GAP

Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

167 publications using GAP in the category "Computer science"

[AS19] Ahmed, E. and Savchuk, D., The lamplighter group of rank two generated by a bireversible automaton, Comm. Algebra, 47 (8) (2019), 3340–3354.

[AE18] Alokbi, N. and Ellis, G., Distributed computation of low-dimensional cup products, Homology Homotopy Appl., 20 (2) (2018), 41–59.

[AB+18] Alonso Rodr\'iguez, A., Bertolazzi, E., Ghiloni, R., and Specogna, R., Efficient construction of 2-chains representing a basis of $H_2(\overline\Omega,\partial\Omega;\Bbb Z)$, Adv. Comput. Math., 44 (5) (2018), 1411–1440.

[A01] Alp, M., Sections in GAP, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 14 (2001), 18–26, 206.

[AS11] Ankaralioglu, N. and Seress, \., Computing tensor decompositions of finite matrix groups, Discrete Math. Theor. Comput. Sci., 13 (4) (2011), 5–13.

[AS00] Ara\'ujo, I. M. and Solomon, A., Computing with semigroups in $ßfGAP$—a tutorial, in Semigroups (Braga, 1999), World Sci. Publ., River Edge, NJ (2000), 1–18.

[AG16] Assi, A. and Garc\'ia-S\'anchez, P. A., Algorithms for curves with one place at infinity, J. Symbolic Comput., 74 (2016), 475–492.

[B97] Babai, L., Randomization in group algorithms: conceptual questions, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 1–17.

[B98] Barg, A., Complexity issues in coding theory, in Handbook of coding theory, Vol. I, II, North-Holland, Amsterdam (1998), 649–754.

[BOP17] Barron, T., O'Neill, C., and Pelayo, R., On dynamic algorithms for factorization invariants in numerical monoids, Math. Comp., 86 (307) (2017), 2429–2447.

[BG+18] Bartholdi, L., Godin, T., Klimann, I., and Picantin, M., A new hierarchy for automaton semigroups, in Implementation and application of automata, Springer, Cham, Lecture Notes in Comput. Sci., 10977 (2018), 71–83.

[BH+15] Bäärnhielm, H., Holt, D., Leedham-Green, C. R., and O'Brien, E. A., A practical model for computation with matrix groups, J. Symbolic Comput., 68 (part 1) (2015), 27–60.

[BL12] Bäärnhielm, H. and Leedham-Green, C. R., The product replacement Prospector, J. Symbolic Comput., 47 (1) (2012), 64–75.

[B01] Beals, R., Improved algorithms for the Tits alternative, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 63–77.

[B99] Beals, R., Algorithms for matrix groups and the Tits alternative, J. Comput. System Sci., 58 (2) (1999), 260–279
(36th IEEE Symposium on the Foundations of Computer Science (Milwaukee, WI, 1995)).

[BB93] Beals, R. and Babai, L., Las Vegas algorithms for matrix groups, in 34th Annual Symposium on Foundations of Computer Science (Palo Alto, CA, 1993), IEEE Comput. Soc. Press, Los Alamitos, CA (1993), 427–436.

[BL+05] Beals, R., Leedham-Green, C. R., Niemeyer, A. C., Praeger, C. E., and Seress, \., Constructive recognition of finite alternating and symmetric groups acting as matrix groups on their natural permutation modules, J. Algebra, 292 (1) (2005), 4–46.

[BS02] Bergman, C. and Slutzki, G., Computational complexity of generators and nongenerators in algebra, Internat. J. Algebra Comput., 12 (5) (2002), 719–735.

[B18] Betten, A., How fast can we compute orbits of groups?, in Mathematical software—ICMS 2018, Springer, Cham, Lecture Notes in Comput. Sci., 10931 (2018), 62–70.

