graphs, J. Aust. Math. Soc., 85 (2) (2008), 145–154.

[CK03] Cameron, P. J. and Ku, C. Y., Intersecting families of permutations, European J. Combin., 24 (7) (2003), 881–890.

[CM17] Cameron, P. J. and Morgan, K., Algebraic properties of chromatic roots, Electron. J. Combin., 24 (1) (2017), Paper No. 1.21, 14.

[CP16] Cameron, P. J. and Praeger, C. E., Constructing flag-transitive, point-imprimitive designs, J. Algebraic Combin., 43 (4) (2016), 755–769.

[CR07] Cameron, P. J. and Rudvalis, A., A design and a geometry for the group $\rm Fi_22$, Des. Codes Cryptogr., 44 (1-3) (2007), 11–14.

[CS07] Cameron, P. J. and Soicher, L. H., Block intersection polynomials, Bull. Lond. Math. Soc., 39 (4) (2007), 559–564.

[CS15] Cameron, P. J. and Spiga, P., Most switching classes with primitive automorphism groups contain graphs with trivial groups, Australas. J. Combin., 62 (2015), 76–90.

[CW05] Cameron, P. J. and Wanless, I. M., Covering radius for sets of permutations, Discrete Math., 293 (1-3) (2005), 91–109.

[CRV14] Cara, P., Rottey, S., and Van de Voorde, G., A construction for infinite families of semisymmetric graphs revealing their full automorphism group, J. Algebraic Combin., 39 (4) (2014), 967–988.

[CRV14] Cara, P., Rottey, S., and Van de Voorde, G., The isomorphism problem for linear representations and their graphs, Adv. Geom., 14 (2) (2014), 353–367.

[CM07] Carlip, W. and Mincheva, M., Component growth of iteration graphs under the squaring map modulo $p^k$, Fibonacci Quart., 45 (3) (2007), 239–246 (2008).

[CM08] Carlip, W. and Mincheva, M., Symmetry of iteration graphs, Czechoslovak Math. J., 58(133) (1) (2008), 131–145.

[CC+11] Catalano, D. A., Conder, M. D. E., Du, S. F., Kwon, Y. S., Nedela, R., and Wilson, S., Classification of regular embeddings of $n$-dimensional cubes, J. Algebraic Combin., 33 (2) (2011), 215–238.

[CS17] Catalano, D. A. and Sarti, C., Fano plane's embeddings on compact orientable surfaces, Beitr. Algebra Geom., 58 (4) (2017), 635–653.

[CRB02] Charnes, C., Rötteler, M., and Beth, T., Homogeneous bent functions, invariants, and designs, Des. Codes Cryptogr., 26 (1-3) (2002), 139–154
(In honour of Ronald C. Mullin).

[CLL17] Chen, B., Lin, L., and Ling, S., External difference families from finite fields, J. Combin. Des., 25 (1) (2017), 36–48.

[CP17] Chen, G. and Ponomarenko, I., Coherent configurations associated with TI-subgroups, J. Algebra, 488 (2017), 201–229.

[CT05] Chen, W. Y. -. and Torney, D. C., Equivalence classes of matchings and lattice-square designs, Discrete Appl. Math., 145 (3) (2005), 349–357.

[CH06] Chesnokov, A. A. and Haemers, W. H., Regularity and the generalized adjacency spectra of graphs, Linear Algebra Appl., 416 (2-3) (2006), 1033–1037.

[CK19] Ciobanu, L. and Kolpakov, A., Free subgroups of free products and combinatorial hypermaps, Discrete Math., 342 (5) (2019), 1415–1433.

[CCG05] Cohen, A. M., Cuypers, H., and Gramlich, R., Local recognition of non-incident point-hyperplane graphs, Combinatorica, 25 (3) (2005), 271–296.

[CMS99] Cohen, A. M., Magaard, K., and Shpectorov, S., Affine distance-transitive graphs: the cross characteristic case, European J. Combin., 20 (5) (1999), 351–373.

[CG+18] Conaway, R., Gotti, F., Horton, J., O'Neill, C., Pelayo, R., Pracht, M., and Wissman, B., Minimal presentations of shifted numerical monoids, Internat. J. Algebra Comput., 28 (1) (2018), 53–68.

[C93] Conder, M., Hexagon-free subgraphs of hypercubes, J. Graph Theory, 17 (4) (1993), 477–479.

[C94] Conder, M., Regular maps with small parameters, J. Austral. Math. Soc. Ser. A, 57 (1) (1994), 103–112.

[CEJ10] Conder, M., Exoo, G., and Jajcay, R., On the limitations of the use of solvable groups in Cayley graph cage constructions, European J. Combin., 31 (7) (2010), 1819–1828.

[CT11] Conder, M. and Tucker, T., Motion and distinguishing number two, Ars Math. Contemp., 4 (1) (2011), 63–72.

[CJ+13] Conder, M. D. E., Jones, G. A., Streit, M., and Wolfart, J., Galois actions on regular dessins of small genera, Rev. Mat. Iberoam., 29 (1) (2013), 163–181.

[CW98] Conder, M. D. E. and Walker, C. G., The infinitude of $7$-arc-transitive graphs, J. Algebra, 208 (2) (1998), 619–629.

[CH03] Crnković, D. and Held, D., Some Menon designs having $U(3,3)$ as an automorphism group, Illinois J. Math., 47 (1-2) (2003), 129–139
(Special issue in honor of Reinhold Baer (1902–1979)).

[CM20] Crnković, D. and Maksimović, M., Construction of strongly regular graphs having an automorphism group of composite order, Contrib. Discrete Math., 15 (1) (2020), 22–41.

[CM11] Crnković, D. and Mikulić Crnković, V., On some combinatorial structures constructed from the groups $L(3,5), U(5,2)$, and $S(6,2)$, Int. J. Comb. (2011), Art. ID 137356, 12.

[CM13] Crnković, D. and Mikulić, V., Unitals, projective planes and other combinatorial structures constructed from the unitary groups $U(3,q)$, $q=3,4,5,7$, Ars Combin., 110 (2013), 3–13.

[CMR10] Crnković, D., Mikulić, V., and Rodrigues, B. G., Some strongly regular graphs and self-orthogonal codes from the unitary group $\rm U_4(3)$, Glas. Mat. Ser. III, 45(65) (2) (2010), 307–323.

[CR13] Crnković, D. and Rodrigues, B. G., Self-orthogonal codes from some Bush-type Hadamard matrices, Quaest. Math., 36 (3) (2013), 341–352.

[CRS06] Crnković, D., Rukavina, S., and Schmidt, M., A classification of all symmetric block designs of order nine with an automorphism of order six, J. Combin. Des., 14 (4) (2006), 301–312.

[CRS18] Crnković, D., Rukavina, S., and Švob, A., New strongly regular graphs from orthogonal groups $O^+(6,2)$ and $O^-(6,2)$, Discrete Math., 341 (10) (2018), 2723–2728.

[CRS20] Crnković, D., Rukavina, S., and Švob, A., On some distance-regular graphs with many vertices, J. Algebraic Combin., 51 (4) (2020), 641–652.

[CL06] Csorba, P. and Lutz, F. H., Graph coloring manifolds, in Algebraic and geometric combinatorics, Amer. Math. Soc., Providence, RI, Contemp. Math., 423 (2006), 51–69.

[CP14] Cunningham, G. and Pellicer, D., Chiral extensions of chiral polytopes, Discrete Math., 330 (2014), 51–60.

[C01] Curtin, E., Cubic Cayley graphs with small diameter, Discrete Math. Theor. Comput. Sci., 4 (2) (2001), 123–131.

[D06] Darafsheh, M. R., Designs from the group $\rm PSL_2(q)$, $q$ even, Des. Codes Cryptogr., 39 (3) (2006), 311–316.

[DAK08] Darafsheh, M. R., Ashrafi, A. R., and Khademi, M., Some designs related to group actions, Ars Combin., 86 (2008), 65–75.

[DM11] Darafsheh, M. R. and Monfared, M. D., Characterization of $\Bbb A_16$ by a noncommuting graph, Ukrainian Math. J., 62 (11) (2011), 1673–1679.

[ACS19] d'Azevedo, A. B., Catalano, D. A., and Širáň, J., Bi-rotary maps of negative prime characteristic, Ann. Comb., 23 (1) (2019), 27–50.

[DJS11] D'Azevedo, A. B., Jones, G. A., and Schulte, E., Constructions of chiral polytopes of small rank, Canad. J. Math., 63 (6) (2011), 1254–1283.

[DG+09] De Beule, J., Govaerts, P., Hallez, A., and Storme, L., Tight sets, weighted $m$-covers, weighted $m$-ovoids, and minihypers, Des. Codes Cryptogr., 50 (2) (2009), 187–201.

[DH+16] De Beule, J., Héger, T., Szőnyi, T., and Van de Voorde, G., Blocking and double blocking sets in finite planes, Electron. J. Combin., 23 (2) (2016), Paper 2.5, 21.

[DS06] De Beule, J. and Storme, L., Blocking all generators of $Q^+(2n+1,3), n\geq4$, Des. Codes Cryptogr., 39 (3) (2006), 323–333.

[D12] De Bruyn, B., The hyperplanes of the glued near hexagon $Q(5,2)\otimes Q(5,2)$, Ann. Comb., 16 (4) (2012), 661–676.

[D12] De Bruyn, B., The pseudo-hyperplanes and homogeneous pseudo-embeddings of $\rm AG(n,4)$ and $\rm PG(n,4)$, Des. Codes Cryptogr., 65 (1-2) (2012), 127–156.

[D13] De Bruyn, B., Pseudo-embeddings and pseudo-hyperplanes, Adv. Geom., 13 (1) (2013), 71–95.

[D13] De Bruyn, B., The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order $(3,t)$, Des. Codes Cryptogr., 68 (1-3) (2013), 259–284.

[DS19] De Bruyn, B. and Sahoo, B. K., On minimum size blocking sets of the outer tangents to a hyperbolic quadric in $\rm PG(3,q)$, Finite Fields Appl., 56 (2019), 31–57.

