ToricVarieties

A GAP package for handling toric varieties.

Version 2012.12.22

October 2012

Sebastian Gutsche

This manual is best viewed as an HTML document. An OFFLINE version should be included in the documentation subfolder of the package.
Copyright

© 2011-2012 by Sebastian Gutsche
This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Acknowledgements
Contents

1 Introduction 5
 1.1 What is the goal of the ToricVarieties package? 5

2 Installation of the ToricVarieties Package 6

3 Toric varieties 7
 3.1 Toric variety: Category and Representations 7
 3.2 Toric varieties: Properties 7
 3.3 Toric varieties: Attributes 8
 3.4 Toric varieties: Methods 11
 3.5 Toric varieties: Constructors 12
 3.6 Toric varieties: Examples 12

4 Toric subvarieties 14
 4.1 Toric subvarieties: Category and Representations 14
 4.2 Toric subvarieties: Properties 14
 4.3 Toric subvarieties: Attributes 15
 4.4 Toric subvarieties: Methods 15
 4.5 Toric subvarieties: Constructors 15

5 Affine toric varieties 16
 5.1 Affine toric varieties: Category and Representations 16
 5.2 Affine toric varieties: Properties 16
 5.3 Affine toric varieties: Attributes 16
 5.4 Affine toric varieties: Methods 17
 5.5 Affine toric varieties: Constructors 17
 5.6 Affine toric varieties: Examples 17

6 Projective toric varieties 19
 6.1 Projective toric varieties: Category and Representations 19
 6.2 Projective toric varieties: Properties 19
 6.3 Projective toric varieties: Attributes 19
 6.4 Projective toric varieties: Methods 20
 6.5 Projective toric varieties: Constructors 20
 6.6 Projective toric varieties: Examples 20
7 Toric morphisms 21
7.1 Toric morphisms: Category and Representations 21
7.2 Toric morphisms: Properties 21
7.3 Toric morphisms: Attributes 21
7.4 Toric morphisms: Methods 23
7.5 Toric morphisms: Constructors 23
7.6 Toric morphisms: Examples 23

8 Toric divisors 25
8.1 Toric divisors: Category and Representations 25
8.2 Toric divisors: Properties 25
8.3 Toric divisors: Attributes 26
8.4 Toric divisors: Methods 28
8.5 Toric divisors: Constructors 29
8.6 Toric divisors: Examples 30

Index 32
Chapter 1

Introduction

1.1 What is the goal of the ToricVarieties package?

ToricVarieties provides data structures to handle toric varieties by their commutative algebra structure and by their combinatorics. For combinatorics, it uses the Convex package. Its goal is to provide a suitable framework to work with toric varieties. All combinatorial structures mentioned in this manual are the ones from Convex.
Chapter 2

Installation of the **ToricVarieties** Package

To install this package just extract the package’s archive file to the GAP pkg directory.

By default the **ToricVarieties** package is not automatically loaded by GAP when it is installed.

You must load the package with

```gap
LoadPackage( "ToricVarieties" );
```

before its functions become available.

Please, send me an e-mail if you have any questions, remarks, suggestions, etc. concerning this package. Also, I would be pleased to hear about applications of this package and about any suggestions for new methods to add to the package.

Sebastian Gutsche
Chapter 3

Toric varieties

3.1 Toric variety: Category and Representations

3.1.1 IsToricVariety

\[
\text{IsToricVariety}(M)
\]

Returns: true or false

The GAP category of a toric variety.

3.2 Toric varieties: Properties

3.2.1 IsNormalVariety

\[
\text{IsNormalVariety}(\text{vari})
\]

Returns: true or false

Checks if the toric variety \text{vari} is a normal variety.

3.2.2 IsAffine

\[
\text{IsAffine}(\text{vari})
\]

Returns: true or false

Checks if the toric variety \text{vari} is an affine variety.

3.2.3 IsProjective

\[
\text{IsProjective}(\text{vari})
\]

Returns: true or false

Checks if the toric variety \text{vari} is a projective variety.