[BM01] Binder, F. and Mayr, P., Algorithms for finite near-rings and their $N$-groups, J. Symbolic Comput., 32 (1-2) (2001), 23–38
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[BP01] Borges Trenard, M. A. and Pérez Rosés, H., Characterizing the normal forms of a finitely presented monoid, in Fourth Italian-Latin American Conference on Applied and Industrial Mathematics (Havana, 2001), Inst. Cybern. Math. Phys., Havana (2001), 294–300.

[BP01] Borges-Trenard, M. A. and Pérez-Rosés, H., Enumerating words in finitely presented monoids, Investigaci\'on Oper., 22 (1) (2001), 62–66
(4th International Conference on Operations Research (Havana, 2000)).

[B18] Bouazizi, F., Algebraic certification of numerical algorithms computing Lagrange resolvents, J. Algebra Appl., 17 (1) (2018), 1850007, 15.

[BP00] Bratus, S. and Pak, I., Fast constructive recognition of a black box group isomorphic to $S_n$ or $A_n$ using Goldbach's conjecture, J. Symbolic Comput., 29 (1) (2000), 33–57.

[B18] Brieussel, J., An automata group of intermediate growth and exponential activity, J. Group Theory, 21 (4) (2018), 573–578.

[B03] Brooksbank, P. A., Fast constructive recognition of black-box unitary groups, LMS J. Comput. Math., 6 (2003), 162–197.

[B03] Brooksbank, P. A., Constructive recognition of classical groups in their natural representation, J. Symbolic Comput., 35 (2) (2003), 195–239.

[BW15] Brooksbank, P. A. and Wilson, J. B., The module isomorphism problem reconsidered, J. Algebra, 421 (2015), 541–559.

[BG+06] Brown, R., Ghani, N., Heyworth, A., and Wensley, C. D., String rewriting for double coset systems, J. Symbolic Comput., 41 (5) (2006), 573–590.

[BJ+16] Brzozowski, J., Jir\'askov\'a, G., Liu, B., Rajasekaran, A., and Szykuła, M., On the state complexity of the shuffle of regular languages, in Descriptional complexity of formal systems, Springer, [Cham], Lecture Notes in Comput. Sci., 9777 (2016), 73–86.

[BLY12] Brzozowski, J., Li, B., and Ye, Y., Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages, Theoret. Comput. Sci., 449 (2012), 37–53.

[BE16] Bui, A. T. and Ellis, G., Computing Bredon homology of groups, J. Homotopy Relat. Struct., 11 (4) (2016), 715–734.

[CHU19] Cannon, J. J., Holt, D. F., and Unger, W. R., The use of permutation representations in structural computations in large finite matrix groups, J. Symbolic Comput., 95 (2019), 26–38.

[CO01] Caprotti, O. and Oostdijk, M., Formal and efficient primality proofs by use of computer algebra oracles, J. Symbolic Comput., 32 (1-2) (2001), 55–70
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[CT16] Caroli, M. and Teillaud, M., Delaunay triangulations of closed Euclidean $d$-orbifolds, Discrete Comput. Geom., 55 (4) (2016), 827–853.

[CL+95] Celler, F., Leedham-Green, C. R., Murray, S. H., Niemeyer, A. C., and O'Brien, E. A., Generating random elements of a finite group, Comm. Algebra, 23 (13) (1995), 4931–4948.

[CRB02] Charnes, C., Rötteler, M., and Beth, T., Homogeneous bent functions, invariants, and designs, Des. Codes Cryptogr., 26 (1-3) (2002), 139–154
(In honour of Ronald C. Mullin).

[CGR97] Cohen, A. M., de Graaf, W. A., and R\'onyai, L., Computations in finite-dimensional Lie algebras, Discrete Math. Theor. Comput. Sci., 1 (1) (1997), 129–138
(Lie computations (Marseille, 1994)).

[C93] Cohen, H., A course in computational algebraic number theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics, 138 (1993), xii+534 pages.

[C05] Colton, S., Automated conjecture making in number theory using HR, Otter and Maple, J. Symbolic Comput., 39 (5) (2005), 593–615.

