INVESTIGATING p-GROUPS BY COCLASS WITH GAP

Heiko Dietrich*, Bettina Eick, Dörte Feichtenschlager*

Technische Universität Braunschweig, Institut Computational Mathematics

September 2007 GAP Workshop, Braunschweig
Coclass Graph

Definition (Leedham-Green, Newman 1980)

A finite p-group G with $|G| = p^n$ and $\text{cl}(G) = c$ has coclass $cc(G) = n - c$.

Introduction

Computing coclass trees with Gap

Application: Cohomology of 2-groups

Application: $G(5, 1)$

Coclass 1
Coclass Graph

Definition (Leedham-Green, Newman 1980)

A finite p-group G with $|G| = p^n$ and $\text{cl}(G) = c$ has coclass

$$cc(G) = n - c.$$

Use the Coclass-Graph $\mathcal{G}(p, r)$:

- vertices of $\mathcal{G}(p, r) \leftrightarrow p$-groups of coclass r.

Coclass Graph

Definition (Leedham-Green, Newman 1980)
A finite p-group G with $|G| = p^n$ and $\text{cl}(G) = c$ has coclass

$$\text{cc}(G) = n - c.$$

Use the Coclass-Graph $\mathcal{G}(p, r)$:
- vertices of $\mathcal{G}(p, r)$ \leftrightarrow p-groups of coclass r,
- edge \overline{GH} \leftrightarrow $G/\gamma_c(G) \cong H$ with $c = \text{cl}(G)$.
Coclass Graph

Definition (Leedham-Green, Newman 1980)

A finite p-group G with $|G| = p^n$ and $\text{cl}(G) = c$ has coclass

$$cc(G) = n - c.$$

Use the Coclass-Graph $G(p, r)$:

- vertices of $G(p, r) \leftrightarrow p$-groups of coclass r,
- edge $GH \leftrightarrow G/\gamma_c(G) \cong H$ with $c = \text{cl}(G)$.

Notation:

- If GH edge, then G is a descendant of H.

Coclass Graph

Definition (Leedham-Green, Newman 1980)

A finite p-group G with $|G| = p^n$ and $\text{cl}(G) = c$ has coclass

$$cc(G) = n - c.$$

Use the Coclass-Graph $\mathcal{G}(p, r)$:

- vertices of $\mathcal{G}(p, r) \leftrightarrow p$-groups of coclass r,
- edge $\overline{GH} \leftrightarrow G/\gamma_c(G) \cong H$ with $c = \text{cl}(G)$.

Notation:

- If \overline{GH} edge, then G is a descendant of H.
- If G has descendants, then G is called capable.
Coclass Graph

Definition (Leedham-Green, Newman 1980)

A finite p-group G with $|G| = p^n$ and $\text{cl}(G) = c$ has coclass

$$cc(G) = n - c.$$

Use the Coclass-Graph $\mathcal{G}(p, r)$:

- vertices of $\mathcal{G}(p, r) \leftrightarrow p$-groups of coclass r,
- edge $\overline{GH} \leftrightarrow G/\gamma_c(G) \cong H$ with $c = \text{cl}(G)$.

Notation:

- If \overline{GH} edge, then G is a descendant of H.
- If G has descendants, then G is called capable, otherwise terminal.
Example: The graph $\mathcal{G}(2, 1)$
Example: The graph $\mathcal{G}(2, 1)$

$2^2 \bullet \bullet$
Example: The graph $\mathcal{G}(2, 1)$

$2^2 \quad V_4$
Example: The graph $G(2, 1)$

$$
\begin{array}{ccc}
2^2 & V_4 & C_4 \\
\bullet & \bullet & \bullet
\end{array}
$$
Example: The graph \(G(2, 1) \)

\[
\begin{array}{ccc}
2^2 & V_4 & C_4 \\
2^3 & & \\
\end{array}
\]
EXAMPLE: THE GRAPH \(G(2, 1) \)

\[
\begin{array}{ccc}
2^2 & V_4 & C_4 \\
2^3 & D_8 & \\
\end{array}
\]
Example: The graph \(G(2, 1) \)

\[
\begin{array}{ccc}
2^2 & V_4 & C_4 \\
2^3 & D_8 & Q_8 \\
\end{array}
\]
Example: The graph $\mathcal{G}(2, 1)$

\[
\begin{array}{c}
2^2 & \bullet & V_4 & \bullet & C_4 \\
2^3 & D_8 & \bullet & Q_8 \\
\end{array}
\]
Example: The Graph $G(2, 1)$

```
\begin{center}
\begin{tikzpicture}
  \node (V4) at (0,1) {$V_4$};
  \node (C4) at (1,1) {$C_4$};
  \node (D8) at (0,0) {$D_8$};
  \node (Q8) at (1,0) {$Q_8$};
  \draw (V4) -- (D8);
  \draw (C4) -- (Q8);
\end{tikzpicture}
\end{center}
```
Example: The graph $\mathcal{G}(2, 1)$

\[
\begin{array}{c}
2^2 & \bullet & V_4 & \bullet & C_4 \\
2^3 & \bullet & D_8 & \bullet & Q_8 \\
2^4 & \bullet & \bullet & \bullet & D_{16} & \bullet & Q_{16}
\end{array}
\]
Example: The graph $\mathcal{G}(2, 1)$

```
2^2

V_4

C_4

2^3

D_8

Q_8

2^4

D_{16}

Q_{16}

SD_{16}
```
Example: The graph $\mathcal{G}(2, 1)$
Example: The graph $G(2, 1)$

```
2^2
  V_4
/   |
D_8  Q_8
/   |
D_{16} Q_{16} SD_{16}
```

Introduction
Computing coclass trees with Gap

Application:
Cohomology of 2-groups

Application:
$G(5, 1)$

Coclass 1
EXAMPLE: THE GRAPH $G(2, 1)$
EXAMPLE: THE GRAPH $G(2, 1)$

The graph $G(2, 1)$ is a cohomology of 2-groups. It shows the structure of cohomology classes for each power of 2, with groups such as V_4, C_4, D_8, Q_8, D_{16}, Q_{16}, SD_{16}, D_{32}, Q_{32}, SD_{32}, D_{64}, Q_{64}, and SD_{64}.
EXAMPLE: THE GRAPH $G(2, 1)$
Main Conjecture

Conjecture

Let $r \in \mathbb{N}$. The p-groups of coclass r can be split into finitely many *coclass families*.