3.2.4 IsComplete

\[
\text{IsComplete}(\text{vari})
\]

Returns: true or false

Checks if the toric variety \text{vari} is a complete variety.
3.2.5 IsSmooth

▷ IsSmooth(vari) (property)
 \textbf{Returns:} true or false
 Checks if the toric variety \textit{vari} is a smooth variety.

3.2.6 HasTorusfactor

▷ HasTorusfactor(vari) (property)
 \textbf{Returns:} true or false
 Checks if the toric variety \textit{vari} has a torus factor.

3.2.7 HasNoTorusfactor

▷ HasNoTorusfactor(vari) (property)
 \textbf{Returns:} true or false
 Checks if the toric variety \textit{vari} has no torus factor.

3.2.8 IsOrbifold

▷ IsOrbifold(vari) (property)
 \textbf{Returns:} true or false
 Checks if the toric variety \textit{vari} has an orbifold, which is, in the toric case, equivalent to the simpliciality of the fan.

3.3 Toric varieties: Attributes

3.3.1 AffineOpenCovering

▷ AffineOpenCovering(vari) (attribute)
 \textbf{Returns:} a list
 Returns a torus invariant affine open covering of the variety \textit{vari}. The affine open cover is computed out of the cones of the fan.

3.3.2 CoxRing

▷ CoxRing(vari) (attribute)
 \textbf{Returns:} a ring
 Returns the Cox ring of the variety \textit{vari}. The actual method requires a string with a name for the variables. A method for computing the Cox ring without a variable given is not implemented. You will get an error.

3.3.3 ListOfVariablesOfCoxRing

▷ ListOfVariablesOfCoxRing(vari) (attribute)
 \textbf{Returns:} a list
 Returns a list of the variables of the cox ring of the variety \textit{vari}.
3.3.4 ClassGroup

▷ ClassGroup(vari) (attribute)
 Returns: a module
 Returns the class group of the variety vari as factor of a free module.

3.3.5 PicardGroup

▷ PicardGroup(vari) (attribute)
 Returns: a module
 Returns the Picard group of the variety vari as factor of a free module.

3.3.6 TorusInvariantDivisorGroup

▷ TorusInvariantDivisorGroup(vari) (attribute)
 Returns: a module
 Returns the subgroup of the Weil divisor group of the variety vari generated by the torus invariant prime divisors. This is always a finitely generated free module over the integers.

3.3.7 MapFromCharacterToPrincipalDivisor

▷ MapFromCharacterToPrincipalDivisor(vari) (attribute)
 Returns: a morphism
 Returns a map which maps an element of the character group into the torus invariant Weil group of the variety vari. This has to viewn as an help method to compute divisor classes.

3.3.8 Dimension

▷ Dimension(vari) (attribute)
 Returns: an integer
 Returns the dimension of the variety vari.

3.3.9 DimensionOfTorusfactor

▷ DimensionOfTorusfactor(vari) (attribute)
 Returns: an integer
 Returns the dimension of the torus factor of the variety vari.

3.3.10 CoordinateRingOfTorus

▷ CoordinateRingOfTorus(vari) (attribute)
 Returns: a ring
 Returns the coordinate ring of the torus of the variety vari. This method is not implemented, you need to call it with a second argument, which is a list of strings for the variables of the ring.
3.3.11 IsProductOf

▷ IsProductOf(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a list

If the variety vari is a product of 2 or more varieties, the list contain those varieties. If it is not a product or at least not generated as a product, the list only contains the variety itself.

3.3.12 CharacterLattice

▷ CharacterLattice(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a module

The method returns the character lattice of the variety vari, computed as the containing grid of the underlying convex object, if it exists.

3.3.13 TorusInvariantPrimeDivisors

▷ TorusInvariantPrimeDivisors(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a list

The method returns a list of the torus invariant prime divisors of the variety vari.

3.3.14 IrrelevantIdeal

▷ IrrelevantIdeal(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} an ideal

Returns the irrelevant ideal of the cox ring of the variety vari.

3.3.15 MorphismFromCoxVariety

▷ MorphismFromCoxVariety(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a morphism

The method returns the quotient morphism from the variety of the Cox ring to the variety vari.