[C01] Cooperman, G., Parallel GAP: mature interactive parallel computing, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 123–138.

[CF94] Cooperman, G. and Finkelstein, L., A random base change algorithm for permutation groups, J. Symbolic Comput., 17 (6) (1994), 513–528.

[C02] Cousineau, G., Tilings as a programming exercise, Theoret. Comput. Sci., 281 (1-2) (2002), 207–217
(Selected papers in honour of Maurice Nivat).

[CR16] Craven, M. J. and Robertz, D., A parallel evolutionary approach to solving systems of equations in polycyclic groups, Groups Complex. Cryptol., 8 (2) (2016), 109–125.

[DF+97] Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., and Wildanger, K., KANT V4, J. Symbolic Comput., 24 (3-4) (1997), 267–283
(Computational algebra and number theory (London, 1993)).

[D02] Davenport, J. H., Equality in computer algebra and beyond, J. Symbolic Comput., 34 (4) (2002), 259–270
(Integrated reasoning and algebra systems (Siena, 2001)).

[D18] Davies, S., Primitivity, uniform minimality, and state complexity of Boolean operations, Theory Comput. Syst., 62 (8) (2018), 1952–2005.

[D97] Dèvenport, D., Galois groups and the factorization of polynomials, Programmirovanie (1) (1997), 43–58.

[DHS04] De Beule, J., Hoogewijs, A., and Storme, L., On the size of minimal blocking sets of $Q(4,q)$, for $q=5,7$, SIGSAM Bull., 38 (3) (2004), 67–84.

[G02] de Graaf, W. A., Constructing canonical bases of quantized enveloping algebras, Experiment. Math., 11 (2) (2002), 161–170.

[G01] de Graaf, W. A., Computing with quantized enveloping algebras: PBW-type bases, highest-weight modules and $R$-matrices, J. Symbolic Comput., 32 (5) (2001), 475–490.

[G03] de Graaf, W. A., An algorithm to compute the canonical basis of an irreducible module over a quantized enveloping algebra, LMS J. Comput. Math., 6 (2003), 105–118.

[G00] de Graaf, W. A., Lie algebras: theory and algorithms, North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library, 56 (2000), xii+393 pages.

[G97] de Graaf, W. A., Constructing faithful matrix representations of Lie algebras, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York (1997), 54–59.

[KM+06] de Klerk, E., Maharry, J., Pasechnik, D. V., Richter, R. B., and Salazar, G., Improved bounds for the crossing numbers of $K_m,n$ and $K_n$, SIAM J. Discrete Math., 20 (1) (2006), 189–202.

[DH99] Delgado Friedrichs, O. and Huson, D. H., Tiling space by Platonic solids. I, Discrete Comput. Geom., 21 (2) (1999), 299–315.

[D01] Delgado, M., Commutative images of rational languages and the abelian kernel of a monoid, Theor. Inform. Appl., 35 (5) (2001), 419–435.

[DF05] Delgado, M. and Fernandes, V. H., Solvable monoids with commuting idempotents, Internat. J. Algebra Comput., 15 (3) (2005), 547–570.

[DH03] Delgado, M. and Héam, P., A polynomial time algorithm to compute the abelian kernel of a finite monoid, Semigroup Forum, 67 (1) (2003), 97–110.

[D06] Dempwolff, U., Automorphisms and equivalence of bent functions and of difference sets in elementary abelian 2-groups, Comm. Algebra, 34 (3) (2006), 1077–1131.

[DFH18] Detinko, A., Flannery, D. L., and Hulpke, A., Zariski density and computing in arithmetic groups, Math. Comp., 87 (310) (2018), 967–986.

[DF09] Detinko, A. S. and Flannery, D. L., On deciding finiteness of matrix groups, J. Symbolic Comput., 44 (8) (2009), 1037–1043.

[DF08] Detinko, A. S. and Flannery, D. L., Algorithms for computing with nilpotent matrix groups over infinite domains, J. Symbolic Comput., 43 (1) (2008), 8–26.

