I have a query about how GroupHomomorphismByImages works.
In the listing below Q,P are copies of D4 with Q an fp-group
and P a permutation group. When mapping Q to P there is only
one way to express the images of the generators. In the reverse
direction the image of generator (1,2,3,4) is listed
(surprisingly to me) as f.2^-1*f.1^-2*f.2^-1 rather than f.1
(although, of course, these are equal).
(Sorry if this is a trivial query, but I am a new user.)
Chris Wensley
----------------------------- GAP listing ----------------------------------
LogTo("invmap.log");
Print("Isomorphisms between copies of dihedral D4\n\n");
f := FreeGroup(2, "f");
relQ := [ f.1^4, f.2^2, (f.1*f.2)^2 ];
Q := f/relQ;
genQ := Q.generators;
oQ := Size(Q);
elQ := Elements(Q);
Print("Q has generators: ", genQ, " and elements:\n", elQ, "\n\n");
P := Group( (1,2,3,4), (1,3) );
genP := P.generators;
P.name := "P";
oP := Size(P);
elP := Elements(P);
Print("P has generators: ", genP, " and elements:\n", elP, "\n\n");
isoQP := GroupHomomorphismByImages(Q,P,genQ,genP);
Print(" x isoQP(x) \n");
Print("--------- ---------- \n");
for j in [1..oQ] do
x := elQ[j];
Print(x, " ", Image(isoQP,x), "\n");
od;
invPQ := InverseMapping(isoQP);
Print("\n x invPQ(x) \n");
Print("-------- ---------- \n");
for j in [1..oP] do
x := elP[j];
Print(x, " ", Image(invPQ,x), "\n");
od;
---------------------------- Output ------------------------------------
Isomorphisms between copies of dihedral D4
Q has generators: [ f.1, f.2 ] and elements: [ IdWord, f.1, f.2, f.1^2, f.1*f.2, f.2*f.1, f.1^3, f.1^2*f.2 ] P has generators: [ (1,2,3,4), (1,3) ] and elements: [ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] x isoQP(x) --------- ---------- IdWord () f.1 (1,2,3,4) f.2 (1,3) f.1^2 (1,3)(2,4) f.1*f.2 (1,2)(3,4) f.2*f.1 (1,4)(2,3) f.1^3 (1,4,3,2) f.1^2*f.2 (2,4) x invPQ(x) -------- ---------- () IdWord (2,4) f.2^-1*f.1^-2 (1,2)(3,4) f.2^-1*f.1^-1 (1,2,3,4) f.2^-1*f.1^-2*f.2^-1*f.1^-1 (1,3) f.2^-1 (1,3)(2,4) f.2^-1*f.1^-2*f.2^-1 (1,4,3,2) f.1^-1 (1,4)(2,3) f.2^-1*f.1^-3