Investigating p-groups by coclass with Gap

Heiko Dietrich*, Bettina Eick, Dörte Feichtenschlager*

Introduction

Computing coclass trees with Gap

Application: Cohomology of 2-groups

Application: $G(5, 1)$

Coclass 1
Main Conjecture

Conjecture

Let $r \in \mathbb{N}$. The p-groups of coclass r can be split into finitely many coclass families such that

- the groups in a family can be defined by a single parametrized presentation.
Main Conjecture

Conjecture

Let \(r \in \mathbb{N} \). The \(p \)-groups of coclass \(r \) can be split into finitely many coclass families such that

- the groups in a family can be defined by a single parametrized presentation;

- many structural invariants of the groups in a family can be exhibited in a uniform way.
Main conjecture

Conjecture

Let \(r \in \mathbb{N} \). The \(p \)-groups of coclass \(r \) can be split into finitely many coclass families such that

- the groups in a family can be defined by a single parametrized presentation;
- many structural invariants of the groups in a family can be exhibited in a uniform way, for example:
 - *Schur multiplicators*

can be described in a parametrized presentation.
MAIN CONJECTURE

CONJECTURE

Let $r \in \mathbb{N}$. The p-groups of coclass r can be split into finitely many coclass families such that

- the groups in a family can be defined by a single parametrized presentation;
- many structural invariants of the groups in a family can be exhibited in a uniform way, for example:
 - Schur multiplicators and
 - automorphism groups

can be described in a parametrized presentation.
Let $r \in \mathbb{N}$. The p-groups of coclass r can be split into finitely many coclass families such that

- the groups in a family can be defined by a single parametrized presentation;
- many structural invariants of the groups in a family can be exhibited in a uniform way, for example:
 - Schur multiplicators,
 - automorphism groups and
 - cohomology rings $H^*(-, R)$, for R ring,

can be described in a parametrized presentation.
Let $G \in \mathcal{G}(p, r)$.

- $\mathcal{T}_G \subseteq \mathcal{G}(p, r)$ is the descendant tree of G.
THE COCLASS TREE

Let $G \in \mathcal{G}(p, r)$.

- $\mathcal{T}_G \subseteq \mathcal{G}(p, r)$ is the descendant tree of G.
- \mathcal{T}_G is a coclass tree \iff it has exactly one infinite path ($G = G_0, G_1, G_2 \ldots$), its mainline, and is maximal with this property.
The coclass tree

Let $G \in \mathcal{G}(p, r)$.

- $\mathcal{T}_G \subseteq \mathcal{G}(p, r)$ is the descendant tree of G.
- \mathcal{T}_G is a coclass tree \iff it has exactly one infinite path $(G = G_0, G_1, G_2 \ldots)$, its mainline, and is maximal with this property.
- The i-th branch \mathcal{B}_i of \mathcal{T}_G is generated by all descendants of G_i which are not descendants of G_{i+1}.

The coclass tree

Let $G \in \mathcal{G}(p, r)$.

- $\mathcal{T}_G \subseteq \mathcal{G}(p, r)$ is the descendant tree of G.
- \mathcal{T}_G is a coclass tree \iff it has exactly one infinite path $(G = G_0, G_1, G_2 \ldots)$, its mainline, and is maximal with this property.
- The i-th branch \mathcal{B}_i of \mathcal{T}_G is generated by all descendants of G_i which are not descendants of G_{i+1}.

The coclass tree

Let $G \in \mathcal{G}(p, r)$.

- $\mathcal{T}_G \subseteq \mathcal{G}(p, r)$ is the descendant tree of G.
- \mathcal{T}_G is a coclass tree \iff it has exactly one infinite path $(G = G_0, G_1, G_2 \ldots)$, its mainline, and is maximal with this property.
- The i-th branch \mathcal{B}_i of \mathcal{T}_G is generated by all descendants of G_i which are not descendants of G_{i+1}.
- Depth of $\mathcal{B}_i = \text{length of a longest path in } \mathcal{B}_i$.
THE COCLASS TREE

Let \(G \in \mathcal{G}(p, r) \).

- \(\mathcal{T}_G \subseteq \mathcal{G}(p, r) \) is the descendant tree of \(G \).
- \(\mathcal{T}_G \) is a coclass tree \(\iff \) it has exactly one infinite path \((G = G_0, G_1, G_2 \ldots)\), its mainline, and is maximal with this property.
- The \(i \)-th branch \(\mathcal{B}_i \) of \(\mathcal{T}_G \) is generated by all descendants of \(G_i \) which are not descendants of \(G_{i+1} \).
- Depth of \(\mathcal{B}_i \) = length of a longest path in \(\mathcal{B}_i \).
- Width of \(\mathcal{B}_i \) = maximum number of groups of same order in \(\mathcal{B}_i \).
Example: The graph $G(2, 1)$ revisited
Conjecture

If \(T \) is a coclass tree \(G(p, r) \), then there exist \(d, f \in \mathbb{N} \) such that:

- \(B_{i+d} \) can be constructed from \(B_i \) for \(i \geq f \).
CONSTRUCTION RULES AND COCLASS FAMILIES

CONJECTURE

\(T \) coclass tree \(G(p, r) \). \(\Rightarrow \) Exist \(d, f \in \mathbb{N} \) such that

- \(B_{i+d} \) can be constructed from \(B_i \) for \(i \geq f \);
- we get a surjective map \(\varphi_i : B_{i+d} \rightarrow B_i \) for \(i \geq f \).
Investigating p-groups by coclass with GAP

Heiko Dietrich*, Bettina Eick, Dörte Feichtenschlager*

Introduction
Computing coclass trees with GAP

Application: Cohomology of 2-groups

Application: $G(5, 1)$

Coclass 1

CONSTRUCTION RULES AND COCLASS FAMILIES

Conjecture

T coclass tree $G(p, r). \Rightarrow$ Exist $d, f \in \mathbb{N}$ such that

- B_{i+d} can be constructed from B_i for $i \geq f$;
- we get a surjective map $\varphi_i : B_{i+d} \to B_i$ for $i \geq f$.

Choose suitable $m \geq f$ and $G \in B_i$ with $m \leq i < m + d$.
Conjecture

\[T \] coclass tree \(G(p, r) \). \(\Rightarrow \) Exist \(d, f \in \mathbb{N} \) such that

- \(B_{i+d} \) can be constructed from \(B_i \) for \(i \geq f \);
- we get a surjective map \(\varphi_i : B_{i+d} \rightarrow B_i \) for \(i \geq f \).

Choose suitable \(m \geq f \) and \(G \in B_i \) with \(m \leq i < m + d \). Then \(G \) defines an infinite coclass family \(\mathcal{F}_G \) consisting of \(G \) and iterated preimages of \(G \) under \(\varphi_{i+dj} \), for \(j \in \mathbb{N} \).
Investigating p-groups by coclass with Gap

Heiko Dietrich*, Bettina Eick, Dörte Feichtenshlagher*

Introduction
Computing coclass trees with Gap
Application: Cohomology of 2-groups
Application: $G(5, 1)$
Coclass 1

Construction Rules and Coclass Families

Conjecture

T coclass tree $G(p, r) \Rightarrow$ Exist $d, f \in \mathbb{N}$ such that

- \mathcal{B}_{i+d} can be constructed from \mathcal{B}_i for $i \geq f$;
- we get a surjective map $\varphi_i : \mathcal{B}_{i+d} \to \mathcal{B}_i$ for $i \geq f$.

Choose suitable $m \geq f$ and $G \in \mathcal{B}_i$ with $m \leq i < m + d$.
Then G defines an infinite coclass family \mathcal{F}_G consisting of G and iterated preimages of G under φ_{i+dj}, for $j \in \mathbb{N}$.