[DFH19] Detinko, A. S., Flannery, D. L., and Hulpke, A., The strong approximation theorem and computing with linear groups, J. Algebra, 529 (2019), 536–549.

[DFO13] Detinko, A. S., Flannery, D. L., and O'Brien, E. A., Recognizing finite matrix groups over infinite fields, J. Symbolic Comput., 50 (2013), 100–109.

[DB+16] Devriendt, J., Bogaerts, B., Bruynooghe, M., and Denecker, M., Improved static symmetry breaking for SAT, in Theory and applications of satisfiability testing—SAT 2016, Springer, [Cham], Lecture Notes in Comput. Sci., 9710 (2016), 104–122.

[DFG13] Dietrich, H., Faccin, P., and de Graaf, W. A., Computing with real Lie algebras: real forms, Cartan decompositions, and Cartan subalgebras, J. Symbolic Comput., 56 (2013), 27–45.

[DW18] Dietrich, H. and Wanless, I. M., Small partial Latin squares that embed in an infinite group but not into any finite group, J. Symbolic Comput., 86 (2018), 142–152.

[D01] Draisma, J., Recognizing the symmetry type of O.D.E.s, J. Pure Appl. Algebra, 164 (1-2) (2001), 109–128
(Effective methods in algebraic geometry (Bath, 2000)).

[EPB97] Egner, S., Püschel, M., and Beth, T., Decomposing a permutation into a conjugated tensor product, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York (1997), 101–108.

[E01] Eick, B., Computing with infinite polycyclic groups, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 139–154.

[E05] Eick, B., Computational group theory, Jahresber. Deutsch. Math.-Verein., 107 (3) (2005), 155–170.

[EM17] Eick, B. and Moede, T., Coclass theory for finite nilpotent associative algebras: algorithms and a periodicity conjecture, Exp. Math., 26 (3) (2017), 267–274.

[EW02] Eick, B. and Wright, C. R. B., Computing subgroups by exhibition in finite solvable groups, J. Symbolic Comput., 33 (2) (2002), 129–143.

[EL12] Ellis, G. and Luyen, L. V., Computational homology of $n$-types, J. Symbolic Comput., 47 (11) (2012), 1309–1317.

[ES11] Ellis, G. and Smith, P., Computing group cohomology rings from the Lyndon-Hochschild-Serre spectral sequence, J. Symbolic Comput., 46 (4) (2011), 360–370.

[FG15] Faccin, P. and de Graaf, W. A., Constructing semisimple subalgebras of real semisimple Lie algebras, in Lie algebras and related topics, Amer. Math. Soc., Providence, RI, Contemp. Math., 652 (2015), 75–89.

[FS17] Ferens, R. and Szykuła, M., Complexity of bifix-free regular languages, in Implementation and application of automata, Springer, Cham, Lecture Notes in Comput. Sci., 10329 (2017), 76–88.

[FS19] Ferens, R. and Szykuła, M., Complexity of bifix-free regular languages, Theoret. Comput. Sci., 787 (2019), 14–27.

[FM+95] Fleischmann, P., Michler, G. O., Roelse, P., Rosenboom, J., Staszewski, R., Wagner, C., and Weller, M., Linear algebra over small finite fields on parallel machines, Universität Essen, Fachbereich Mathematik, Essen, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], 23 (1995), vi+113 pages.

[F96] Fripertinger, H., The cycle index of the symmetry group of the fullerene $\rm C_60$, Match (33) (1996), 121–138.

[FH16] Fromentin, J. and Hivert, F., Exploring the tree of numerical semigroups, Math. Comp., 85 (301) (2016), 2553–2568.

[GJ+19] Garrett, J., Jonoska, N., Kim, H., and Saito, M., Algebraic systems motivated by DNA origami, in Algebraic informatics, Springer, Cham, Lecture Notes in Comput. Sci., 11545 (2019), 164–176.