[DSS19] De Bruyn, B., Sahoo, B. K., and Sahu, B., Blocking sets of tangent lines to a hyperbolic quadric in $\rm PG(3,3)$, Discrete Appl. Math., 266 (2019), 121–129.

[DS10] De Bruyn, B. and Shpectorov, S., The hyperplanes of the $U_4(3)$ near hexagon, Graphs Combin., 26 (5) (2010), 647–671.

[DS19] De Bruyn, B. and Shpectorov, S., The hyperplanes of the near hexagon related to the extended ternary Golay code, Geom. Dedicata, 202 (2019), 9–26.

[KM+06] de Klerk, E., Maharry, J., Pasechnik, D. V., Richter, R. B., and Salazar, G., Improved bounds for the crossing numbers of $K_m,n$ and $K_n$, SIAM J. Discrete Math., 20 (1) (2006), 189–202.

[D12] Degtyarev, A., Topology of algebraic curves, Walter de Gruyter \& Co., Berlin, De Gruyter Studies in Mathematics, 44 (2012), xvi+393 pages
(An approach via dessins d'enfants).

[DM05] Del Padrone, A. and Mazza, C., Schur finiteness and nilpotency, C. R. Math. Acad. Sci. Paris, 341 (5) (2005), 283–286.

[D18] Delgado, M., On a question of Eliahou and a conjecture of Wilf, Math. Z., 288 (1-2) (2018), 595–627.

[DK17] Dellnitz, M. and Klus, S., Sensing and control in symmetric networks, Dyn. Syst., 32 (1) (2017), 61–79.

[D06] Dempwolff, U., Automorphisms and equivalence of bent functions and of difference sets in elementary abelian 2-groups, Comm. Algebra, 34 (3) (2006), 1077–1131.

[D20] Dempwolff, U., Automorphisms and isomorphisms of some $p$-ary bent functions, J. Algebraic Combin., 51 (4) (2020), 527–566.

[DMP10] Deriziotis, D., McDonough, T. P., and Pallikaros, C. A., On root subsystems and involutions in $S_n$, Glasg. Math. J., 52 (2) (2010), 357–369.

[DKC10] Deveci, Ö., Karaduman, E., and Campbell, C. M., The periods of $k$-nacci sequences in centro-polyhedral groups and related groups, Ars Combin., 97A (2010), 193–210.

[DD05] Deza, M. and Dutour, M., Zigzag structures of simple two-faced polyhedra, Combin. Probab. Comput., 14 (1-2) (2005), 31–57.

[DW18] Dietrich, H. and Wanless, I. M., Small partial Latin squares that embed in an infinite group but not into any finite group, J. Symbolic Comput., 86 (2018), 142–152.

[DK14] Distler, A. and Kelsey, T., The semigroups of order 9 and their automorphism groups, Semigroup Forum, 88 (1) (2014), 93–112.

[DM12] Distler, A. and Mitchell, J. D., The number of nilpotent semigroups of degree 3, Electron. J. Combin., 19 (2) (2012), Paper 51, 19.

[D97] Dixon, J. D., Groups with a Cayley graph isomorphic to a hypercube, Bull. Austral. Math. Soc., 55 (3) (1997), 385–393.

[DPS07] Dobcsányi, P., Preece, D. A., and Soicher, L. H., On balanced incomplete-block designs with repeated blocks, European J. Combin., 28 (7) (2007), 1955–1970.

[DS13] Dobson, E. and Spiga, P., CI-groups with respect to ternary relational structures: new examples, Ars Math. Contemp., 6 (2) (2013), 351–364.

[DZ18] Dong, H. and Zhao, X., Sporadic simple groups and block-transitive symmetric designs, Ars Combin., 136 (2018), 227–233.

[DZ19] Dong, H. and Zhao, X., Block-transitive designs and the sporadic simple group $M_11$, Ars Combin., 146 (2019), 89–95.

[DZ12] Dong, H. and Zhou, S., Affine groups and flag-transitive triplanes, Sci. China Math., 55 (12) (2012), 2557–2578.

[DZ14] Dong, H. and Zhou, S., Flag-transitive primitive $(v,k,\lambda)$ symmetric designs with $\lambda$ at most 10 and alternating socle, J. Algebra Appl., 13 (6) (2014), 1450025, 10.

[DG+16] Donovan, D. M., Griggs, T. S., McCourt, T. A., Opršal, J., and Stanovský, D., Distributive and anti-distributive Mendelsohn triple systems, Canad. Math. Bull., 59 (1) (2016), 36–49.

[DPR13] Douglass, J. M., Pfeiffer, G., and Röhrle, G., On reflection subgroups of finite Coxeter groups, Comm. Algebra, 41 (7) (2013), 2574–2592.

[DGK14] Drápal, A., Griggs, T. S., and Kozlik, A. R., Triple systems and binary operations, Discrete Math., 325 (2014), 1–11.

[DGK15] Drápal, A., Griggs, T. S., and Kozlik, A. R., Basics of DTS quasigroups: algebra, geometry and enumeration, J. Algebra Appl., 14 (6) (2015), 1550089, 24.

[DV06] Drápal, A. and Vojtěchovský, P., Moufang loops that share associator and three quarters of their multiplication tables, Rocky Mountain J. Math., 36 (2) (2006), 425–455.

[DV20] Drápal, A. and Vojtěchovský, P., Division sudokus: invariants, enumeration, and multiple partitions, Glasg. Math. J., 62 (3) (2020), 600–630.

[D12] Dukes, P. J., Coding with injections, Des. Codes Cryptogr., 65 (3) (2012), 213–222.

[DHS11] Duncan, D. M., Hoffman, T. R., and Solazzo, J. P., Numerical measures for two-graphs, Rocky Mountain J. Math., 41 (1) (2011), 133–154.

[DD04] Dutour, M. and Deza, M., Goldberg-Coxeter construction for 3- and 4-valent plane graphs, Electron. J. Combin., 11 (1) (2004), Research Paper 20, 49.

[DIP07] Dutour Sikirić, M., Itoh, Y., and Poyarkov, A., Cube packings, second moment and holes, European J. Combin., 28 (3) (2007), 715–725.

[EK10] Effenberger, F. and Kühnel, W., Hamiltonian submanifolds of regular polytopes, Discrete Comput. Geom., 43 (2) (2010), 242–262.

[EB99] Egner, S. and Beth, T., How to play $M_13$?, Des. Codes Cryptogr., 16 (3) (1999), 243–247.

[EPB97] Egner, S., Püschel, M., and Beth, T., Decomposing a permutation into a conjugated tensor product, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York (1997), 101–108.

[EM17] Eick, B. and Moede, T., Coclass theory for finite nilpotent associative algebras: algorithms and a periodicity conjecture, Exp. Math., 26 (3) (2017), 267–274.

[EH+10] El-Zanati, S., Heden, O., Seelinger, G., Sissokho, P., Spence, L., and Vanden Eynden, C., Partitions of the 8-dimensional vector space over $\rm GF(2)$, J. Combin. Des., 18 (6) (2010), 462–474.

[E06] Elder, M., Permutations generated by a stack of depth 2 and an infinite stack in series, Electron. J. Combin., 13 (1) (2006), Research Paper 68, 12.

[EF19] Eliahou, S. and Fromentin, J., Near-misses in Wilf's conjecture, Semigroup Forum, 98 (2) (2019), 285–298.

[E04] Exoo, G., Voltage graphs, group presentations and cages, Electron. J. Combin., 11 (1) (2004), Note 2, 7.

[EJ11] Exoo, G. and Jajcay, R., On the girth of voltage graph lifts, European J. Combin., 32 (4) (2011), 554–562.

[FMW11] Fang, X., Ma, X., and Wang, J., On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118 (3) (2011), 1039–1051.

[FJW08] Fang, X. G., Jia, L. J., and Wang, J., On the automorphism groups of symmetric graphs admitting an almost simple group, European J. Combin., 29 (6) (2008), 1467–1472.

[FLW07] Fang, X. G., Li, C. H., and Wang, J., Finite vertex primitive 2-arc regular graphs, J. Algebraic Combin., 25 (2) (2007), 125–140.

[FG+18] Fawcett, J. B., Giudici, M., Li, C. H., Praeger, C. E., Royle, G., and Verret, G., Primitive permutation groups with a suborbit of length 5 and vertex-primitive graphs of valency 5, J. Combin. Theory Ser. A, 157 (2018), 247–266.

[F12] Fayers, M., An algorithm for semistandardising homomorphisms, J. Algebra, 364 (2012), 38–51.

[F18] Fayers, M., Irreducible projective representations of the symmetric group which remain irreducible in characteristic 2, Proc. Lond. Math. Soc. (3), 116 (4) (2018), 878–928.

[F20] Fayers, M., Irreducible projective representations of the alternating group which remain irreducible in characteristic 2, Adv. Math., 374 (2020), 107340, 62.

[FP20] Fernandes, M. E. and Piedade, C. A., Faithful permutation representations of toroidal regular maps, J. Algebraic Combin., 52 (3) (2020), 317–337.

[FH06] Fiala, N. C. and Haemers, W. H., 5-chromatic strongly regular graphs, Discrete Math., 306 (23) (2006), 3083–3096.

[FKM02] Fiedler, F., Klin, M. H., and Muzychuk, M., Small vertex-transitive directed strongly regular graphs, Discrete Math., 255 (1-3) (2002), 87–115
(Combinatorics '98 (Palermo)).

[FR08] Fiori, C. and Ruini, B., Infinite classes of dihedral snarks, Mediterr. J. Math., 5 (2) (2008), 199–210.

[FI12] Foroudi Ghasemabadi, M. and Iranmanesh, A., 2-quasirecognizability of the simple groups $B_n(p)$ and $C_n(p)$ by prime graph, Bull. Iranian Math. Soc., 38 (3) (2012), 647–668.

[FIM16] Franchi, C., Ivanov, A. A., and Mainardis, M., The $2A$-Majorana representations of the Harada-Norton group, Ars Math. Contemp., 11 (1) (2016), 175–187.

[FGO21] Fresán-Figueroa, J., González-Moreno, D., and Olsen, M., On the packing chromatic number of Moore graphs, Discrete Appl. Math., 289 (2021), 185–193.