3.3.16 CoxVariety

▷ CoxVariety(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a variety

The method returns the Cox variety of the variety vari.

3.3.17 FanOfVariety

▷ FanOfVariety(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a fan

Returns the fan of the variety vari. This is set by default.

3.3.18 CartierTorusInvariantDivisorGroup

▷ CartierTorusInvariantDivisorGroup(vari) \hspace{1cm} \text{(attribute)}

\textbf{Returns:} a module

Returns the the group of Cartier divisors of the variety vari as a subgroup of the divisor group.
3.3.19 NameOfVariety

- NameOfVariety(vari) (attribute)
 Returns: a string
 Returns the name of the variety vari if it has one and it is known or can be computed.

3.3.20 twitter

- twitter(vari) (attribute)
 Returns: a ring
 This is a dummy to get immediate methods triggered at some times. It never has a value.

3.4 Toric varieties: Methods

3.4.1 UnderlyingSheaf

- UnderlyingSheaf(vari) (operation)
 Returns: a sheaf
 The method returns the underlying sheaf of the variety vari.

3.4.2 CoordinateRingOfTorus (for a variety and a list of variables)

- CoordinateRingOfTorus(vari, vars) (operation)
 Returns: a ring
 Computes the coordinate ring of the torus of the variety vari with the variables vars. The argument vars need to be a list of strings with length dimension or two times dimension.

3.4.3 *

- *(vari1, vari2) (operation)
 Returns: a variety
 Computes the categorial product of the varieties vari1 and vari2.

3.4.4 CharacterToRationalFunction

- CharacterToRationalFunction(elem, vari) (operation)
 Returns: a homalg element
 Computes the rational function corresponding to the character grid element elem or to the list of integers elem. To compute rational functions you first need to compute to coordinate ring of the torus of the variety vari.

3.4.5 CoxRing (for a variety and a string of variables)

- CoxRing(vari, vars) (operation)
 Returns: a ring
 Computes the Cox ring of the variety vari. vars needs to be a string containing one variable, which will be numbered by the method.
3.4.6 WeilDivisorsOfVariety

▷ WeilDivisorsOfVariety(vari) (operation)
 \textbf{Returns:} a list
 Returns a list of the currently defined Divisors of the toric variety.

3.4.7 Fan

▷ Fan(vari) (operation)
 \textbf{Returns:} a fan
 Returns the fan of the variety vari. This is a rename for FanOfVariety.

3.5 Toric varieties: Constructors

3.5.1 ToricVariety

▷ ToricVariety(conv) (operation)
 \textbf{Returns:} a ring
 Creates a toric variety out of the convex object \textit{conv}.

3.6 Toric varieties: Examples

3.6.1 The Hirzebruch surface of index 5

\begin{verbatim}
Example
\end{verbatim}

\begin{verbatim}
gap> H5 := Fan([[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]]);
<A fan in |R^2>
gap> H5 := ToricVariety(H5);
<A toric variety of dimension 2>
gap> IsComplete(H5);
true
gap> IsAffine(H5);
false
gap> IsOrbifold(H5);
true
gap> IsProjective(H5);
true
gap> TorusInvariantPrimeDivisors(H5);
[<A prime divisor of a toric variety with coordinates [1, 0, 0, 0]>,
 <A prime divisor of a toric variety with coordinates [0, 1, 0, 0]>,
 <A prime divisor of a toric variety with coordinates [0, 0, 1, 0]>,
 <A prime divisor of a toric variety with coordinates [0, 0, 0, 1]>]
gap> P := TorusInvariantPrimeDivisors(H5);
[<A prime divisor of a toric variety with coordinates [1, 0, 0, 0]>,
 <A prime divisor of a toric variety with coordinates [0, 1, 0, 0]>,
 <A prime divisor of a toric variety with coordinates [0, 0, 1, 0]>,
 <A prime divisor of a toric variety with coordinates [0, 0, 0, 1]>]
<A divisor of a toric variety with coordinates [1, -1, 4, 0]>
gap> A;
<A divisor of a toric variety with coordinates [1, -1, 4, 0]>
\end{verbatim}
gap> IsAmple(A); false
gap> CoordinateRingOfTorus(H5,"x");
Q[x1,x1_,x2,x2_]/(x2*x2_-1, x1*x1_-1)
gap> D:=CreateDivisor([0,0,0,0],H5);
<A divisor of a toric variety with coordinates 0>
gap> BasisOfGlobalSections(D);
[[1]]
gap> D:=Sum(P);
<A divisor of a toric variety with coordinates [1, 1, 1, 1]>
gap> BasisOfGlobalSections(D);
[[x1_]], [[x1_*x2_]], [[1]], [[x2_]],
[[x1]], [[x1*x2_]], [[x1^2*x2_]],
[[x1^3*x2_]], [[x1^4*x2_]], [[x1^5*x2_]],
[[x1^6*x2_]]
gap> DivisorOfCharacter([1,2],H5);
<A principal divisor of a toric variety with coordinates [9, 2, 1, -2]>
gap> BasisOfGlobalSections(last);
[[x1_*x2_-^2]]
Chapter 4