[GP04] Gatermann, K. and Parrilo, P. A., Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192 (1-3) (2004), 95–128.

[G05] Gebhardt, V., A new approach to the conjugacy problem in Garside groups, J. Algebra, 292 (1) (2005), 282–302.

[G02] Gebhardt, V., Efficient collection in infinite polycyclic groups, J. Symbolic Comput., 34 (3) (2002), 213–228.

[GG10] Gebhardt, V. and Gonz\'alez-Meneses, J., Solving the conjugacy problem in Garside groups by cyclic sliding, J. Symbolic Comput., 45 (6) (2010), 629–656.

[GBR19] Geyer, A. J., Bulutoglu, D. A., and Ryan, K. J., Finding the symmetry group of an LP with equality constraints and its application to classifying orthogonal arrays, Discrete Optim., 32 (2019), 93–119.

[GSP06] Gomes, G. M. S., Sezinando, H., and Pin, J., Presentations of the Schützenberger product of $n$ groups, Comm. Algebra, 34 (4) (2006), 1213–1235.

[GR12] Gray, R. and Ruskuc, N., On maximal subgroups of free idempotent generated semigroups, Israel J. Math., 189 (2012), 147–176.

[GHS01] Green, E. L., Heath, L. S., and Struble, C. A., Constructing homomorphism spaces and endomorphism rings, J. Symbolic Comput., 32 (1-2) (2001), 101–117
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[GHS00] Green, E. L., Heath, L. S., and Struble, C. A., Constructing endomorphism rings via duals, in Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), ACM, New York (2000), 129–136.

[G00] Greenhill, C., An algorithm for recognising the exterior square of a multiset, LMS J. Comput. Math., 3 (2000), 96–116.

[G95] Greenhill, C. S., Theoretical and experimental comparison of efficiency of finite field extensions, J. Symbolic Comput., 20 (4) (1995), 419–429.

[G15] Grochow, J. A., Unifying known lower bounds via geometric complexity theory, Comput. Complexity, 24 (2) (2015), 393–475.

[GQ17] Grochow, J. A. and Qiao, Y., Algorithms for group isomorphism via group extensions and cohomology, SIAM J. Comput., 46 (4) (2017), 1153–1216.

[HM02] Hansen, P. and Mélot, H., Computers and discovery in algebraic graph theory, Linear Algebra Appl., 356 (2002), 211–230
(Special issue on algebraic graph theory (Edinburgh, 2001)).

[HH+15] Hart, S., Hedtke, I., Müller-Hannemann, M., and Murthy, S., A fast search algorithm for $\langle m,m,m\rangle$ triple product property triples and an application for $5 \times 5$ matrix multiplication, Groups Complex. Cryptol., 7 (1) (2015), 31–46.

[HO93] Havas, G. and Ollila, M., Application of substring searching methods to group presentations, in Proceedings of the Sixteenth Australian Computer Science Conference (ACSC-16) (Brisbane, 1993), Austral. Comput. Sci. Comm., 15 (1993), 587–593.

[HR94] Havas, G. and Robertson, E. F., Application of computational tools for finitely presented groups, in Computational support for discrete mathematics (Piscataway, NJ, 1992), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 15 (1994), 29–39.

[HL04] Heath, L. S. and Loehr, N. A., New algorithms for generating Conway polynomials over finite fields, J. Symbolic Comput., 38 (2) (2004), 1003–1024.

[HM12] Hedtke, I. and Murthy, S., Search and test algorithms for triple product property triples, Groups Complex. Cryptol., 4 (1) (2012), 111–133.

[HC+13] Heras, J., Coquand, T., Mörtberg, A., and Siles, V., Computing persistent homology within Coq/SSReflect, ACM Trans. Comput. Log., 14 (4) (2013), Art. 26, 16.

[HHR08] Hermiller, S., Holt, D. F., and Rees, S., Groups whose geodesics are locally testable, Internat. J. Algebra Comput., 18 (5) (2008), 911–923.