[FNP04] Frías-Armenta, M. E., Neumann-Lara, V., and Pizaña, M. A., Dismantlings and iterated clique graphs, Discrete Math., 282 (1-3) (2004), 263–265.

[FG14] Friedman, M. and Garber, D., On the structure of fundamental groups of conic-line arrangements having a cycle in their graph, Topology Appl., 177 (2014), 34–58.

[FL16] Friese, E. and Ladisch, F., Affine symmetries of orbit polytopes, Adv. Math., 288 (2016), 386–425.

[F96] Fripertinger, H., The cycle index of the symmetry group of the fullerene $\rm C_60$, Match (33) (1996), 121–138.

[FH16] Fromentin, J. and Hivert, F., Exploring the tree of numerical semigroups, Math. Comp., 85 (301) (2016), 2553–2568.

[G13] Ganesan, A., Automorphism groups of Cayley graphs generated by connected transposition sets, Discrete Math., 313 (21) (2013), 2482–2485.

[GH+17] García-Sánchez, P. A., Heredia, B. A., Karakaş, H. İ., and Rosales, J. C., Parametrizing Arf numerical semigroups, J. Algebra Appl., 16 (11) (2017), 1750209, 31.

[GLM17] García-Sánchez, P. A., Llena, D., and Moscariello, A., Delta sets for symmetric numerical semigroups with embedding dimension three, Aequationes Math., 91 (3) (2017), 579–600.

[GLM18] García-Sánchez, P. A., Llena, D., and Moscariello, A., Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math., 30 (1) (2018), 15–30.

[GOW19] García-Sánchez, P. A., O'Neill, C., and Webb, G., The computation of factorization invariants for affine semigroups, J. Algebra Appl., 18 (1) (2019), 1950019, 21.

[GK+15] Gent, I., Kitaev, S., Konovalov, A., Linton, S., and Nightingale, P., S-crucial and bicrucial permutations with respect to squares, J. Integer Seq., 18 (6) (2015), Article 15.6.5, 22.

[GD14] Gharibkhajeh, A. and Doostie, H., A graphical difference between the inverse and regular semigroups, Bull. Iranian Math. Soc., 40 (2) (2014), 413–421.

[GG+16] Gill, N., Gillespie, N. I., Nixon, A., and Semeraro, J., Generating groups using hypergraphs, Q. J. Math., 67 (1) (2016), 29–52.

[GGS18] Gill, N., Gillespie, N. I., and Semeraro, J., Conway groupoids and completely transitive codes, Combinatorica, 38 (2) (2018), 399–442.

[GS05] Ginsburg, J. and Sands, B., On the number of elements dominated by a subgroup, Ars Combin., 74 (2005), 103–127.

[G03] Girondo, E., Multiply quasiplatonic Riemann surfaces, Experiment. Math., 12 (4) (2003), 463–475.

[GG+20] Girondo, E., González-Diez, G., Hidalgo, R. A., and Jones, G. A., Zapponi-orientable dessins d'enfants, Rev. Mat. Iberoam., 36 (2) (2020), 549–570.

[GK16] Giudici, M. and Kuzma, B., Realizability problem for commuting graphs, J. Aust. Math. Soc., 101 (3) (2016), 335–355.

[GL+07] Giudici, M., Li, C. H., Praeger, C. E., Seress, Á., and Trofimov, V. I., On limit graphs of finite vertex-primitive graphs, J. Combin. Theory Ser. A, 114 (1) (2007), 110–134.

[GS10] Giudici, M. and Smith, M. R., A note on quotients of strongly regular graphs, Ars Math. Contemp., 3 (2) (2010), 147–150.

[GP12] Giuzzi, L. and Pasotti, A., Sampling complete designs, Discrete Math., 312 (3) (2012), 488–497.

[GM09] Godsil, C. and Meagher, K., A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations, European J. Combin., 30 (2) (2009), 404–414.

[GV01] Golemac, A. and Vučičić, T., New difference sets in nonabelian groups of order 100, J. Combin. Des., 9 (6) (2001), 424–434.

[GVM05] Golemac, A., Vučičić, T., and Mandić, J., One $(96,20,4)$-symmetric design and related nonabelian difference sets, Des. Codes Cryptogr., 37 (1) (2005), 5–13.

[GJ+03] Govaerts, P., Jungnickel, D., Storme, L., and Thas, J. A., Some new maximal sets of mutually orthogonal Latin squares, in Proceedings of the Conference on Finite Geometries (Oberwolfach, 2001), Des. Codes Cryptogr., 29 (2003), 141–147.

[GL+14] Gow, R., Lavrauw, M., Sheekey, J., and Vanhove, F., Constant rank-distance sets of Hermitian matrices and partial spreads in Hermitian polar spaces, Electron. J. Combin., 21 (1) (2014), Paper 1.26, 19.

[GK20] Griggs, T. S. and Kozlik, A. R., The last two perfect Mendelsohn designs with block size 5, J. Combin. Des., 28 (12) (2020), 865–868.

[GR+18] Grishkov, A., Rasskazova, D., Rasskazova, M., and Stuhl, I., Nilpotent Steiner loops of class 2, Comm. Algebra, 46 (12) (2018), 5480–5486.

[GAE07] Gross, D., Audenaert, K., and Eisert, J., Evenly distributed unitaries: on the structure of unitary designs, J. Math. Phys., 48 (5) (2007), 052104, 22.

[GTZ12] Guan, H., Tian, D., and Zhou, S., Line-transitive point-imprimitive linear spaces with Fang-Li parameter $\rm gcd(k,r)$ at most ten, Front. Math. China, 7 (6) (2012), 1095–1112.

[GZ17] Guan, H. and Zhou, S., Line-transitive point-imprimitive linear spaces with number of points being a product of two primes, J. Algebra Appl., 16 (6) (2017), 1750110, 13.

[GZ17] Guan, H. and Zhou, S., Point-primitive linear spaces with number of points being a product of two primes, Comm. Algebra, 45 (10) (2017), 4222–4237.

[GZ20] Guan, H. and Zhou, S., Classification of point-primitive linear spaces with $2pq$ points, Bull. Belg. Math. Soc. Simon Stevin, 27 (3) (2020), 369–378.

[GS17] Gunderson, K. and Semeraro, J., Tournaments, 4-uniform hypergraphs, and an exact extremal result, J. Combin. Theory Ser. B, 126 (2017), 114–136.

[GP06] Guralnick, R. M. and Perkinson, D., Permutation polytopes and indecomposable elements in permutation groups, J. Combin. Theory Ser. A, 113 (7) (2006), 1243–1256.

[G16] Gyürki, Š., Infinite families of directed strongly regular graphs using equitable partitions, Discrete Math., 339 (12) (2016), 2970–2986.

[G20] Gyürki, Š., Small directed strongly regular graphs, Algebra Colloq., 27 (1) (2020), 11–30.

[GM13] Gyürki, Š. and Mazák, J., An efficient algorithm for testing goal-minimality of graphs, Discrete Appl. Math., 161 (10-11) (2013), 1632–1634.

[HK05] Haanpää, H. and Kaski, P., The near resolvable $2$-$(13,4,3)$ designs and thirteen-player whist tournaments, Des. Codes Cryptogr., 35 (3) (2005), 271–285.

[HO03] Haanpää, H. and Östergård, P. R. J., Classification of whist tournaments with up to 12 players, Discrete Appl. Math., 129 (2-3) (2003), 399–407.

[HK02] Haemers, W. H. and Kuijken, E., The Hermitian two-graph and its code, Linear Algebra Appl., 356 (2002), 79–93
(Special issue on algebraic graph theory (Edinburgh, 2001)).

[HS04] Haemers, W. H. and Spence, E., Enumeration of cospectral graphs, European J. Combin., 25 (2) (2004), 199–211.

[HS20] Hafezieh, R. and Spiga, P., An overview on the bipartite divisor graph for the set of irreducible character degrees, Rocky Mountain J. Math., 50 (6) (2020), 2073–2095.

[HA18] Hamzeh, A. and Ashrafi, A. R., The order supergraph of the power graph of a finite group, Turkish J. Math., 42 (4) (2018), 1978–1989.

[HM98] Hanaki, A. and Miyamoto, I., Classification of association schemes with $16$ and $17$ vertices, Kyushu J. Math., 52 (2) (1998), 383–395.

[HM02] Hansen, P. and Mélot, H., Computers and discovery in algebraic graph theory, Linear Algebra Appl., 356 (2002), 211–230
(Special issue on algebraic graph theory (Edinburgh, 2001)).

[H06] Hartley, M. I., Simpler tests for semisparse subgroups, Ann. Comb., 10 (3) (2006), 343–352.

[HR05] Havas, G. and Robertson, E. F., The $F^a,b,c$ conjecture. I, Irish Math. Soc. Bull. (56) (2005), 75–80.

[HRS06] Havas, G., Robertson, E. F., and Sutherland, D. C., The $F^a,b,c$ conjecture is true. II, J. Algebra, 300 (1) (2006), 57–72.

[HRS08] Havas, G., Robertson, E. F., and Sutherland, D. C., Behind and beyond a theorem on groups related to trivalent graphs, J. Aust. Math. Soc., 85 (3) (2008), 323–332.

[HQ15] He, L. and Qian, G., Graphs of nonsolvable groups with four degree-vertices, Sci. China Math., 58 (6) (2015), 1305–1310.

[HK+09] He, Z., Korneffel, T., Meierling, D., Volkmann, L., and Winzen, S., Complementary cycles in regular multipartite tournaments, where one cycle has length five, Discrete Math., 309 (10) (2009), 3131–3149.

[HPS07] Held, D., Pavčević, M., and Schmidt, M., A series of finite groups and related symmetric designs, Glas. Mat. Ser. III, 42(62) (2) (2007), 257–272.

[HB11] Herman, A. and Barghi, A. R., Schur indices of association schemes, J. Pure Appl. Algebra, 215 (5) (2011), 1015–1023.

[HJ+09] Herrmann, S., Jensen, A., Joswig, M., and Sturmfels, B., How to draw tropical planes, Electron. J. Combin., 16 (2, Special volume in honor of Anders Björner) (2009), Research Paper 6, 26.

