Goto Chapter: Top 1 2 3 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

2 Obstruction for the existence of compact Clifford-Klein form
 2.1 Technical functions

2 Obstruction for the existence of compact Clifford-Klein form

In this chapter we describe functions for algorithm from [BJS+].

2.1 Technical functions

2.1-1 NonCompactDimension
‣ NonCompactDimension( G )( function )

For a real Lie algebra G constructed by the function RealFormById (from [DFdG14]), this function returns the non-compact dimension of G (dimension of a non-compact part in Cartan decomposition of G).

gap> G:=RealFormById("E",6,2); # E6(6)
<Lie algebra of dimension 78 over SqrtField>
gap> dG:=NonCompactDimension(G);
42

2.1-2 PCoefficients
‣ PCoefficients( type, rank )( function )

Let G be a compact connected Lie group of the type type and the rank rank. Let ΛP_G=Λ (y_1,...,y_l) be the exterior algebra over the spaces P_G of the primitive elements in H^*(G). Denote the degrees as follows |y_j|=2p_j-1,j=1,...,l. This function returns coefficients p_1,...,p_l.

gap> PCoefficients("D",5);
[ 2, 4, 6, 8, 5 ]

2.1-3 PCalculate
‣ PCalculate( pi, qi )( function )

Here pi={ p_1,...,p_l} and qi={ q_1,...,q_m} are sets of coefficients (l≥ m). This function returns the polynomial: P(t)=∏_j=m+1^l(1+t^2p_j-1)∏_i=1^m(1-t^2p_i)/(1-t^2q_i).

gap> PCalculate([4,2,3],[2,2]);   
t^9+t^5+t^4+1

2.1-4 AllZeroDH
‣ AllZeroDH( type, rank, id )( function )

Let G^C be a complex Lie algebra of the type type and the rank rank. Let G be a real form of G^C with the index id (see RealFormsInformation,[DFdG14]). This function returns the set of degrees of P(t) that have zero coefficients over all permutation (see Section 7 in [BJS+]).

gap> AllZeroDH("F",4,2); 
[ 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27 ]
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 Bib Ind

generated by GAPDoc2HTML