[H15] Horv\'ath, G., The complexity of the equivalence and equation solvability problems over meta-Abelian groups, J. Algebra, 433 (2015), 208–230.

[H01] Hulpke, A., Representing subgroups of finitely presented groups by quotient subgroups, Experiment. Math., 10 (3) (2001), 369–381.

[H13] Hulpke, A., Computing generators of groups preserving a bilinear form over residue class rings, J. Symbolic Comput., 50 (2013), 298–307.

[H98] Hulpke, A., Computing normal subgroups, in Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock), ACM, New York (1998), 194–198.

[H17] Hulpke, A., Finding intermediate subgroups, Port. Math., 74 (3) (2017), 201–212.

[HL99] Hulpke, A. and Linton, S., Construction of $\rm Co_3$. An example of the use of an integrated system for computational group theory, in Groups St. Andrews 1997 in Bath, II, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 261 (1999), 394–409.

[H01] Höfling, B., Computing projectors, injectors, residuals and radicals of finite soluble groups, J. Symbolic Comput., 32 (5) (2001), 499–511.

[JMP17] Jonu\vsas, J., Mitchell, J. D., and Pfeiffer, M., Two variants of the Froidure-Pin algorithm for finite semigroups, Port. Math., 74 (3) (2017), 173–200.

[KO06] Kambites, M. and Otto, F., Uniform decision problems for automatic semigroups, J. Algebra, 303 (2) (2006), 789–809.

[K98] Kantor, W. M., Simple groups in computational group theory, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. (Extra Vol. II) (1998), 77–86.

[KS01] Kantor, W. M. and Seress, \., Black box classical groups, Mem. Amer. Math. Soc., 149 (708) (2001), viii+168.

[KS99] Kantor, W. M. and Seress, \., Permutation group algorithms via black box recognition algorithms, in Groups St. Andrews 1997 in Bath, II, Cambridge Univ. Press, Cambridge, London Math. Soc. Lecture Note Ser., 261 (1999), 436–446.

[K05] Kaski, P., Isomorph-free exhaustive generation of designs with prescribed groups of automorphisms, SIAM J. Discrete Math., 19 (3) (2005), 664–690.

[KM00] Klüners, J. and Malle, G., Explicit Galois realization of transitive groups of degree up to 15, J. Symbolic Comput., 30 (6) (2000), 675–716
(Algorithmic methods in Galois theory).

[KPS16] Klimann, I., Picantin, M., and Savchuk, D., Orbit automata as a new tool to attack the order problem in automaton groups, J. Algebra, 445 (2016), 433–457.

[KLZ12] Klin, M., Lauri, J., and Ziv-Av, M., Links between two semisymmetric graphs on 112 vertices via association schemes, J. Symbolic Comput., 47 (10) (2012), 1175–1191.

[K08] Kohl, S., Algorithms for a class of infinite permutation groups, J. Symbolic Comput., 43 (8) (2008), 545–581.

[KU18] Kotov, M. and Ushakov, A., Analysis of a key exchange protocol based on tropical matrix algebra, J. Math. Cryptol., 12 (3) (2018), 137–141.

[KU15] Kotov, M. and Ushakov, A., Analysis of a certain polycyclic-group-based cryptosystem, J. Math. Cryptol., 9 (3) (2015), 161–167.

[K97] Ko\'scielny, C., Computing in $\rm GF(2^m)$ using GAP, Appl. Math. Comput. Sci., 7 (3) (1997), 677–688.

[L16] Lambe, L. A., An algebraic study of the Klein bottle, J. Homotopy Relat. Struct., 11 (4) (2016), 885–891.

[L02] Lübeck, F., On the computation of elementary divisors of integer matrices, J. Symbolic Comput., 33 (1) (2002), 57–65.

[LP+12] Levandovskyy, V., Pagon, D., Petkov\vsek, M., and Romanovski, V., Foreword from the editors [Symbolic computation and its applications], J. Symbolic Comput., 47 (10) (2012), 1137–1139.