Theorem (Eick, Leedham-Green)

Let T be a bounded coclass tree. Then there exist $d, f \in \mathbb{N}$ and isomorphisms $\mathcal{B}_{i+d} \to \mathcal{B}_i$, $i \geq f$.
EXAMPLE: $\mathcal{G}(2, 1)$ AND $\mathcal{G}(2, 2)$

$\mathcal{G}(2, 1)$ contains 6 coclass families.
Example: $\mathcal{G}(2, 1)$ and $\mathcal{G}(2, 2)$

$\mathcal{G}(2, 1)$ contains 6 coclass families:

- 3 finite families (containing C_4, V_4 and Q_8, resp.).
Example: \(\mathcal{G}(2, 1) \) and \(\mathcal{G}(2, 2) \)

\(\mathcal{G}(2, 1) \) contains 6 coclass families:
- 3 finite families (containing \(C_4 \), \(V_4 \) and \(Q_8 \), resp.) and
- 3 infinite families (dihedral, quaternion, semi-dihedral).
Example: $\mathcal{G}(2,1)$ and $\mathcal{G}(2,2)$

$\mathcal{G}(2,1)$ contains 6 coclass families:
- 3 finite families (containing C_4, V_4 and Q_8, resp.) and
- 3 infinite families (dihedral, quaternion, semi-dihedral).

$\mathcal{G}(2,2)$ contains
- 5 coclass trees $\mathcal{T}_1(2,2), \ldots, \mathcal{T}_5(2,2)$.
Example: \(\mathcal{G}(2, 1) \) and \(\mathcal{G}(2, 2) \)

\(\mathcal{G}(2, 1) \) contains 6 coclass families:
- 3 finite families (containing \(C_4 \), \(V_4 \) and \(Q_8 \), resp.) and
- 3 infinite families (dihedral, quaternion, semi-dihedral).

\(\mathcal{G}(2, 2) \) contains
- 5 coclass trees \(\mathcal{T}_1(2, 2), \ldots, \mathcal{T}_5(2, 2) \),
- 19 finite families (each contains one group).
Example: $G(2, 1)$ and $G(2, 2)$

$G(2, 1)$ contains 6 coclass families:
- 3 finite families (containing C_4, V_4 and Q_8, resp.) and
- 3 infinite families (dihedral, quaternion, semi-dihedral).

$G(2, 2)$ contains
- 5 coclass trees $T_1(2, 2), \ldots, T_5(2, 2)$,
- 19 finite families (each contains one group),
- 51 infinite families.
Example: $\mathcal{G}(2,1)$ and $\mathcal{G}(2,2)$

$\mathcal{G}(2,1)$ contains 6 coclass families:
- 3 finite families (containing C_4, V_4 and Q_8, resp.) and
- 3 infinite families (dihedral, quaternion, semi-dihedral).

$\mathcal{G}(2,2)$ contains
- 5 coclass trees $T_1(2,2), \ldots, T_5(2,2)$,
- 19 finite families (each contains one group),
- 51 infinite families.

<table>
<thead>
<tr>
<th></th>
<th>$T_1(2,2)$</th>
<th>$T_2(2,2)$</th>
<th>$T_3(2,2)$</th>
<th>$T_4(2,2)$</th>
<th>$T_5(2,2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G_0</td>
<td>(64,34)</td>
<td>(64,32)</td>
<td>(16,4)</td>
<td>(32,9)</td>
<td>(8,5)</td>
</tr>
<tr>
<td># fam.</td>
<td>19</td>
<td>16</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>G_f</td>
<td>(64,34)</td>
<td>(64,32)</td>
<td>(16,4)</td>
<td>(32,9)</td>
<td>(16,11)</td>
</tr>
</tbody>
</table>
Theorem

There is a 1–1 correspondence between the pro-p-groups of coclass r and the mainlines of coclass trees in $\mathcal{G}(p, r)$.

Introduction

Computing coclass trees with Gap

Application: Cohomology of 2-groups

Application: $\mathcal{G}(5, 1)$

Coclass 1
Theorem

There is a 1–1 correspondence between the pro-p-groups of coclass r and the mainlines of coclass trees in $G(p, r)$.

Definition

A uniserial p-adic space group of dimension d is an extension.
Theorem

There is a 1–1 correspondence between the pro-p-groups of coclass r and the mainlines of coclass trees in $G(p, r)$.

Definition

A uniserial p-adic space group of dimension d is an extension of

- a **translation subgroup** $T = \mathbb{Z}_p^d$ (\mathbb{Z}_p p-adic integers).
Theorem

There is a 1–1 correspondence between the pro-p-groups of coclass r and the mainlines of coclass trees in $G(p, r)$.

Definition

A uniserial p-adic space group of dimension d is an extension of

- a translation subgroup $T = \mathbb{Z}_p^d$ (\mathbb{Z}_p p-adic integers) by
- a point group P (finite p-group) acting uniserially on T.
Theorem

There is a 1–1 correspondence between the pro-p-groups of coclass \(r \) and the mainlines of coclass trees in \(G(p, r) \).

Definition

A uniserial \(p \)-adic space group of dimension \(d \) is an extension of

- a translation subgroup \(T = \mathbb{Z}_p^d \) (\(\mathbb{Z}_p \) \(p \)-adic integers) by
- a point group \(P \) (finite \(p \)-group) acting uniserially on \(T \); i.e. \(T_0 = T \) and \(T_{i+1} = [T_i, P] \) satisfies \([T_i : T_{i+1}] = p \) for all \(i \).
Number of uniserial p-adic space groups:

$p = 2$: Newman, O’Brien

p odd: construction algorithm by Eick
Number of pro-\(p \)-groups

Number of uniserial \(p \)-adic space groups:
- \(p = 2 \): Newman, O’Brien
- \(p \) odd: construction algorithm by Eick

<table>
<thead>
<tr>
<th></th>
<th>(r = 2)</th>
<th>(r = 3)</th>
<th>(r = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 2)</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>(p = 3)</td>
<td>10</td>
<td>1271</td>
<td>137299952383</td>
</tr>
<tr>
<td>(p = 5)</td>
<td>95</td>
<td>1110136753555665</td>
<td></td>
</tr>
<tr>
<td>(p = 7)</td>
<td>4575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NUMBER OF PRO-\(p \)-GROUPS

Number of uniserial \(p \)-adic space groups:
\(p = 2 \): Newman, O’Brien
\(p \) odd: construction algorithm by Eick

<table>
<thead>
<tr>
<th></th>
<th>(r = 2)</th>
<th>(r = 3)</th>
<th>(r = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 2)</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>(p = 3)</td>
<td>10</td>
<td>1271</td>
<td>137299952383</td>
</tr>
<tr>
<td>(p = 5)</td>
<td>95</td>
<td>1110136753555665</td>
<td></td>
</tr>
<tr>
<td>(p = 7)</td>
<td>4575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of pro-\(p \)-groups:
Number of uniserial p-adic space groups:

- $p = 2$: Newman, O’Brien
- p odd: construction algorithm by Eick

<table>
<thead>
<tr>
<th></th>
<th>$r = 2$</th>
<th>$r = 3$</th>
<th>$r = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 2$</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>$p = 3$</td>
<td>10</td>
<td>1271</td>
<td></td>
</tr>
<tr>
<td>$p = 5$</td>
<td>95</td>
<td>1110136753555665</td>
<td>137299952383</td>
</tr>
<tr>
<td>$p = 7$</td>
<td>4575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of pro-p-groups:

- 5 pro-2-groups of coclass 2.
INVESTIGATING p-GROUPS BY COCLASS WITH GAP

Heiko Dietrich*, Bettina Eick, Dörte Feichtenschlager*

INTRODUCTION

Computing coclass trees with GAP

APPLICATION: Cohomology of 2-groups

APPLICATION: $G(5, 1)$

Coclass 1

Number of pro-p-groups:

- 5 pro-2-groups of coclass 2,
- 54 pro-2-groups of coclass 3.