[HHS19] Herzog, J., Hibi, T., and Stamate, D. I., The trace of the canonical module, Israel J. Math., 233 (1) (2019), 133–165.

[HS12] Hoffman, T. R. and Solazzo, J. P., Complex equiangular tight frames and erasures, Linear Algebra Appl., 437 (2) (2012), 549–558.

[HL07] Hohlweg, C. and Lange, C. E. M. C., Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., 37 (4) (2007), 517–543.

[HP04] Hood, J. and Perkinson, D., Some facets of the polytope of even permutation matrices, Linear Algebra Appl., 381 (2004), 237–244.

[HKP10] Huang, P., Ke, W., and Pilz, G. F., The cardinality of some symmetric differences, Proc. Amer. Math. Soc., 138 (3) (2010), 787–797.

[HHL17] Huang, X., Huang, Q., and Lu, L., Automorphism groups of a class of cubic Cayley graphs on symmetric groups, Algebra Colloq., 24 (4) (2017), 541–550.

[HKO11] Hulpke, A., Kaski, P., and Östergård, P. R. J., The number of Latin squares of order 11, Math. Comp., 80 (274) (2011), 1197–1219.

[HH03] Hunter, D. J. and von Hippel, P. T., How rare is symmetry in musical 12-tone rows?, Amer. Math. Monthly, 110 (2) (2003), 124–132.

[IL+95] Ivanov, A. A., Linton, S. A., Lux, K., Saxl, J., and Soicher, L. H., Distance-transitive representations of the sporadic groups, Comm. Algebra, 23 (9) (1995), 3379–3427.

[IP03] Ivanov, A. A. and Pasechnik, D. V., $c$-extensions of the $F_4(2)$-building, Discrete Math., 264 (1-3) (2003), 91–110
(The 2000 $\rmCom^2MaC$ Conference on Association Schemes, Codes and Designs (Pohang)).

[IJM20] Iverson, J. W., Jasper, J., and Mixon, D. G., Optimal line packings from nonabelian groups, Discrete Comput. Geom., 63 (3) (2020), 731–763.

[J06] James, J. P., Partition actions of symmetric groups and regular bipartite graphs, Bull. London Math. Soc., 38 (2) (2006), 224–232.

[JS19] Janiszczak, I. and Staszewski, R., Isometry invariant permutation codes and mutually orthogonal Latin squares, J. Combin. Des., 27 (9) (2019), 541–551.

[JP+15] Jedlička, P., Pilitowska, A., Stanovský, D., and Zamojska-Dzienio, A., The structure of medial quandles, J. Algebra, 443 (2015), 300–334.

[JSV17] Jedlička, P., Stanovský, D., and Vojtěchovský, P., Distributive and trimedial quasigroups of order 243, Discrete Math., 340 (3) (2017), 404–415.

[JSW10] Jones, G. A., Streit, M., and Wolfart, J., Wilson's map operations on regular dessins and cyclotomic fields of definition, Proc. Lond. Math. Soc. (3), 100 (2) (2010), 510–532.

[JPR11] Jones, S. K., Perkins, S., and Roach, P. A., Properties, isomorphisms and enumeration of 2-Quasi-Magic Sudoku grids, Discrete Math., 311 (13) (2011), 1098–1110.

[J05] Jonsson, J., Optimal decision trees on simplicial complexes, Electron. J. Combin., 12 (2005), Research Paper 3, 31.

[J05] Jonsson, J., Simplicial complexes of graphs and hypergraphs with a bounded covering number, SIAM J. Discrete Math., 19 (3) (2005), 633–650.

[J10] Jørgensen, L. K., Schur rings and non-symmetric association schemes on 64 vertices, Discrete Math., 310 (22) (2010), 3259–3266.

[J15] Jørgensen, L. K., New mixed Moore graphs and directed strongly regular graphs, Discrete Math., 338 (6) (2015), 1011–1016.

[JJ+14] Jørgensen, L. K., Jones, G. A., Klin, M. H., and Song, S. Y., Normally regular digraphs, association schemes and related combinatorial structures, Sém. Lothar. Combin., 71 (2013/14), Art. B71c, 39.

[JK03] Jørgensen, L. K. and Klin, M., Switching of edges in strongly regular graphs. I. A family of partial difference sets on 100 vertices, Electron. J. Combin., 10 (2003), Research Paper 17, 31.

[JM+19] Jungnickel, D., Magliveras, S. S., Tonchev, V. D., and Wassermann, A., The classification of Steiner triple systems on 27 points with 3-rank 24, Des. Codes Cryptogr., 87 (4) (2019), 831–839.

[JK02] Jurišić, A. and Koolen, J., Krein parameters and antipodal tight graphs with diameter 3 and 4, Discrete Math., 244 (1-3) (2002), 181–202
(Algebraic and topological methods in graph theory (Lake Bled, 1999)).

[KN12] Karabáš, J. and Nedela, R., Archimedean maps of higher genera, Math. Comp., 81 (277) (2012), 569–583.

[K05] Kaski, P., Isomorph-free exhaustive generation of designs with prescribed groups of automorphisms, SIAM J. Discrete Math., 19 (3) (2005), 664–690.

[KO04] Kaski, P. and Östergård, P. R. J., Miscellaneous classification results for 2-designs, Discrete Math., 280 (1-3) (2004), 65–75.

[K15] Kato, S., A homological study of Green polynomials, Ann. Sci. Éc. Norm. Supér. (4), 48 (5) (2015), 1035–1074.

[K17] Katthän, L., A non-Golod ring with a trivial product on its Koszul homology, J. Algebra, 479 (2017), 244–262.

[KMM05] Key, J. D., McDonough, T. P., and Mavron, V. C., Partial permutation decoding for codes from finite planes, European J. Combin., 26 (5) (2005), 665–682.

[KMM17] Key, J. D., McDonough, T. P., and Mavron, V. C., Codes from Hall planes of odd order, Adv. Math. Commun., 11 (1) (2017), 179–185.

[KKW18] Kiermaier, M., Kurz, S., and Wassermann, A., The order of the automorphism group of a binary $q$-analog of the Fano plane is at most two, Des. Codes Cryptogr., 86 (2) (2018), 239–250.

[KK17] Kimmerle, W. and Konovalov, A., On the Gruenberg-Kegel graph of integral group rings of finite groups, Internat. J. Algebra Comput., 27 (6) (2017), 619–631.

[KPV12] Kinyon, M., Pula, K., and Vojtěchovský, P., Incidence properties of cosets in loops, J. Combin. Des., 20 (3) (2012), 179–197.

[KW15] Kinyon, M. and Wanless, I. M., Loops with exponent three in all isotopes, Internat. J. Algebra Comput., 25 (7) (2015), 1159–1177.

[KSV17] Kinyon, M. K., Smith, J. D. H., and Vojtěchovský, P., Sylow theory for quasigroups II: Sectional action, J. Combin. Des., 25 (4) (2017), 159–184.

[KS07] Klavžar, S. and Shpectorov, S., Tribes of cubic partial cubes, Discrete Math. Theor. Comput. Sci., 9 (1) (2007), 273–291.

[KLZ12] Klin, M., Lauri, J., and Ziv-Av, M., Links between two semisymmetric graphs on 112 vertices via association schemes, J. Symbolic Comput., 47 (10) (2012), 1175–1191.

[KM+05] Klin, M., Meszka, M., Reichard, S., and Rosa, A., The smallest non-rank 3 strongly regular graphs which satisfy the 4-vertex condition, Bayreuth. Math. Schr. (74) (2005), 145–205.

[KMZ09] Klin, M., Muzychuk, M., and Ziv-Av, M., Higmanian rank-5 association schemes on 40 points, Michigan Math. J., 58 (1) (2009), 255–284.

[KP+10] Klin, M., Pech, C., Reichard, S., Woldar, A., and Ziv-Av, M., Examples of computer experimentation in algebraic combinatorics, Ars Math. Contemp., 3 (2) (2010), 237–258.

[KS15] Knapp, W. and Schaeffer, H., On the codes related to the Higman-Sims graph, Electron. J. Combin., 22 (1) (2015), Paper 1.19, 58.

[K16] Kondratʹev, A. S., Finite groups with given properties of their prime graphs, Algebra Logika, 55 (1) (2016), 113–120.

[KM00] Koolen, J. H. and Munemasa, A., Tight $2$-designs and perfect $1$-codes in Doob graphs, J. Statist. Plann. Inference, 86 (2) (2000), 505–513
(Special issue in honor of Professor Ralph Stanton).

[KK17] Korchmaros, A. and Kovács, I., Automorphism groups of Cayley graphs generated by block transpositions and regular Cayley maps, Discrete Math., 340 (1) (2017), 3125–3139.

[K07] Kostousov, K. V., Cayley graphs of the group $\Bbb Z^4$ that are limits of minimal vertex-primitive graphs of type $HA$, Proc. Steklov Inst. Math., 257 (suppl. 1) (2007), S118–S134.

[KR19] Kovács, I. and Ryabov, G., $CI$-property for decomposable Schur rings over an abelian group, Algebra Colloq., 26 (1) (2019), 147–160.

[KPS03] Krafft, O., Pahlings, H., and Schaefer, M., Diagonal-complete Latin squares, European J. Combin., 24 (3) (2003), 229–237.

[K18] Krčadinac, V., Some new designs with prescribed automorphism groups, J. Combin. Des., 26 (4) (2018), 193–200.

[KNP11] Krčadinac, V., Nakić, A., and Pavčević, M. O., The Kramer-Mesner method with tactical decompositions: some new unitals on 65 points, J. Combin. Des., 19 (4) (2011), 290–303.

[KV16] Krčadinac, V. and Vlahović, R., New quasi-symmetric designs by the Kramer-Mesner method, Discrete Math., 339 (12) (2016), 2884–2890.

[KP17] Kreuzer, M. and Patil, D. P., Computational aspects of Burnside rings, part I: the ring structure, Beitr. Algebra Geom., 58 (3) (2017), 427–452.

[K14] Krotov, D. S., A partition of the hypercube into maximally nonparallel Hamming codes, J. Combin. Des., 22 (4) (2014), 179–187.