[LWW17] Li, C., Weber, S., and Walsh, J. M., On multi-source networks: enumeration, rate region computation, and hierarchy, IEEE Trans. Inform. Theory, 63 (11) (2017), 7283–7303.

[LL18] Li, W. and Li, X., On two problems of almost synchronizing groups, Theoret. Comput. Sci., 707 (2018), 94–95.

[LP+02] Linton, S. A., Pfeiffer, G., Robertson, E. F., and Ru\vskuc, N., Computing transformation semigroups, J. Symbolic Comput., 33 (2) (2002), 145–162.

[LH+13] Linton, S., Hammond, K., Konovalov, A., Brown, C., Trinder, P. W., Loidl, H. -., Horn, P., and Roozemond, D., Easy composition of symbolic computation software using SCSCP: a new lingua franca for symbolic computation, J. Symbolic Comput., 49 (2013), 95–119.

[LM11] Luks, E. M. and Miyazaki, T., Polynomial-time normalizers, Discrete Math. Theor. Comput. Sci., 13 (4) (2011), 61–96.

[LRW97] Luks, E. M., R\'ak\'oczi, F., and Wright, C. R. B., Some algorithms for nilpotent permutation groups, J. Symbolic Comput., 23 (4) (1997), 335–354.

[LS97] Luks, E. M. and Seress, \., Computing the Fitting subgroup and solvable radical of small-base permutation groups in nearly linear time, in Groups and computation, II (New Brunswick, NJ, 1995), Amer. Math. Soc., Providence, RI, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 28 (1997), 169–181.

[LMR94] Lux, K., Müller, J., and Ringe, M., Peakword condensation and submodule lattices: an application of the MEAT-AXE, J. Symbolic Comput., 17 (6) (1994), 529–544.

[MHB98] Manku, G. S., Hojati, R., and Brayton, R., Structural symmetry and model checking, in Computer aided verification (Vancouver, BC, 1998), Springer, Berlin, Lecture Notes in Comput. Sci., 1427 (1998), 159–171.

[M02] Marcusanu, M. C., Complementary $l_1$-graphs embeddable in the half-cube, European J. Combin., 23 (8) (2002), 1061–1072.

[M15] Martin, U., Stumbling around in the dark: lessons from everyday mathematics, in Automated deduction—CADE 25, Springer, Cham, Lecture Notes in Comput. Sci., 9195 (2015), 29–51.

[MPS02] Meier, A., Pollet, M., and Sorge, V., Comparing approaches to the exploration of the domain of residue classes, J. Symbolic Comput., 34 (4) (2002), 287–306
(Integrated reasoning and algebra systems (Siena, 2001)).

[M00] Michel, J., Calculs en théorie des groupes et introduction au langage GAP (groups, algorithms and programming), in Groupes finis, Ed. Éc. Polytech., Palaiseau (2000), 71–95.

[M98] Minkwitz, T., An algorithm for solving the factorization problem in permutation groups, J. Symbolic Comput., 26 (1) (1998), 89–95.

[M01] Miyamoto, I., Computing isomorphisms of association schemes and its applications, J. Symbolic Comput., 32 (1-2) (2001), 133–141
(Computer algebra and mechanized reasoning (St. Andrews, 2000)).

[MO95] Murray, S. H. and O'Brien, E. A., Selecting base points for the Schreier-Sims algorithm for matrix groups, J. Symbolic Comput., 19 (6) (1995), 577–584.

[M01] Mysovskikh, V. I., Computer algebra systems and symbolic computations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 281 (Vopr. Teor. Predst. Algebr. i Grupp. 8) (2001), 227–236, 283–284.

[NNN98] Newman, M. F., Nickel, W., and Niemeyer, A. C., Descriptions of groups of prime-power order, J. Symbolic Comput., 25 (5) (1998), 665–682.