Number of uniserial p-adic space groups:

$p = 2$: Newman, O’Brien

p odd: construction algorithm by Eick

<table>
<thead>
<tr>
<th></th>
<th>$r = 2$</th>
<th>$r = 3$</th>
<th>$r = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 2$</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>$p = 3$</td>
<td>10</td>
<td>1271</td>
<td>137299952383</td>
</tr>
<tr>
<td>$p = 5$</td>
<td>95</td>
<td>1110136753555665</td>
<td></td>
</tr>
<tr>
<td>$p = 7$</td>
<td>4575</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number of pro-p-groups:

- 5 pro-2-groups of coclass 2,
- 54 pro-2-groups of coclass 3,
- 16 pro-3-groups of coclass 2.

Number of uniserial p-adic space groups:

$p = 2$: Newman, O’Brien

p odd: construction algorithm by Eick
Input: p-group G of coclass r
Computing Immediate Descendants

Input: p-group G of coclass r

Output: Immediate descendants of G

Introduction

Computing CoClass Trees with GAP

Application: Cohomology of 2-Groups

Application: $G(5, 1)$

Coclass 1
Computing Immediate Descendants

Input: p-group G of coclass r
Output: Immediate descendants of G
(i.e. all central extensions of C_p by G of coclass r)
Computing Immediate Descendants

Input: p-group G of coclass r

Output: Immediate descendants of G (i.e. all central extensions of C_p by G of coclass r)

Sketch of algorithm:

- Let $U \subseteq Z^2(G, C_p)$ correspond to the central extensions of coclass r.

Introduction

Computing coclass trees with Gap

Application: Cohomology of 2-groups

Application: $G(5, 1)$

Coclass 1
Computing Immediate Descendants

Input: p-group G of coclass r
Output: Immediate descendants of G
(i.e. all central extensions of C_p by G of coclass r)

Sketch of algorithm:

- Let $U \subseteq Z^2(G, C_p)$ correspond to the central extensions of coclass r.
- Consider $U \subseteq \mathbb{F}_p^I$ for some I.

Heiko Dietrich*, Bettina Eick, Dörte Feichtenschlager*
Computing Immediate Descendants

Input: p-group G of coclass r

Output: Immediate descendants of G (i.e. all central extensions of C_p by G of coclass r)

Sketch of algorithm:

- Let $U \subseteq Z^2(G, C_p)$ correspond to the central extensions of coclass r.
- Consider $U \subseteq \mathbb{F}_p^l$ for some l and let $\overline{U} \subseteq U$ be the subset of normed vectors.

Theorem: There is a 1-1 correspondence between the $\text{Aut}(G)$-orbits of U and the isomorphism types of immediate descendants of G.
Computing immediate descendants

Input: p-group G of coclass r

Output: Immediate descendants of G

(i.e. all central extensions of C_p by G of coclass r)

Sketch of algorithm:

- Let $U \subseteq Z^2(G, C_p)$ correspond to the central extensions of coclass r.
- Consider $U \subseteq \mathbb{F}_p^I$ for some I and let $\overline{U} \subseteq U$ be the subset of normed vectors.
- The action of $\text{Comp}(G, C_p) = \text{Aut}(G) \times \text{Aut}(C_p)$ on U translates to an action of $\text{Aut}(G)$ on \overline{U}.

Theorem

There is a 1–1 correspondence between the $\text{Aut}(G)$-orbits of U and the isomorphism types of immediate descendants of G.
Computing Immediate Descendants

Input: \(p \)-group \(G \) of coclass \(r \)

Output: Immediate descendants of \(G \)

(i.e. all central extensions of \(C_p \) by \(G \) of coclass \(r \))

Sketch of algorithm:

- Let \(U \subseteq Z^2(G, C_p) \) correspond to the central extensions of coclass \(r \).
- Consider \(U \subseteq \mathbb{F}_p^l \) for some \(l \) and let \(\overline{U} \subseteq U \) be the subset of normed vectors.
- The action of \(\text{Comp}(G, C_p) = \text{Aut}(G) \times \text{Aut}(C_p) \) on \(U \) translates to an action of \(\text{Aut}(G) \) on \(\overline{U} \).

Theorem

There is a 1–1 corresp. between the \(\text{Aut}(G) \)-orbits of \(\overline{U} \) and the isomorphism types of immediate descendants of \(G \).
Conjecture for cohomology

Let k be a field with $\text{char}(k) = 2$ and $r \in \mathbb{N}$. Then there exist only finitely many isomorphism types of cohomology rings $H^*(G, k)$ where G is a 2-group of coclass r.

Theorem (Carslon)

Let k be a field with $\text{char}(k) = 2$ and $r \in \mathbb{N}$. Then there exist only finitely many isomorphism types of cohomology rings $H^*(G, k)$ where G is a 2-group of coclass r.

Introduction

Computing coclass trees with Gap

Application: Cohomology of 2-groups

Application: $G(5, 1)$

Coclass 1
Conjecture for Cohomology

Theorem (Carsten)

Let k be a field with $\text{char}(k) = 2$ and $r \in \mathbb{N}$. Then there exist only finitely many isomorphism types of cohomology rings $H^*(G, k)$ where G is a 2-group of coclass r.

Conjecture

Let k be a field with $\text{char}(k) = 2$ and \mathcal{F}_G a coclass family of 2-groups.
THEOREM (CARSLON)

Let k be a field with $\text{char}(k) = 2$ and $r \in \mathbb{N}$. Then there exist only finitely many isomorphism types of cohomology rings $H^*(G, k)$ where G is a 2-group of coclass r.

CONJECTURE

Let k be a field with $\text{char}(k) = 2$ and \mathcal{F}_G a coclass family of 2-groups. Then $H^*(G, k) \cong H^*(H, k)$ for all $H \in \mathcal{F}_G$.
THEOREM

If $i, j \geq 4$, then

- $H^*(D_{2i}, \mathbb{F}_2) \cong H^*(D_{2j}, \mathbb{F}_2)$.
THEOREM

If \(i, j \geq 4 \), then

- \(H^*(D_{2i}, \mathbb{F}_2) \cong H^*(D_{2j}, \mathbb{F}_2) \);
- \(H^*(Q_{2i}, \mathbb{F}_2) \cong H^*(Q_{2j}, \mathbb{F}_2) \).
If $i, j \geq 4$, then

- $H^*(D_{2i}, \mathbb{F}_2) \cong H^*(D_{2j}, \mathbb{F}_2)$;
- $H^*(Q_{2i}, \mathbb{F}_2) \cong H^*(Q_{2j}, \mathbb{F}_2)$;
- $H^*(SD_{2i}, \mathbb{F}_2) \cong H^*(SD_{2j}, \mathbb{F}_2)$.
If $i, j \geq 4$, then

- $H^*(D_{2i}, \mathbb{F}_2) \cong H^*(D_{2j}, \mathbb{F}_2)$;
- $H^*(Q_{2i}, \mathbb{F}_2) \cong H^*(Q_{2j}, \mathbb{F}_2)$;
- $H^*(SD_{2i}, \mathbb{F}_2) \cong H^*(SD_{2j}, \mathbb{F}_2)$.