[K14] Krotov, D. S., On calculation of the interweight distribution of an equitable partition, J. Algebraic Combin., 40 (2) (2014), 373–386.

[KM09] Ku, C. Y. and McMillan, B. B., Independent sets of maximal size in tensor powers of vertex-transitive graphs, J. Graph Theory, 60 (4) (2009), 295–301.

[KW10] Ku, C. Y. and Wales, D. B., Eigenvalues of the derangement graph, J. Combin. Theory Ser. A, 117 (3) (2010), 289–312.

[KW07] Ku, C. Y. and Wong, T. W. H., Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin., 14 (1) (2007), Research Paper 25, 15.

[KK05] Kwak, J. H. and Kwon, Y. S., Regular orientable embeddings of complete bipartite graphs, J. Graph Theory, 50 (2) (2005), 105–122.

[KO08] Kwak, J. H. and Oh, J., Arc-transitive elementary abelian covers of the octahedron graph, Linear Algebra Appl., 429 (8-9) (2008), 2180–2198.

[LO17] Laaksonen, A. and Östergård, P. R. J., Constructing error-correcting binary codes using transitive permutation groups, Discrete Appl. Math., 233 (2017), 65–70.

[LL11] Labelle, G. and Lamathe, C., General combinatorial differential operators, Sém. Lothar. Combin., 61A (2009/11), Art. B61Ag, 24.

[LP16] Lane-Harvard, L. and Penttila, T., Some new two-weight ternary and quinary codes of lengths six and twelve, Adv. Math. Commun., 10 (4) (2016), 847–850.

[LNP02] Larrión, F., Neumann-Lara, V., and Pizaña, M. A., Whitney triangulations, local girth and iterated clique graphs, Discrete Math., 258 (1-3) (2002), 123–135.

[LNP03] Larrión, F., Neumann-Lara, V., and Pizaña, M. A., Clique convergent surface triangulations, Mat. Contemp., 25 (2003), 135–143
(The Latin-American Workshop on Cliques in Graphs (Rio de Janeiro, 2002)).

[LNP04] Larrión, F., Neumann-Lara, V., and Pizaña, M. A., Clique divergent clockwork graphs and partial orders, Discrete Appl. Math., 141 (1-3) (2004), 195–207.

[LNP06] Larrión, F., Neumann-Lara, V., and Pizaña, M. A., Graph relations, clique divergence and surface triangulations, J. Graph Theory, 51 (2) (2006), 110–122.

[LNP09] Larrión, F., Neumann-Lara, V., and Pizaña, M. A., On expansive graphs, European J. Combin., 30 (2) (2009), 372–379.

[LN+04] Larrión, F., Neumann-Lara, V., Pizaña, M. A., and Porter, T. D., A hierarchy of self-clique graphs, Discrete Math., 282 (1-3) (2004), 193–208.

[LPV09] Larrión, F., Pizaña, M. A., and Villarroel-Flores, R., The clique operator on matching and chessboard graphs, Discrete Math., 309 (1) (2009), 85–93.

[LPV16] Larrión, F., Pizaña, M. A., and Villarroel-Flores, R., On self-clique shoal graphs, Discrete Appl. Math., 205 (2016), 86–100.

[LPV19] Larrión, F., Pizaña, M. A., and Villarroel-Flores, R., On the clique behavior of graphs with small constant link, Ars Combin., 142 (2019), 27–53.

[LPZ13] Lavrauw, M., Pavan, A., and Zanella, C., On the rank of $3 \times 3 \times 3$-tensors, Linear Multilinear Algebra, 61 (5) (2013), 646–652.

[LS15] Lavrauw, M. and Sheekey, J., Canonical forms of $2 \times 3 \times 3$ tensors over the real field, algebraically closed fields, and finite fields, Linear Algebra Appl., 476 (2015), 133–147.

[LPR09] Law, M., Praeger, C. E., and Reichard, S., Flag-transitive symmetric $2\text-(96,20,4)$-designs, J. Combin. Theory Ser. A, 116 (5) (2009), 1009–1022.

[LST01] Lempken, W., Schröder, B., and Tiep, P. H., Symmetric squares, spherical designs, and lattice minima, J. Algebra, 240 (1) (2001), 185–208
(With an appendix by Christine Bachoc and Tiep).

[L14] Leshchenko, Y. Y., On the diameters of commuting graphs of permutational wreath products, Ukrainian Math. J., 66 (5) (2014), 732–742
(Translation of Ukraïn. Mat. Zh. \bf66 (2014), no. 5, 656–665).

[LN+10] Li, C. H., Niu, L., Seress, Á., and Solomon, R., The vertex primitive and vertex bi-primitive $s$-arc regular graphs, J. Combin. Theory Ser. B, 100 (4) (2010), 359–366.

[LRS14] Li, C. H., Rao, G., and Song, S. J., On finite self-complementary metacirculants, J. Algebraic Combin., 40 (4) (2014), 1135–1144.

[LS05] Li, C. H. and Seress, Á., On vertex-transitive non-Cayley graphs of square-free order, Des. Codes Cryptogr., 34 (2-3) (2005), 265–281.

[LS07] Li, C. H. and Seress, Á., Symmetrical path-cycle covers of a graph and polygonal graphs, J. Combin. Theory Ser. A, 114 (1) (2007), 35–51.

[LZ12] Li, C. H. and Zhang, H., Finite vertex-primitive and vertex-biprimitive 2-path-transitive graphs, J. Algebraic Combin., 36 (2) (2012), 231–246.

[LLZ18] Li, G., Lu, Z., and Zhang, X., Locally-primitive arc-transitive 10-valent graphs of square-free order, Algebra Colloq., 25 (2) (2018), 243–264.

[LZ16] Liang, H. and Zhou, S., Flag-transitive point-primitive non-symmetric $2$-$(v,k,2)$ designs with alternating socle, Bull. Belg. Math. Soc. Simon Stevin, 23 (4) (2016), 559–571.

[LZ18] Liang, H. and Zhou, S., Flag-transitive point-primitive automorphism groups of non-symmetric 2-$(v,k,3)$ designs, Des. Codes Cryptogr., 86 (8) (2018), 1757–1766.

[LPS02] Liebeck, M. W., Praeger, C. E., and Saxl, J., Primitive permutation groups with a common suborbit, and edge-transitive graphs, Proc. London Math. Soc. (3), 84 (2) (2002), 405–438.

[LP14] Liebler, R. A. and Praeger, C. E., Neighbour-transitive codes in Johnson graphs, Des. Codes Cryptogr., 73 (1) (2014), 1–25.

[L17] Lindzey, N., Erdős-Ko-Rado for perfect matchings, European J. Combin., 65 (2017), 130–142.

[LSS16] Linek, V., Soicher, L. H., and Stevens, B., Cube designs, J. Combin. Des., 24 (5) (2016), 223–233.

[L16] Liu, S., Mühlherr's partitions for Brauer algebras of type $\rm H_3$ and $\rm H_4$, Comm. Algebra, 44 (12) (2016), 5287–5298.

[L09] Lopes, P., Permutations which make transitive groups primitive, Cent. Eur. J. Math., 7 (4) (2009), 650–659.

[LX19] Lu, Z. P. and Xu, E. J., On arc-transitive Cayley digraphs of out-valency 3, Discrete Math., 342 (4) (2019), 1128–1138.

[LP01] Lubotzky, A. and Pak, I., The product replacement algorithm and Kazhdan's property (T), J. Amer. Math. Soc., 14 (2) (2001), 347–363.

[L01] Lutz, F. H., Some results related to the evasiveness conjecture, J. Combin. Theory Ser. B, 81 (1) (2001), 110–124.

[L02] Lutz, F. H., Examples of $\Bbb Z$-acyclic and contractible vertex-homogeneous simplicial complexes, Discrete Comput. Geom., 27 (1) (2002), 137–154
(Geometric combinatorics (San Francisco, CA/Davis, CA, 2000)).

[MW12] Ma, J. and Wang, K., Fissioned triangular schemes via sharply 3-transitive groups, Linear Algebra Appl., 436 (7) (2012), 2618–2629.

[MWW19] Ma, X., Walls, G. L., and Wang, K., Power graphs of (non)orientable genus two, Comm. Algebra, 47 (1) (2019), 276–288.

[MW16] Ma, X. and Wang, K., On finite groups all of whose cubic Cayley graphs are integral, J. Algebra Appl., 15 (6) (2016), 1650105, 10.

[MS10] Mačaj, M. and Širáň, J., Search for properties of the missing Moore graph, Linear Algebra Appl., 432 (9) (2010), 2381–2398.

[MSA08] MacArthur, B. D., Sánchez-García, R. J., and Anderson, J. W., Symmetry in complex networks, Discrete Appl. Math., 156 (18) (2008), 3525–3531.

[MO09] Maginnis, J. and Onofrei, S., On fixed point sets and Lefschetz modules for sporadic simple groups, J. Pure Appl. Algebra, 213 (6) (2009), 901–912.

[MP13] Makhnev, A. A. and Paduchikh, D. V., Graphs in which neighborhoods of vertices are isomorphic to the Mathieu graph, Proc. Steklov Inst. Math., 283 (suppl. 1) (2013), S91–S99.

[MP18] Makhnev, A. A. and Paduchikh, D. V., Automorphisms of a distance-regular graph with intersection array $\176,135,32,1;1,16,135,176\$, Tr. Inst. Mat. Mekh., 24 (2) (2018), 173–184.

[MPT13] Makhnev, A. A., Paduchikh, D. V., and Tsiovkina, L. Y., Edge-symmetric distance-regular coverings of cliques: the affine case, Sibirsk. Mat. Zh., 54 (6) (2013), 1353–1367.

[MPT18] Makhnev, A. A., Paduchikh, D. V., and Tsiovkina, L. Y., Edge-symmetric distance regular coverings of complete graphs: the almost simple case, Algebra Logika, 57 (2) (2018), 214–231.

[MMP04] Malnič, A., Marušič, D., and Potočnik, P., Elementary abelian covers of graphs, J. Algebraic Combin., 20 (1) (2004), 71–97.

[MP06] Malnič, A. and Potočnik, P., Invariant subspaces, duality, and covers of the Petersen graph, European J. Combin., 27 (6) (2006), 971–989.