Toric subvarieties

4.1 Toric subvarieties: Category and Representations

4.1.1 IsToricSubvariety

\[\text{IsToricSubvariety}(M) \]

Returns: true or false

The GAP category of a toric subvariety. Every toric subvariety is a toric variety, so every method applicable to toric varieties is also applicable to toric subvarieties.

4.2 Toric subvarieties: Properties

4.2.1 IsClosed

\[\text{IsClosed}(\text{vari}) \]

Returns: true or false

Checks if the subvariety \text{vari} is a closed subset of its ambient variety.

4.2.2 IsOpen

\[\text{IsOpen}(\text{vari}) \]

Returns: true or false

Checks if a subvariety is a closed subset.

4.2.3 IsWholeVariety

\[\text{IsWholeVariety}(\text{vari}) \]

Returns: true or false

Returns true if the subvariety \text{vari} is the whole variety.
4.3 Toric subvarieties: Attributes

4.3.1 UnderlyingToricVariety

\triangledown UnderlyingToricVariety(vari)
Returns: a variety
Returns the toric variety which is represented by vari. This method implements the forgetful functor subvarieties \rightarrow varieties.

4.3.2 InclusionMorphism

\triangledown InclusionMorphism(vari)
Returns: a morphism
If the variety vari is an open subvariety, this method returns the inclusion morphism in its ambient variety. If not, it will fail.

4.3.3 AmbientToricVariety

\triangledown AmbientToricVariety(vari)
Returns: a variety
Returns the ambient toric variety of the subvariety vari

4.4 Toric subvarieties: Methods

4.4.1 ClosureOfTorusOrbitOfCone

\triangledown ClosureOfTorusOrbitOfCone(vari, cone)
Returns: a subvariety
The method returns the closure of the orbit of the torus contained in vari which corresponds to the cone cone as a closed subvariety of vari.

4.5 Toric subvarieties: Constructors

4.5.1 ToricSubvariety

\triangledown ToricSubvariety(vari, ambvari)
Returns: a subvariety
The method returns the closure of the orbit of the torus contained in vari which corresponds to the cone cone as a closed subvariety of vari.
Chapter 5

Affine toric varieties

5.1 Affine toric varieties: Category and Representations

5.1.1 IsAffineToric Variety

\[\text{IsAffineToricVariety}(M)\]

\text{(Category)}

\text{Returns: true or false}

The GAP category of an affine toric variety. All affine toric varieties are toric varieties, so everything applicable to toric varieties is applicable to affine toric varieties.

5.2 Affine toric varieties: Properties

Affine toric varieties have no additional properties. Remember that affine toric varieties are toric varieties, so every property of a toric variety is a property of an affine toric variety.

5.3 Affine toric varieties: Attributes

5.3.1 CoordinateRing

\[\text{CoordinateRing(vari)}\]

\text{(attribute)}

\text{Returns: a ring}

Returns the coordinate ring of the affine toric variety \text{vari}. The computation is mainly done in ToricIdeals package.