Furthermore,

- $H^*(D_{2i}, \mathbb{Z})$ has a presentation depending only on i.
THEOREM

If $i, j \geq 4$, then

- $\mathcal{H}^*(D_{2i}, \mathbb{F}_2) \cong \mathcal{H}^*(D_{2j}, \mathbb{F}_2)$;
- $\mathcal{H}^*(Q_{2i}, \mathbb{F}_2) \cong \mathcal{H}^*(Q_{2j}, \mathbb{F}_2)$;
- $\mathcal{H}^*(SD_{2i}, \mathbb{F}_2) \cong \mathcal{H}^*(SD_{2j}, \mathbb{F}_2)$.

Furthermore,

- $\mathcal{H}^*(D_{2i}, \mathbb{Z})$ has a presentation depending only on i;
- $\mathcal{H}^*(Q_{2i}, \mathbb{Z})$ has a presentation depending only on i.
If $i, j \geq 4$, then

- $H^*(D_{2i}, \mathbb{F}_2) \cong H^*(D_{2j}, \mathbb{F}_2)$;
- $H^*(Q_{2i}, \mathbb{F}_2) \cong H^*(Q_{2j}, \mathbb{F}_2)$;
- $H^*(SD_{2i}, \mathbb{F}_2) \cong H^*(SD_{2j}, \mathbb{F}_2)$.

Furthermore,

- $H^*(D_{2i}, \mathbb{Z})$ has a presentation depending only on i;
- $H^*(Q_{2i}, \mathbb{Z})$ has a presentation depending only on i;
- $H^*(SD_{2i}, \mathbb{Z})$ has a presentation depending only on i.
Conjectured mod2-cohomology for $B_{2i}, B_{2i+1} \subseteq T_1(2, 2)$ ($i \in \mathbb{N}_0$).
\(\mathcal{G}(2, 2) \) AND COHOMOLOGY: \(\mathcal{T}_2(2, 2) \)

mod2-cohomology for \(\mathcal{B}_i \subseteq \mathcal{T}_2(2, 2) \) (0 \(\leq i \leq 4 \)).
Conjectured mod2-cohomology for $B_i \subseteq \mathcal{T}_3(2, 2)$ ($i \in \mathbb{N}_0$).
$G(2,2)$ AND COHOMOLOGY: $\mathcal{T}_4(2,2)$

Conjectured mod2-cohomology for $B_i \subseteq \mathcal{T}_4(2,2)$ ($i \in \mathbb{N}_0$).
\(G(2, 2) \) AND COHOMOLOGY: \(\mathcal{T}_5(2, 2) \)

Conjectured mod2-cohomology for \(\mathcal{B}_i \subseteq \mathcal{T}_5(2, 2) \) \((i \in \mathbb{N})\).
Widths and Depths

We have seen that $G(2, r)$, $r \geq 1$, and $G(3, 1)$ are bounded width and depth, and we expect that $G(5, 1)$: bounded width, unbounded depth. $G(p, 1)$, $p \geq 7$: unbounded width and depth. $G(p, r)$, $p \geq 3$, $r \geq 2$: complex structure.

Consider $G(5, 1)$ in more detail.
We have seen that

\[G(2, r), \ r \geq 1, \text{ and } G(3, 1) : \text{ bounded width and depth.} \]
Widths and Depths

We have seen that

\[G(2, r), \ r \geq 1, \] and \[G(3, 1) : \] bounded width and depth.

and we expect that

\[G(5, 1) : \] bounded width, unbounded depth.
We have seen that
\[G(2, r), \ r \geq 1, \ \text{and} \ G(3, 1) : \text{bounded width and depth.} \]

and we expect that
\[G(5, 1) : \text{bounded width, unbounded depth.} \]

\[G(p, 1), \ p \geq 7 : \text{unbounded width and depth.} \]
Widths and Depths

We have seen that

\[G(2, r), \ r \geq 1, \text{ and } G(3, 1) : \text{ bounded width and depth.} \]

and we expect that

\[G(5, 1) : \text{ bounded width, unbounded depth.} \]

\[G(p, 1), \ p \geq 7 : \text{ unbounded width and depth.} \]

\[G(p, r), \ p \geq 3, \ r \geq 2 : \]
\textbf{Widths and Depths}

We have seen that
\[G(2, r), \ r \geq 1, \ \text{and } G(3, 1) : \text{bounded width and depth.} \]

and we expect that
\[G(5, 1) : \text{bounded width, unbounded depth.} \]
\[G(p, 1), \ p \geq 7 : \text{unbounded width and depth.} \]
\[G(p, r), \ p \geq 3, \ r \geq 2 : \text{complex structure.} \]
We have seen that
\[G(2, r), \ r \geq 1, \ \text{and} \ G(3, 1) : \text{bounded width and depth.} \]

and we expect that
\[G(5, 1): \text{bounded width, unbounded depth.} \]
\[G(p, 1), \ p \geq 7: \text{unbounded width and depth.} \]
\[G(p, r), \ p \geq 3, \ r \geq 2: \text{complex structure.} \]

Consider \[G(5, 1) \] in more detail.
It is known:

- Pro-p-group of coclass 1 is $S = C_p \rtimes T$ with $T = \mathbb{Z}_p^{p-1}$.
It is known:

- Pro-p-group of coclass 1 is $S = C_p \times T$ with $T = \mathbb{Z}_p^{p-1}$.
- $G(p, 1)$: one coclass tree $\mathcal{T} = \mathcal{T}_{C_p \times C_p}$ and C_{p^2}.
It is known:

- Pro-p-group of coclass 1 is $S = C_p \rtimes T$ with $T = \mathbb{Z}_p^{p-1}$.
- $G(p, 1)$: one coclass tree $T = T_{C_p \times C_p}$ and C_p^2.
- Mainline groups of T: G_0, G_1, \ldots with $G_i = S / \gamma_{i+2}(S)$.
It is known:

- Pro-p-group of coclass 1 is $S = C_p \ltimes T$ with $T = \mathbb{Z}_p^{p-1}$.
- $G(p, 1)$: one coclass tree $T = T_{C_p \times C_p}$ and C_p^2.
- Mainline groups of T: G_0, G_1, \ldots with $G_i = S/\gamma_{i+2}(S)$.

Notation:

- The i-th branch B_i of T has root G_i of order p^{i+2}.
It is known:

- Pro-p-group of coclass 1 is $S = C_p \ltimes T$ with $T = \mathbb{Z}_p^{p-1}$.
- $G(p, 1)$: one coclass tree $T = T_{C_p \times C_p}$ and C_p^2.
- Mainline groups of T: G_0, G_1, \ldots with $G_i = S/\gamma_{i+2}(S)$.

Notation:

- The i-th branch B_i of T has root G_i of order p^{i+2}.
- Let $B_i(k)$ be the \textit{shaved subtree} of B_i of depth k.
It is known:

- Pro-p-group of coclass 1 is $S = C_p \rtimes T$ with $T = \mathbb{Z}_p^{p-1}$.
- $G(p, 1)$: one coclass tree $\mathcal{T} = \mathcal{T}_{C_p \times C_p}$ and C_p^2.
- Mainline groups of \mathcal{T}: G_0, G_1, \ldots with $G_i = S/\gamma_{i+2}(S)$.