[MV16] Mandić, J. and Vučičić, T., On the existence of Hadamard difference sets in groups of order 400, Adv. Math. Commun., 10 (3) (2016), 547–554.

[M05] Mansilla, S. P., On arc-regular permutation groups using Latin squares, J. Algebraic Combin., 21 (1) (2005), 5–22.

[M09] Marco Buzunáriz, M. Á., A description of the resonance variety of a line combinatorics via combinatorial pencils, Graphs Combin., 25 (4) (2009), 469–488.

[M02] Marcusanu, M. C., Complementary $l_1$-graphs embeddable in the half-cube, European J. Combin., 23 (8) (2002), 1061–1072.

[M19] Margolis, L., On the prime graph question for integral group rings of Conway simple groups, J. Symbolic Comput., 95 (2019), 162–176.

[ME04] Martin, P. P. and Elgamal, A., Ramified partition algebras, Math. Z., 246 (3) (2004), 473–500.

[MT11] Mashkouri, M. and Taeri, B., On a graph associated to groups, Bull. Malays. Math. Sci. Soc. (2), 34 (3) (2011), 553–560.

[M08] Mazzuoccolo, G., Primitive 2-factorizations of the complete graph, Discrete Math., 308 (2-3) (2008), 175–179.

[MMW09] McDonough, T. P., Mavron, V. C., and Ward, H. N., Amalgams of designs and nets, Bull. Lond. Math. Soc., 41 (5) (2009), 841–852.

[MP08] McDonough, T. P. and Pallikaros, C. A., On subsequences and certain elements which determine various cells in $S_n$, J. Algebra, 319 (3) (2008), 1249–1263.

[MS07] McSorley, J. P. and Soicher, L. H., Constructing $t$-designs from $t$-wise balanced designs, European J. Combin., 28 (2) (2007), 567–571.

[M19] Meagher, K., An Erdős-Ko-Rado theorem for the group $\rm PSU(3,q)$, Des. Codes Cryptogr., 87 (4) (2019), 717–744.

[MS11] Meagher, K. and Spiga, P., An Erdős-Ko-Rado theorem for the derangement graph of $\rm PGL(2,q)$ acting on the projective line, J. Combin. Theory Ser. A, 118 (2) (2011), 532–544.

[MN21] Mezőfi, D. and Nagy, G. P., New Steiner 2-designs from old ones by paramodifications, Discrete Appl. Math., 288 (2021), 114–122.

[M16] Michel, J., Deligne-Lusztig theoretic derivation for Weyl groups of the number of reflection factorizations of a Coxeter element, Proc. Amer. Math. Soc., 144 (3) (2016), 937–941.

[MP94] Miller, A. A. and Praeger, C. E., Non-Cayley vertex-transitive graphs of order twice the product of two odd primes, J. Algebraic Combin., 3 (1) (1994), 77–111.

[MW15] Minchenko, M. and Wanless, I. M., Quartic integral Cayley graphs, Ars Math. Contemp., 8 (2) (2015), 381–408.

[MP18] Minian, E. G. and Piterman, K. I., The homotopy types of the posets of $p$-subgroups of a finite group, Adv. Math., 328 (2018), 1217–1233.

[M01] Miyamoto, I., Computing isomorphisms of association schemes and its applications, J. Symbolic Comput., 32 (1-2) (2001), 133–141
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[M10] Miyamoto, I., Computation of isomorphisms of coherent configurations, Ars Math. Contemp., 3 (1) (2010), 59–67.

[M06] Moghaddamfar, A. R., On spectrum of linear groups over the binary field and recognizability of $L_12(2)$, Internat. J. Algebra Comput., 16 (2) (2006), 341–349.

[MI08] Monson, B. and Ivić Weiss, A., Cayley graphs and symmetric 4-polytopes, Ars Math. Contemp., 1 (2) (2008), 185–205.

[MPW12] Monson, B., Pellicer, D., and Williams, G., The tomotope, Ars Math. Contemp., 5 (2) (2012), 355–370.

[MP+07] Monson, B., Pisanski, T., Schulte, E., and Weiss, A. I., Semisymmetric graphs from polytopes, J. Combin. Theory Ser. A, 114 (3) (2007), 421–435.

[MS10] Monson, B. and Schulte, E., Locally toroidal polytopes and modular linear groups, Discrete Math., 310 (12) (2010), 1759–1771.

[MW07] Monson, B. and Weiss, A. I., Medial layer graphs of equivelar 4-polytopes, European J. Combin., 28 (1) (2007), 43–60.

[M07] Montinaro, A., Large 2-transitive arcs, J. Combin. Theory Ser. A, 114 (6) (2007), 993–1023.

[MP03] Moore, E. H. and Pollatsek, H., Looking for difference sets in groups with dihedral images, Des. Codes Cryptogr., 28 (1) (2003), 45–50.

[M14] Moori, J., Designs and codes from $PSL_2(q)$, in Group theory, combinatorics, and computing, Amer. Math. Soc., Providence, RI, Contemp. Math., 611 (2014), 137–149.

[MZ05] Moori, J. and Zimba, K., Permutation actions of the symmetric group $S_n$ on the groups $Z^n_m$ and $\overlineZ^n_m$, Quaest. Math., 28 (2) (2005), 179–193.

[MZ17] Moori, J. and Zimba, K., Fischer-Clifford matrices of the generalized symmetric group (a computational approach), Quaest. Math., 40 (1) (2017), 75–89.

[MMV21] Morgan, L., Morris, J., and Verret, G., A finite simple group is CCA if and only if it has no element of order four, J. Algebra, 569 (2021), 318–333.

[MSW10] Morris, J., Spiga, P., and Webb, K., Balanced Cayley graphs and balanced planar graphs, Discrete Math., 310 (22) (2010), 3228–3235.

[M15] Mühle, H., EL-shellability and noncrossing partitions associated with well-generated complex reflection groups, European J. Combin., 43 (2015), 249–278.

[M08] Müller, J., On the multiplicity-free actions of the sporadic simple groups, J. Algebra, 320 (2) (2008), 910–926.

[MN05] Müller, J. and Neunhöffer, M., Some computations regarding Foulkes' conjecture, Experiment. Math., 14 (3) (2005), 277–283.

[MS20] Muzychuk, M. and Spiga, P., Finite primitive groups of small rank: symmetric and sporadic groups, J. Algebraic Combin., 52 (2) (2020), 103–136.

[NP18] Naghshinehfard, M. and Parvaneh, F., On the planarity of cyclic graphs, Rocky Mountain J. Math., 48 (3) (2018), 913–926.

[N14] Nagy, G. P., Linear groups as right multiplication groups of quasifields, Des. Codes Cryptogr., 72 (1) (2014), 153–164.

[NE+17] Nasiri, M., Erfanian, A., Ganjali, M., and Jafarzadeh, A., Isomorphic $g$-noncommuting graphs of finite groups, Publ. Math. Debrecen, 91 (1-2) (2017), 33–42.

[NEM18] Nasiri, M., Erfanian, A., and Mohammadian, A., Connectivity and planarity of $g$-noncommuting graph of finite groups, J. Algebra Appl., 17 (6) (2018), 1850107, 9.

[NP14] Neunhöffer, M. and Praeger, C. E., Sporadic neighbour-transitive codes in Johnson graphs, Des. Codes Cryptogr., 72 (1) (2014), 141–152.

[NO02] Nikkuni, R. and Onda, K., A characterization of knots in a spatial graph. II, J. Knot Theory Ramifications, 11 (7) (2002), 1133–1154.

[NC17] Nilson, T. and Cameron, P. J., Triple arrays from difference sets, J. Combin. Des., 25 (11) (2017), 494–506.

[N13] Norton, S. P., The string of nets, Proc. Edinb. Math. Soc. (2), 56 (1) (2013), 223–262.

[N20] Nowak, A. W., Affine Mendelsohn triple systems and the Eisenstein integers, J. Combin. Des., 28 (10) (2020), 724–744.

[OR11] Ó Catháin, P. and Röder, M., The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58 (1) (2011), 73–88.

[O02] Östergård, P. R. J., Classifying subspaces of Hamming spaces, Des. Codes Cryptogr., 27 (3) (2002), 297–305.

[OS18] Östergård, P. R. J. and Soicher, L. H., There is no McLaughlin geometry, J. Combin. Theory Ser. A, 155 (2018), 27–41.

[O09] Oh, J., A classification of cubic $s$-regular graphs of order $14p$, Discrete Math., 309 (9) (2009), 2721–2726.

[O09] Oh, J., A classification of cubic $s$-regular graphs of order $16p$, Discrete Math., 309 (10) (2009), 3150–3155.

[O09] Oh, J., Arc-transitive elementary abelian covers of the Pappus graph, Discrete Math., 309 (23-24) (2009), 6590–6611.

[O03] Ollis, M. A., Protection against premature termination of experiments based on Williams squares with circular structure, Util. Math., 63 (2003), 143–149.

[O05] O'Reilly Regueiro, E., Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle, European J. Combin., 26 (5) (2005), 577–584.

[O13] Osifodunrin, A. S., On the existence of (400, 57, 8) non-abelian difference sets, Turkish J. Math., 37 (3) (2013), 375–390.

[P14] Pace, N., New ternary linear codes from projectivity groups, Discrete Math., 331 (2014), 22–26.

[PW19] Paget, R. and Wildon, M., Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions, Proc. Lond. Math. Soc. (3), 118 (5) (2019), 1153–1187.

[P18] Palcoux, S., Dual Ore's theorem on distributive intervals of finite groups, J. Algebra, 505 (2018), 279–287.

[P95] Pasechnik, D. V., Extending polar spaces of rank at least $3$, J. Combin. Theory Ser. A, 72 (2) (1995), 232–242.

[PY01] Pasini, A. and Yoshiara, S., New distance regular graphs arising from dimensional dual hyperovals, European J. Combin., 22 (4) (2001), 547–560.

[PP10] Pasotti, A. and Pellegrini, M. A., Symmetric 1-factorizations of the complete graph, European J. Combin., 31 (5) (2010), 1410–1418.