[NN15] Newman, M. F. and Niemeyer, A. C., On complexity of multiplication in finite soluble groups, J. Algebra, 421 (2015), 425–430.

[N95] Niemeyer, A. C., Computing finite soluble quotients, in Computational algebra and number theory (Sydney, 1992), Kluwer Acad. Publ., Dordrecht, Math. Appl., 325 (1995), 75–82.

[OR03] Olivieri, A. and del R\'io, \., An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra, J. Symbolic Comput., 35 (6) (2003), 673–687.

[OS97] Omrani, A. and Shokrollahi, A., Computing irreducible representations of supersolvable groups over small finite fields, Math. Comp., 66 (218) (1997), 779–786.

[O17] O'Neill, C., On factorization invariants and Hilbert functions, J. Pure Appl. Algebra, 221 (12) (2017), 3069–3088.

[P01] Pak, I., What do we know about the product replacement algorithm?, in Groups and computation, III (Columbus, OH, 1999), de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ., 8 (2001), 301–347.

[PRB99] Püschel, M., Rötteler, M., and Beth, T., Fast quantum Fourier transforms for a class of non-abelian groups, in Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), Springer, Berlin, Lecture Notes in Comput. Sci., 1719 (1999), 148–159.

[P12] Ponomarenko, I. N., Bases of Schurian antisymmetric coherent configurations and isomorphism test for Schurian tournaments, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 402 (Kombinatorika i Teoriya Grafov. IV) (2012), 108–147, 219–220.

[P01] Praeger, C. E., Computers in algebra: new answers, new questions, J. Korean Math. Soc., 38 (4) (2001), 763–780
(Mathematics in the new millennium (Seoul, 2000)).

[R98] Rees, S., Automatic groups associated with word orders other than shortlex, Internat. J. Algebra Comput., 8 (5) (1998), 575–598.

[R04] Rennert, N., A parallel multi-modular algorithm for computing Lagrange resolvents, J. Symbolic Comput., 37 (5) (2004), 547–556.

[RR12] Romero, A. and Rubio, J., Computing the homology of groups: the geometric way, J. Symbolic Comput., 47 (7) (2012), 752–770.

[RR13] Romero, A. and Rubio, J., Homotopy groups of suspended classifying spaces: an experimental approach, Math. Comp., 82 (284) (2013), 2237–2244.

[S98] Seress, \., Nearly linear time algorithms for permutation groups: an interplay between theory and practice, Acta Appl. Math., 52 (1-3) (1998), 183–207
(Algebra and combinatorics: interactions and applications (Königstein, 1994)).

[S94] Sims, C. C., Computation with finitely presented groups, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, 48 (1994), xiii+604 pages.

[S07] Slattery, M. C., Generation of groups of square-free order, J. Symbolic Comput., 42 (6) (2007), 668–677.

[S00] Sorge, V., Non-trivial symbolic computations in proof planning, in Frontiers of combining systems (Nancy, 2000), Springer, Berlin, Lecture Notes in Comput. Sci., 1794 (2000), 121–135.

[SC+08] Sorge, V., Colton, S., McCasland, R., and Meier, A., Classification results in quasigroup and loop theory via a combination of automated reasoning tools, Comment. Math. Univ. Carolin., 49 (2) (2008), 319–339.

[U06] Unger, W. R., Computing the character table of a finite group, J. Symbolic Comput., 41 (8) (2006), 847–862.

[VPD10] Vasco, M. I. G., del Pozo, A. L. P., and Duarte, P. T., A note on the security of $\rm MST_3$, Des. Codes Cryptogr., 55 (2-3) (2010), 189–200.

[VJ07] Verrill, H. and Joyner, D., Computing with toric varieties, J. Symbolic Comput., 42 (5) (2007), 511–532.

[W95] Weber, A., On coherence in computer algebra, J. Symbolic Comput., 19 (1-3) (1995), 25–38
(Design and implementation of symbolic computation systems (Gmunden, 1993)).