Notation:

- The i-th branch \mathcal{B}_i of \mathcal{T} has root G_i of order p^{i+2}.
- Let $\mathcal{B}_i(k)$ be the *shaved subtree* of \mathcal{B}_i of depth k (generated by all capable groups of depth at most k in \mathcal{B}_i and all their terminal immediate descendants).
It is known:

- Pro-p-group of coclass 1 is $S = C_p \ltimes T$ with $T = \mathbb{Z}_p^{p-1}$.
- $G(p, 1)$: one coclass tree $\mathcal{T} = \mathcal{T}_{C_p \times C_p}$ and C_p^2.
- Mainline groups of \mathcal{T}: G_0, G_1, \ldots with $G_i = S/\gamma_{i+2}(S)$.

Notation:

- The i-th branch B_i of \mathcal{T} has root G_i of order p^{i+2}.
- Let $B_i(k)$ be the \textit{shaved subtree} of B_i of depth k (generated by all capable groups of depth at most k in B_i and all their terminal immediate descendants).
- Let the \textit{collar} $B_i(l, k)$ be defined as $B_i(k) \setminus B_i(l - 1)$.
THE BRANCH B_i OF $G(5, 1)$

Conjecture

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.
The branch B_i of $G(5,1)$

Conjecture

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.

- The branch B_i of $G(5,1)$ has depth $i + 2$.
THE BRANCH \mathcal{B}_i OF $\mathcal{G}(5, 1)$

Conjecture

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.

- The branch \mathcal{B}_i of $\mathcal{G}(5, 1)$ has depth $i + 2$. It consists of
 - a head $H(i) = \mathcal{B}_i(5 + y)$.

\[\text{Let } i \geq 8 \text{ and write } i = 8 + 4x + y \text{ with } 0 \leq y \leq 3 \text{ and } x \geq 0. \]

\[\text{The branch } \mathcal{B}_i \text{ of } \mathcal{G}(5, 1) \text{ has depth } i + 2. \text{ It consists of} \]

\[\text{a head } H(i) = \mathcal{B}_i(5 + y). \]
The branch \mathcal{B}_i of $\mathcal{G}(5, 1)$

Conjecture

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.

- The branch \mathcal{B}_i of $\mathcal{G}(5, 1)$ has depth $i + 2$. It consists of

 - a head $H(i) = \mathcal{B}_i(5 + y)$,

 - a tail $T(i) = \mathcal{B}_i(i - 2, i + 1)$.

\[\text{H}(i) \sim = \text{H}(i + 4) \]
\[\text{C}(i, j) \sim = \text{C}(i + 4, j) \]
THE BRANCH B_i OF $G(5, 1)$

CONJECTURE

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.

- The branch B_i of $G(5, 1)$ has depth $i + 2$. It consists of
 - a head $H(i) = B_i(5 + y)$,
 - x collars $C(i, j) = B_i(6 + y + 4j, 9 + y + 4j)$ with $0 \leq j \leq x - 1$, and
 - a tail $T(i) = B_i(i - 2, i + 1)$.
The branch \(\mathcal{B}_i \) of \(\mathcal{G}(5, 1) \)

Conjecture

Let \(i \geq 8 \) and write \(i = 8 + 4x + y \) with \(0 \leq y \leq 3 \) and \(x \geq 0 \).

- **The branch \(\mathcal{B}_i \) of \(\mathcal{G}(5, 1) \) has depth \(i + 2 \). It consists of**
 - a head \(H(i) = \mathcal{B}_i(5 + y) \),
 - \(x \) collars \(C(i, j) = \mathcal{B}_i(6 + y + 4j, 9 + y + 4j) \) with \(0 \leq j \leq x - 1 \), and
 - a tail \(T(i) = \mathcal{B}_i(i - 2, i + 1) \).

- \(H(i) \cong H(i + 4) \) and \(T(i) \cong T(i + 4) \).
The branch B_i of $G(5, 1)$

Conjecture

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.

- The branch B_i of $G(5, 1)$ has depth $i + 2$. It consists of
 - a head $H(i) = B_i(5 + y)$,
 - x collars $C(i, j) = B_i(6 + y + 4j, 9 + y + 4j)$ with $0 \leq j \leq x - 1$, and
 - a tail $T(i) = B_i(i - 2, i + 1)$.

- $H(i) \cong H(i + 4)$ and $T(i) \cong T(i + 4)$.

- $C(i, j) \cong C(i + 4, j)$
CONJECTURE

Let $i \geq 8$ and write $i = 8 + 4x + y$ with $0 \leq y \leq 3$ and $x \geq 0$.

- The branch \mathcal{B}_i of $\mathcal{G}(5, 1)$ has depth $i + 2$. It consists of
 - a head $H(i) = \mathcal{B}_i(5 + y)$,
 - x collars $C(i, j) = \mathcal{B}_i(6 + y + 4j, 9 + y + 4j)$ with $0 \leq j \leq x - 1$, and
 - a tail $T(i) = \mathcal{B}_i(i - 2, i + 1)$.

- $H(i) \cong H(i + 4)$ and $T(i) \cong T(i + 4)$.
- $C(i, j) \cong C(i + 4, j)$ and $C(i, j) \cong C(i, j - 1)$.
THE BRANCHES OF $\mathcal{G}(5, 1)$

Structures of B_i, B_{i+4}, \ldots with $12 \leq i \leq 15$.
The conjectured branches B_i with $i = 8 + 4x + 1$ and $x \geq 0$.
The origins of infinite coclass families in \mathcal{B}_i, $12 \leq i \leq 15$.
The origins of infinite coclass families in \mathcal{B}_i, $12 \leq i \leq 15$.
$G(5, 1)$ AND COCLASS FAMILIES

The origins of infinite coclass families in B_i, $12 \leq i \leq 15$.

\[B_i, B_{i+4}, B_{i+8} \]
$G(5, 1)$ AND COCLASS FAMILIES

The origins of infinite coclass families in \mathcal{B}_i, $12 \leq i \leq 15$.
The origins of infinite coclass families in B_i, $12 \leq i \leq 15$.
The origins of infinite coclass families in \mathcal{B}_i, $12 \leq i \leq 15$.

\[\mathcal{B}_i \]

\[\mathcal{B}_{i+4} \]

\[\mathcal{B}_{i+8} \]
$G(5, 1)$ AND COCLASS FAMILIES

The origins of infinite coclass families in B_i, $12 \leq i \leq 15$.
\textbf{\(G(5, 1)\) AND COCLASS FAMILIES}

\textbf{Infinite coclass families in \(G(5, 1)\):

- The groups in \(H(i), T(i),\) and \(C(i, 0)\) with \(12 \leq i \leq 15\)
 would define disjoint infinite coclass families.}
\(G(5, 1) \) AND COCLASS FAMILIES

Infinite coclass families in \(G(5, 1) \):

- The groups in \(H(i) \), \(T(i) \), and \(C(i, 0) \) with \(12 \leq i \leq 15 \) would define disjoint infinite coclass families.
- Their union would contain all groups in \(G(5, 1) \) which are descendants of \(G_{12} \).
$G(5, 1)$ AND COCLASS FAMILIES

Infinite coclass families in $G(5, 1)$:
- The groups in $H(i)$, $T(i)$, and $C(i, 0)$ with $12 \leq i \leq 15$ would define disjoint infinite coclass families.
- Their union would contain all groups in $G(5, 1)$ which are descendants of G_{12}.