[P03] Pêcher, A., Partitionable graphs arising from near-factorizations of finite groups, Discrete Math., 269 (1-3) (2003), 191–218.

[P04] Pêcher, A., Cayley partitionable graphs and near-factorizations of finite groups, Discrete Math., 276 (1-3) (2004), 295–311
(6th International Conference on Graph Theory).

[P10] Pellicer, D., A construction of higher rank chiral polytopes, Discrete Math., 310 (6-7) (2010), 1222–1237.

[P14] Pellicer, D., Vertex-transitive maps with Schläfli type $\3,7\$, Discrete Math., 317 (2014), 53–74.

[PW10] Pellicer, D. and Weiss, A. I., Generalized CPR-graphs and applications, Contrib. Discrete Math., 5 (2) (2010), 76–105.

[P20] Pérennou, H., Polynomiality of projective modular representations graded rings, J. Algebra, 541 (2020), 308–323.

[P04] Pfeiffer, G., Counting transitive relations, J. Integer Seq., 7 (3) (2004), Article 04.3.2, 11.

[P11] Pinto, D., The duality index of oriented regular hypermaps, European J. Combin., 32 (8) (2011), 1236–1243.

[P19] Piterman, K. I., A stronger reformulation of Webb's conjecture in terms of finite topological spaces, J. Algebra, 527 (2019), 280–305.

[P03] Pizaña, M. A., The icosahedron is clique divergent, Discrete Math., 262 (1-3) (2003), 229–239.

[PR20] Pizaña, M. A. and Robles, I. A., On bicliques and the second clique graph of suspensions, Discrete Appl. Math., 281 (2020), 261–267.

[P05] Plambeck, T. E., Taming the wild in impartial combinatorial games, Integers, 5 (1) (2005), G5, 36.

[PB14] Plesken, W. and Bächler, T., Counting polynomials for linear codes, hyperplane arrangements, and matroids, Doc. Math., 19 (2014), 285–312.

[P07] Praeger, C. E., The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair, Des. Codes Cryptogr., 44 (1-3) (2007), 115–132.

[PS97] Praeger, C. E. and Soicher, L. H., Low rank representations and graphs for sporadic groups, Cambridge University Press, Cambridge, Australian Mathematical Society Lecture Series, 8 (1997), xii+141 pages.

[PZ06] Praeger, C. E. and Zhou, S., Imprimitive flag-transitive symmetric designs, J. Combin. Theory Ser. A, 113 (7) (2006), 1381–1395.

[PZ08] Praeger, C. E. and Zhou, S., Classification of line-transitive point-imprimitive linear spaces with line size at most 12, Des. Codes Cryptogr., 47 (1-3) (2008), 99–111.

[P05] Pralle, H., The hyperplanes of $DW(5,2)$, Experiment. Math., 14 (3) (2005), 373–384.

[PSW12] Puliyambalath, N. P., Seress, Á., and Weisz, I., All $\lambda$-designs with small $\lambda$ are type-1, J. Combin. Des., 20 (9) (2012), 408–431.

[RM21] Rahimipour, A. R. and Moshtagh, H., Janko sporadic group $\rm J_2$ as automorphism group of 3-designs, Discrete Math., 344 (2) (2021), 112194, 5.

[R02] Reading, N., Order dimension, strong Bruhat order and lattice properties for posets, Order, 19 (1) (2002), 73–100.

[R05] Regueiro, E. O., On primitivity and reduction for flag-transitive symmetric designs, J. Combin. Theory Ser. A, 109 (1) (2005), 135–148.

[R03] Reid, M., Tile homotopy groups, Enseign. Math. (2), 49 (1-2) (2003), 123–155.

[RSW14] Reiner, V., Saliola, F., and Welker, V., Spectra of symmetrized shuffling operators, Mem. Amer. Math. Soc., 228 (1072) (2014), vi+109.

[RS10] Reiner, V. and Stamate, D. I., Koszul incidence algebras, affine semigroups, and Stanley-Reisner ideals, Adv. Math., 224 (6) (2010), 2312–2345.

[RV17] Rezaei, R. and Varmazyar, M., The graph of equivalence classes and isoclinism of groups, Bull. Iranian Math. Soc., 43 (6) (2017), 1801–1810.

[R08] Röder, M., The quasiregular projective planes of order 16, Glas. Mat. Ser. III, 43(63) (2) (2008), 231–242.

[RB19] Rosales, J. C. and Branco, M. B., A problem of integer partitions and numerical semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 149 (4) (2019), 969–978.

[RW16] Rowley, P. and Wright, B., Structure of the $Fi_24'$ maximal 2-local geometry point-line collinearity graph, LMS J. Comput. Math., 19 (1) (2016), 105–154.

[R20] Ryabov, G., Separability of Schur rings over abelian groups of odd order, Graphs Combin., 36 (6) (2020), 1891–1911.

[SKA17] Sakhdari, S. M., Khashyarmanesh, K., and Afkhami, M., Annihilator graphs with four vertices, Semigroup Forum, 94 (1) (2017), 139–166.

[SK+13] Salehi Amiri, S. S., Khalili Asboei, A. R., Iranmanesh, A., and Tehranian, A., Quasirecognition by the prime graph of $L_3(q)$ where $3 < q < 100$, Bull. Iranian Math. Soc., 39 (2) (2013), 289–305.

[S15] Sankey, A. D., Weighted association schemes, fusions, and minimal coherent closures, J. Algebraic Combin., 41 (3) (2015), 785–815.

[S00] Sarmiento, J., Resolutions of $\rm PG(5,2)$ with point-cyclic automorphism group, J. Combin. Des., 8 (1) (2000), 2–14.

[S02] Sarmiento, J. F., On point-cyclic resolutions of the 2-(63,7,15) design associated with PG(5,2), Graphs Combin., 18 (3) (2002), 621–632.

[S10] Sawa, M., Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4, IEEE Trans. Inform. Theory, 56 (7) (2010), 3613–3620.

[SV08] Schneider, C. and Van Maldeghem, H., Primitive flag-transitive generalized hexagons and octagons, J. Combin. Theory Ser. A, 115 (8) (2008), 1436–1455.

[SS98] See, K. and Song, S. Y., Association schemes of small order, J. Statist. Plann. Inference, 73 (1-2) (1998), 225–271
(R. C. Bose Memorial Conference (Fort Collins, CO, 1995)).

[S98] Seress, Á., On vertex-transitive, non-Cayley graphs of order $pqr$, Discrete Math., 182 (1-3) (1998), 279–292
(Graph theory (Lake Bled, 1995)).

[S01] Seress, Á., All lambda-designs with $\lambda=2p$ are type-1, Des. Codes Cryptogr., 22 (1) (2001), 5–17.

[SS12] Seress, Á. and Swartz, E., A family of near-polygonal graphs of valency 10, Ann. Comb., 16 (4) (2012), 891–903.

[SWZ11] Seress, Á., Wong, T., and Zhu, X., Distinguishing labeling of the actions of almost simple groups, Combinatorica, 31 (4) (2011), 489–506.

[SD19] Shahsavaran, M. and Darafsheh, M. R., Classifying semisymmetric cubic graphs of order $20p$, Turkish J. Math., 43 (6) (2019), 2755–2766.

[SW18] Shareshian, J. and Woodroofe, R., Divisibility of binomial coefficients and generation of alternating groups, Pacific J. Math., 292 (1) (2018), 223–238.

[SZ20] Shen, J. and Zhou, S., Flag-transitive 2-$(v, 5,\lambda)$ designs with sporadic socle, Front. Math. China, 15 (6) (2020), 1201–1210.

[S16] Smith, J. P., Intervals of permutations with a fixed number of descents are shellable, Discrete Math., 339 (1) (2016), 118–126.

[S93] Soicher, L. H., GRAPE: a system for computing with graphs and groups, in Groups and computation (New Brunswick, NJ, 1991), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 11 (1993), 287–291.

[S93] Soicher, L. H., Three new distance-regular graphs, European J. Combin., 14 (5) (1993), 501–505
(Algebraic combinatorics (Vladimir, 1991)).

[S95] Soicher, L. H., Yet another distance-regular graph related to a Golay code, Electron. J. Combin., 2 (1995), Note 1, approx. 4.

[S99] Soicher, L. H., On the structure and classification of SOMAs: generalizations of mutually orthogonal Latin squares, Electron. J. Combin., 6 (1999), Research Paper 32, 15.

[S10] Soicher, L. H., More on block intersection polynomials and new applications to graphs and block designs, J. Combin. Theory Ser. A, 117 (7) (2010), 799–809.

[S11] Soicher, L. H., On generalised $t$-designs and their parameters, Discrete Math., 311 (13) (2011), 1136–1141.

[S12] Soicher, L. H., Uniform semi-Latin squares and their Schur-optimality, J. Combin. Des., 20 (6) (2012), 265–277.

[S13] Soicher, L. H., Optimal and efficient semi-Latin squares, J. Statist. Plann. Inference, 143 (3) (2013), 573–582.

[S15] Soicher, L. H., On cliques in edge-regular graphs, J. Algebra, 421 (2015), 260–267.

[S17] Soicher, L. H., On classifying objects with specified groups of automorphisms, friendly subgroups, and Sylow tower groups, Port. Math., 74 (3) (2017), 233–242.

[S17] Soicher, L. H., The uniqueness of a distance-regular graph with intersection array $\32,27,8,1;1,4,27,32\$ and related results, Des. Codes Cryptogr., 84 (1-2) (2017), 101–108.

[S07] Spiga, P., Elementary abelian $p$-groups of rank greater than or equal to $4p-2$ are not CI-groups, J. Algebraic Combin., 26 (3) (2007), 343–355.

[S09] Spiga, P., CI-property of elementary abelian 3-groups, Discrete Math., 309 (10) (2009), 3393–3398.

[S09] Spiga, P., Enumerating groups acting regularly on a $d$-dimensional cube, Comm. Algebra, 37 (7) (2009), 2540–2545.

[S12] Spiga, P., Automorphism groups of tetravalent Cayley graphs on regular 5-groups, Ars Combin., 105 (2012), 33–43.

[S11] Spreer, J., Normal surfaces as combinatorial slicings, Discrete Math., 311 (14) (2011), 1295–1309.

[S12] Spreer, J., Partitioning the triangles of the cross polytope into surfaces, Beitr. Algebra Geom., 53 (2) (2012), 473–486.

[S10] Stones, D. S., The many formulae for the number of Latin rectangles, Electron. J. Combin., 17 (1) (2010), Article 1, 46.

[S10] Stones, D. S., The parity of the number of quasigroups, Discrete Math., 310 (21) (2010), 3033–3039.

[S13] Stones, D. S., Symmetries of partial Latin squares, European J. Combin., 34 (7) (2013), 1092–1107.

[SVW12] Stones, D. S., Vojtěchovský, P., and Wanless, I. M., Cycle structure of autotopisms of quasigroups and Latin squares, J. Combin. Des., 20 (5) (2012), 227–263.

[S18] Striker, J., Rowmotion and generalized toggle groups, Discrete Math. Theor. Comput. Sci., 20 (1) (2018), Paper No. 17, 26.

[S19] Sun, H., Existence of simple BIBDs from a prime power difference family with minimum index, J. Algebra Appl., 18 (9) (2019), 1950166, 17.

[S14] Szöllősi, I., Computing the extensions of preinjective and preprojective Kronecker modules, J. Algebra, 408 (2014), 205–221.

[TV18] Taylor, G. K. and Vinroot, C. R., On involutions and indicators of finite orthogonal groups, J. Aust. Math. Soc., 105 (3) (2018), 380–416.

[TZ13] Tian, D. and Zhou, S., Flag-transitive point-primitive symmetric $(v,k,\lambda)$ designs with $\lambda$ at most 100, J. Combin. Des., 21 (4) (2013), 127–141.

[TZ15] Tian, D. and Zhou, S., Flag-transitive 2-$(v,k,\lambda)$ symmetric designs with sporadic socle, J. Combin. Des., 23 (4) (2015), 140–150.

[TZ16] Tian, D. L. and Zhou, S. L., Classification of SPBIB designs with $v=396$ and $G=M_12$, Acta Math. Sinica (Chin. Ser.), 59 (3) (2016), 377–384.

[T20] Tolue, B., The twin non-commuting graph of a group, Rend. Circ. Mat. Palermo (2), 69 (2) (2020), 591–599.

[TE13] Tolue, B. and Erfanian, A., Relative non-commuting graph of a finite group, J. Algebra Appl., 12 (2) (2013), 1250157, 11.

[TZ13] Topalova, S. and Zhelezova, S., On transitive parallelisms of $PG(3,4)$, Appl. Algebra Engrg. Comm. Comput., 24 (3-4) (2013), 159–164.

[TZ15] Topalova, S. and Zhelezova, S., On point-transitive and transitive deficiency one parallelisms of $PG(3,4)$, Des. Codes Cryptogr., 75 (1) (2015), 9–19.

[TZ16] Topalova, S. and Zhelezova, S., New regular parallelisms of $PG(3,5)$, J. Combin. Des., 24 (10) (2016), 473–482.

[TZ19] Topalova, S. and Zhelezova, S., Types of spreads and duality of the parallelisms of $PG(3,5)$ with automorphisms of order 13, Des. Codes Cryptogr., 87 (2-3) (2019), 495–507.

[T17] Tsiovkina, L. Y., Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$, Discrete Math., 340 (2) (2017), 63–71.

[U12] Ugolini, S., Graphs associated with the map $x\mapsto x+x^-1$ in finite fields of characteristic two, in Theory and applications of finite fields, Amer. Math. Soc., Providence, RI, Contemp. Math., 579 (2012), 187–204.

[B07] van Bon, J., Finite primitive distance-transitive graphs, European J. Combin., 28 (2) (2007), 517–532.

[BIS99] van Bon, J., Ivanov, A. A., and Saxl, J., Affine distance-transitive graphs with sporadic stabilizer, European J. Combin., 20 (2) (1999), 163–177.

[DJ19] van Dam, E. R. and Jazaeri, M., Distance-regular Cayley graphs with small valency, Ars Math. Contemp., 17 (1) (2019), 203–222.

[DM10] van Dam, E. R. and Muzychuk, M., Some implications on amorphic association schemes, J. Combin. Theory Ser. A, 117 (2) (2010), 111–127.

[DS15] van Dam, E. R. and Sotirov, R., Semidefinite programming and eigenvalue bounds for the graph partition problem, Math. Program., 151 (2, Ser. B) (2015), 379–404.

[VV05] Vasilʹev, A. V. and Vdovin, E. P., An adjacency criterion in the prime graph of a finite simple group, Algebra Logika, 44 (6) (2005), 682–725, 764.

[VV11] Vasilʹev, A. V. and Vdovin, E. P., Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logika, 50 (4) (2011), 425–470, 554, 557.

[V09] Verret, G., Shifts in Cayley graphs, Discrete Math., 309 (12) (2009), 3748–3756.

[V04] Vessenes, R., Generalized Foulkes' conjecture and tableaux construction, J. Algebra, 277 (2) (2004), 579–614.

[WW+18] Wang, C., Wang, S., Zhang, Y., and Zimmermann, B., Graphs in the 3-sphere with maximum symmetry, Discrete Comput. Geom., 59 (2) (2018), 331–362.

[WS19] Wang, G. and Shpectorov, S., $l_1$-embeddability of generic quadrilateral Möbius maps, European J. Combin., 80 (2019), 373–389.

[WZ17] Wang, Y. and Zhou, S., Symmetric designs admitting flag-transitive and point-primitive almost simple automorphism groups of Lie type, J. Algebra Appl., 16 (10) (2017), 1750192, 13.

[WZ20] Wang, Y. and Zhou, S., Flag-transitive 2-$(v,k,\lambda)$ symmetric designs with $\lambda\geq (k,\lambda)^2$ and alternating socle, Discrete Math., 343 (9) (2020), 111973, 7.

[W96] Weidner, M., Independence and maximal subgroups, Illinois J. Math., 40 (1) (1996), 47–76.

[WM17] Whidden, C. and Matsen IV, F. A., Ricci-Ollivier curvature of the rooted phylogenetic subtree-prune-regraft graph, Theoret. Comput. Sci., 699 (2017), 1–20.

[W09] White, D. L., Degree graphs of simple groups, Rocky Mountain J. Math., 39 (5) (2009), 1713–1739.

[W20] Williams, N., Reflexponents, Proc. Amer. Math. Soc., 148 (9) (2020), 3685–3698.

[WB04] Wilson, S. and Breda d'Azevedo, A., Surfaces having no regular hypermaps, Discrete Math., 277 (1-3) (2004), 241–274.

[W97] Wood, D. R., An algorithm for finding a maximum clique in a graph, Oper. Res. Lett., 21 (5) (1997), 211–217.

[W07] Woodroofe, R., Shelling the coset poset, J. Combin. Theory Ser. A, 114 (4) (2007), 733–746.

[W09] Woodroofe, R., Cubical convex ear decompositions, Electron. J. Combin., 16 (2, Special volume in honor of Anders Björner) (2009), Research Paper 17, 33.

[Y05] Yoshikawa, M., The intersection of normal closed subsets of an association scheme is not always normal, J. Fac. Sci. Shinshu Univ., 40 (2005), 37–40 (2006).

[Z13] Zelikson, S., On crystal operators in Lusztig's parametrizations and string cone defining inequalities, Glasg. Math. J., 55 (1) (2013), 177–200.

[ZZ16] Zhan, X. and Zhou, S., Flag-transitive non-symmetric 2-designs with $(r,\lambda)=1$ and sporadic socle, Des. Codes Cryptogr., 81 (3) (2016), 481–487.

[ZZ17] Zhan, X. and Zhou, S., A classification of flag-transitive $2$-designs with $\lambda\geq(r,\lambda)^2$ and sporadic socle, Discrete Math., 340 (4) (2017), 630–636.

[ZZ18] Zhan, X. and Zhou, S., Non-symmetric 2-designs admitting a two-dimensional projective linear group, Des. Codes Cryptogr., 86 (12) (2018), 2765–2773.

[ZZC18] Zhan, X., Zhou, S., and Chen, G., Flag-transitive 2-$(v,4,\lambda)$ designs of product type, J. Combin. Des., 26 (9) (2018), 455–462.

[ZZ17] Zhang, X. and Zhou, S., Block-transitive and point-primitive $2$-$(v,k,2)$ designs with sporadic socle, J. Combin. Des., 25 (5) (2017), 231–238.

[ZZ18] Zhang, X. and Zhou, S., Sporadic finite simple groups and block designs, Bull. Belg. Math. Soc. Simon Stevin, 25 (4) (2018), 495–506.

[ZD10] Zhou, S. and Dong, H., Exceptional groups of Lie type and flag-transitive triplanes, Sci. China Math., 53 (2) (2010), 447–456.

[ZDF09] Zhou, S., Dong, H., and Fang, W., Finite classical groups and flag-transitive triplanes, Discrete Math., 309 (16) (2009), 5183–5195.

[ZW15] Zhou, S. and Wang, Y., Flag-transitive non-symmetric 2-designs with $(r,\lambda)=1$ and alternating socle, Electron. J. Combin., 22 (2) (2015), Paper 2.6, 15.

[ZZ18] Zhou, S. and Zhan, X., Flag-transitive automorphism groups of 2-designs with $\lambda\ge(r,\lambda)^2$ and an application to symmetric designs, Ars Math. Contemp., 14 (1) (2018), 187–195.

[ZGZ15] Zhu, Y., Guan, H., and Zhou, S., Flag-transitive $2$-$(v,k,\lambda)$ symmetric designs with $(k,\lambda)=1$ and alternating socle, Front. Math. China, 10 (6) (2015), 1483–1496.

[ZTZ16] Zhu, Y., Tian, D., and Zhou, S., Flag-transitive point-primitive $(v,k,\lambda)$-symmetric designs with $\lambda$ at most 100 and alternating socle, Math. Slovaca, 66 (5) (2016), 1037–1046.

[Z13] Zvezdina, M. A., On nonabelian simple groups with the same prime graph as an alternating group, Sibirsk. Mat. Zh., 54 (1) (2013), 65–76.