Conjectured number of infinite coclass families:

<table>
<thead>
<tr>
<th># families</th>
<th>$y = 0$</th>
<th>$y = 1$</th>
<th>$y = 2$</th>
<th>$y = 3$</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the heads</td>
<td>366</td>
<td>578</td>
<td>741</td>
<td>953</td>
<td>2638</td>
</tr>
<tr>
<td>in the collars</td>
<td>748</td>
<td>756</td>
<td>748</td>
<td>756</td>
<td>3008</td>
</tr>
<tr>
<td>in the tails</td>
<td>730</td>
<td>735</td>
<td>730</td>
<td>737</td>
<td>2932</td>
</tr>
<tr>
<td>Σ</td>
<td>1844</td>
<td>2069</td>
<td>2219</td>
<td>2446</td>
<td>8578</td>
</tr>
</tbody>
</table>
Conjecture

For $n \in \mathbb{N}$ write $n = 4s_n + r_n$ with $1 \leq r_n \leq 4$.
CONJECTURE

For $n \in \mathbb{N}$ write $n = 4s_n + r_n$ with $1 \leq r_n \leq 4$.

- If $G \in \mathcal{B}_i$ with $i \geq 8$ is capable and $|G| = p^n$, then

$$I(M(G)) = \begin{cases} (5, \; 5^{s_n}, \; 5^{s_n}) & \text{if } r_n = 1, 2, \\ (5, \; 5^{s_n}, \; 5^{s_n+1}) & \text{if } r_n = 3, 4. \end{cases}$$
CONJECTURE

For $n \in \mathbb{N}$ write $n = 4s_n + r_n$ with $1 \leq r_n \leq 4$.

- If $G \in B_i$ with $i \geq 8$ is capable and $|G| = p^n$, then

 $$I(M(G)) = \begin{cases}
 (5, 5^{s_n}, 5^{s_n}) & \text{if } r_n = 1, 2, \\
 (5, 5^{s_n}, 5^{s_n+1}) & \text{if } r_n = 3, 4.
 \end{cases}$$

- If H is a *terminal immediate descendant* of G, then

 $$I(M(H)) = \begin{cases}
 (5^{s_n}, 5^{s_n}) & \text{if } r_n = 1, 2, \\
 (5^{s_n}, 5^{s_n+1}) & \text{if } r_n = 3, 4.
 \end{cases}$$
$G(5, 1)$ AND SCHUR MULTIPLICATORS

Coclass families:

- Let $G \in \mathcal{B}_i$ define a coclass family \mathcal{F}.

Introduction

Computing coclass trees with GAP

Application: Cohomology of 2-groups

Application: $G(5, 1)$

Coclass 1
Coclass families:

- Let $G \in \mathcal{B}_i$ define a coclass family \mathcal{F}.
- Let $K \in \mathcal{F}$ and $I(M(G)) = (5^a, 5^b, 5^c)$, $a \in \{0, 1\}$.
Coclass families:

- Let $G \in B_i$ define a coclass family \mathcal{F}.
- Let $K \in \mathcal{F}$ and $I(M(G)) = (5^a, 5^b, 5^c)$, $a \in \{0, 1\}$.

Then:

$K \in B_j$ for some j with $j - i = 4l$, $l \in \mathbb{N}_0$, and we would have:
Coclass families:

- Let $G \in \mathcal{B}_i$ define a coclass family \mathcal{F}.
- Let $K \in \mathcal{F}$ and $I(M(G)) = (5^a, 5^b, 5^c)$, $a \in \{0, 1\}$.

Then:

$K \in \mathcal{B}_j$ for some j with $j - i = 4l$, $l \in \mathbb{N}_0$, and we would have:

$$I(M(K)) = \begin{cases}
(5^a, 5^{b+l}, 5^{c+l}) & \text{if } G \in H(i), \\
\end{cases}$$
G(5, 1) AND SCHUR MULTIPLICATORS

Coclass families:

- Let \(G \in \mathcal{B}_i \) define a coclass family \(\mathcal{F} \).
- Let \(K \in \mathcal{F} \) and \(I(M(G)) = (5^a, 5^b, 5^c) \), \(a \in \{0, 1\} \).

Then:

\(K \in \mathcal{B}_j \) for some \(j - i = 4l, \ l \in \mathbb{N}_0 \), and we would have:

\[
I(M(K)) = \begin{cases}
(5^a, 5^{b+l}, 5^{c+l}) & \text{if } G \in \mathcal{H}(i), \\
(5^a, 5^{b+2l}, 5^{c+2l}) & \text{if } G \in \mathcal{T}(i),
\end{cases}
\]
Coclass families:

- Let $G \in B_i$ define a coclass family \mathcal{F}.
- Let $K \in \mathcal{F}$ and $I(M(G)) = (5^a, 5^b, 5^c)$, $a \in \{0, 1\}$.

Then:

$K \in B_j$ for some j with $j - i = 4l$, $l \in \mathbb{N}_0$, and we would have:

$$I(M(K)) = \begin{cases}
(5^a, 5^{b+l}, 5^{c+l}) & \text{if } G \in H(i), \\
(5^a, 5^{b+2l}, 5^{c+2l}) & \text{if } G \in T(i), \\
(5^a, 5^{b+l+k}, 5^{c+l+k}) & \text{if } G \in C(i, 0), K \in C(j, k).
\end{cases}$$
Conjecture

Let \mathcal{F} be an infinite coclass family. Let $G \in \mathcal{F} \cap \mathcal{B}_i$ with $i \geq 12$.
CONJECTURE

Let \mathcal{F} be an infinite coclass family. Let $G \in \mathcal{F} \cap B_i$ with $i \geq 12$. Then there exist u and v depending on \mathcal{F} (but not on G or i) with

\[|\text{Out}(G)| = 5^{i+v} u. \]
Conjecture

Let \mathcal{F} be an infinite coclass family. Let $G \in \mathcal{F} \cap \mathcal{B}_i$ with $i \geq 12$. Then there exist u and v depending on \mathcal{F} (but not on G or i) with

$$|\text{Out}(G)| = 5^{i+v} u.$$

Moreover,

- if \mathcal{F} arises from a head, then $u \in \{1, 2, 4, 16\}$ and $v \in \{-1, 0, 1, 2, 3\}$.
- if \mathcal{F} arises from a tail or collar, then $u \in \{1, 2, 4\}$ and $v \in \{2, 3\}$.

$G(5, 1)$ and outer automorphism groups
Let $p > 3$ be a prime.

Recall: $S = C_p \rtimes T$ and $G_i = S/\gamma_{i+2}(S)$.
Let $p > 3$ be a prime.
Recall: $S = C_p \rtimes T$ and $G_i = S/\gamma_{i+2}(S)$.

Let $\overline{B}_i = B_i(i - 2p + 6)$. Then:
Let $p > 3$ be a prime.

Recall: $S = C_p \rtimes T$ and $G_i = S/\gamma_{i+2}(S)$.

Let $\overline{B}_i = B_i(i - 2p + 6)$. Then:

$H \in \overline{B}_i$ is an extension of $A = T/\gamma_j(S)$ for some j by the root of \overline{B}_i, the mainline group G_i.
Let $p > 3$ be a prime.

Recall: $S = C_p \rtimes T$ and $G_i = S/\gamma_{i+2}(S)$.

Let $\overline{B}_i = B_i(i - 2p + 6)$. Then:

$H \in \overline{B}_i$ is an extension of $A = T/\gamma_j(S)$ for some j by the root of \overline{B}_i, the mainline group G_i.

It is $H^2(G_i, A) \cong twig \times ext \times hom$ with
Construct groups of coclass 1

- Let $p > 3$ be a prime.
 Recall: $S = C_p \rtimes T$ and $G_i = S/\gamma_{i+2}(S)$.

- Let $\overline{B}_i = B_i(i - 2p + 6)$. Then:

 - $H \in \overline{B}_i$ is an extension of $A = T/\gamma_j(S)$ for some j by the root of \overline{B}_i, the mainline group G_i.
 - It is $H^2(G_i, A) \cong \text{twig} \times \text{ext} \times \text{hom}$ with
 \[
 \text{twig} \cong C_p^3,
 \]
Let $p > 3$ be a prime.
Recall: $S = C_p \ltimes T$ and $G_i = S/\gamma_{i+2}(S)$.

Let $\overline{B}_i = B_i(i - 2p + 6)$. Then:

$H \in \overline{B}_i$ is an extension of $A = T/\gamma_j(S)$ for some j by the root of \overline{B}_i, the mainline group G_i.

It is $H^2(G_i, A) \cong \text{twig} \times \text{ext} \times \text{hom}$ with

$\text{twig} \cong C_p^3$,

$\text{ext} \cong A$,
Construct groups of coclass 1

- Let $p > 3$ be a prime.

 Recall: $S = C_p \ltimes T$ and $G_i = S/\gamma_{i+2}(S)$.

- Let $\overline{B}_i = B_i(i - 2p + 6)$. Then:

 $H \in \overline{B}_i$ is an extension of $A = T/\gamma_j(S)$ for some j by the root of \overline{B}_i, the mainline group G_i.

- It is $H^2(G_i, A) \cong \text{twig} \times \text{ext} \times \text{hom}$ with

 $\text{twig} \cong C_p^3$,

 $\text{ext} \cong A$, and

 $\text{hom} \cong A^{(p-3)/2}$.
Which elements of $H^2(G_i, A)$ induce extensions in \bar{B}_i?
Which elements of $H^2(G_i, A)$ induce extensions in $\overline{B_i}$?

- For $\gamma \in H^2(G_i, A)$ let $E(\gamma)$ be the corresponding extension.
Construct Groups of Coclass 1

Which elements of $H^2(G_i, A)$ induce extensions in \overline{B}_i?

- For $\gamma \in H^2(G_i, A)$ let $E(\gamma)$ be the corresponding extension.
- Fix $\varepsilon \in \text{ext}$ with $E(\varepsilon)$ of coclass 1 ($\sim\sim$ mainline).
Which elements of $H^2(G_i, A)$ induce extensions in \overline{B}_i?

- For $\gamma \in H^2(G_i, A)$ let $E(\gamma)$ be the corresp. extension.
- Fix $\varepsilon \in \text{ext}$ with $E(\varepsilon)$ of coclass 1 ($\sim\sim$ mainline).
- $H \in \overline{B}_i \iff \varepsilon + \tau + \kappa$ where $\tau \in \text{twig}$ and $\kappa \in \text{hom}$ with $\kappa \notin H^2(G_i, \gamma_2(S)/\gamma_j(S))$.

Construct groups of coclass 1
Which elements of $H^2(G_i, A)$ induce extensions in \bar{B}_i?

- For $\gamma \in H^2(G_i, A)$ let $E(\gamma)$ be the corresponding extension.
- Fix $\varepsilon \in \text{ext}$ with $E(\varepsilon)$ of coclass 1 ($\sim\rightarrow$ mainline).
- $H \in \bar{B}_i \iff \varepsilon + \tau + \kappa$ where $\tau \in \text{twig}$ and $\kappa \in \text{hom}$ with $\kappa \notin H^2(G_i, \gamma_2(S)/\gamma_j(S))$.
- $E(\varepsilon + \tau_1 + \kappa_1) \cong E(\varepsilon + \tau_2 + \kappa_2)$ iff
Which elements of $H^2(G_i, A)$ induce extensions in \overline{B}_i?

- For $\gamma \in H^2(G_i, A)$ let $E(\gamma)$ be the corresponding extension.

- Fix $\varepsilon \in \text{ext}$ with $E(\varepsilon)$ of coclass 1 (\rightsquigarrow mainline).

- $H \in \overline{B}_i \iff \varepsilon + \tau + \kappa$ where $\tau \in \text{twig}$ and $\kappa \in \text{hom}$ with $\kappa \notin H^2(G_i, \gamma_2(S)/\gamma_j(S))$.

- $E(\varepsilon + \tau_1 + \kappa_1) \cong E(\varepsilon + \tau_2 + \kappa_2)$ iff $(\tau_1 + \kappa_1)^c = \tau_2 + \kappa_2$ for some $c \in \Sigma$ with $\Sigma = \{ (\alpha|_S, \alpha|_A) \mid \alpha \in \text{Aut}(S) \}$.
Which elements of $H^2(G_i, A)$ induce extensions in \overline{B}_i?

- For $\gamma \in H^2(G_i, A)$ let $E(\gamma)$ be the corresp. extension.
- Fix $\varepsilon \in \text{ext}$ with $E(\varepsilon)$ of coclass 1 (\Rightarrow mainline).
- $H \in \overline{B}_i \iff \varepsilon + \tau + \kappa$ where $\tau \in \text{twig}$ and $\kappa \in \text{hom}$ with $\kappa \notin H^2(G_i, \gamma_2(S)/\gamma_j(S))$.
- $E(\varepsilon + \tau_1 + \kappa_1) \cong E(\varepsilon + \tau_2 + \kappa_2)$ iff $(\tau_1 + \kappa_1)^c = \tau_2 + \kappa_2$ for some $c \in \Sigma$ with $\Sigma = \{(\alpha|_{S_i}, \alpha|_A) \mid \alpha \in \text{Aut}(S)\}$.

\Rightarrow Compute Σ-orbits.
So far, this theory leads to...
So far, this theory leads to...

- The isomorphism $H^2(G_i, A) \rightarrow H^2(G_{i+p-1}, A)$ is a Σ-module isomorphism.
So far, this theory leads to...

- The isomorphism $H^2(G_i, A) \rightarrow H^2(G_{i+p-1}, A)$ is a Σ-module isomorphism.
- The graph \overline{B}_i can be embedded into \overline{B}_{i+p-1}.
Construct groups of coclass 1

So far, this theory leads to...

- The isomorphism $H^2(G_i, A) \rightarrow H^2(G_{i+p-1}, A)$ is a Σ-module isomorphism.
- The graph \overline{B}_i can be embedded into \overline{B}_{i+p-1}.
- Groups which correspond under this embedding have the same parametrized presentation.
So far, this theory leads to...

- The isomorphism $H^2(G_i, A) \rightarrow H^2(G_{i+p-1}, A)$ is a Σ-module isomorphism.
- The graph \overline{B}_i can be embedded into \overline{B}_{i+p-1}.
- Groups which correspond under this embedding have the same parametrized presentation.

ضبط الخطوة الأولى لثبت التخمين الرئيسي للجماعات من الكلاس 1.
Thank you for your kind attention.