5.3.2 ListOfVariablesOfCoordinateRing

\[\text{ListOfVariablesOfCoordinateRing(vari)}\]

\text{(attribute)}

\text{Returns: a list}

Returns a list containing the variables of the CoordinateRing of the variety \text{vari}.

5.3.3 MorphismFromCoordinateRingToCoordinateRingOfTorus

\[\text{MorphismFromCoordinateRingToCoordinateRingOfTorus(vari)}\]

\text{(attribute)}

\text{Returns: a morphism}
Returns the morphism between the coordinate ring of the variety `vari` and the coordinate ring of its torus. This defines the embedding of the torus in the variety.

5.3.4 ConeOfVariety

- **ConeOfVariety(vari)**
 - **Returns**: a cone
 - Returns the cone ring of the affine toric variety `vari`.

5.4 Affine toric varieties: Methods

5.4.1 CoordinateRing (for affine Varieties)

- **CoordinateRing(vari, indet)**
 - **Returns**: a variety
 - Computes the coordinate ring of the affine toric variety `vari` with indeterminates `indet`.

5.4.2 Cone

- **Cone(vari)**
 - **Returns**: a cone
 - Returns the cone of the variety `vari`. Another name for ConeOfVariety for compatibility and shortness.

5.5 Affine toric varieties: Constructors

The constructors are the same as for toric varieties. Calling them with a cone will result in an affine variety.

5.6 Affine toric Varieties: Examples

5.6.1 Affine space

```gap
gap> C:=Cone( [[1,0,0],[0,1,0],[0,0,1]] );
<A cone in |R^3>
gap> C3:=ToricVariety(C);
<An affine normal toric variety of dimension 3>
gap> Dimension(C3);
3
gap> IsOrbifold(C3);
true
gap> IsSmooth(C3);
true
gap> CoordinateRingOfTorus(C3,"x");
Q[x1,x1_,x2,x2_,x3,x3_]/( x3*x3_-1, x2*x2_-1, x1*x1_-1 )
gap> CoordinateRing(C3,"x");
Q[x_1,x_2,x_3]
gap> MorphismFromCoordinateRingToCoordinateRingOfTorus(C3);
```

- Example
<A monomorphism of rings>

\texttt{gap> C3;}

<An affine normal smooth toric variety of dimension 3>

\texttt{gap> StructureDescription(C3);}

"\text{\mid \mathbb{A}^3\text{\}}"
Chapter 6

Projective toric varieties

6.1 Projective toric varieties: Category and Representations

6.1.1 IsProjectiveToricVariety

\[\text{IsProjectiveToricVariety}(\text{M}) \] (Category)

\textbf{Returns:} true or false

The GAP category of a projective toric variety.

6.2 Projective toric varieties: Properties

Projective toric varieties have no additional properties. Remember that projective toric varieties are toric varieties, so every property of a toric variety is a property of an projective toric variety.

6.3 Projective toric varieties: Attributes

6.3.1 AffineCone

\[\text{AffineCone(\text{vari})} \] (attribute)

\textbf{Returns:} a variety

Returns the affine cone of the projective toric variety vari.

6.3.2 PolytopeOfVariety

\[\text{PolytopeOfVariety(\text{vari})} \] (attribute)

\textbf{Returns:} a polytope

Returns the polytope corresponding to the projective toric variety vari, if it exists.

6.3.3 ProjectiveEmbedding

\[\text{ProjectiveEmbedding(\text{vari})} \] (attribute)

\textbf{Returns:} a list

Returns characters for a closed embedding in an projective space for the projective toric variety vari.
6.4 Projective toric varieties: Methods

6.4.1 Polytope

> Polytope(vari) (operation)

Returns: a polytope

Returns the polytope of the variety vari. Another name for PolytopeOfVariety for compatibility and shortness.

6.5 Projective toric varieties: Constructors

The constructors are the same as for toric varieties. Calling them with a polytope will result in an projective variety.

6.6 Projective toric varieties: Examples

6.6.1 PxP1 created by a polytope

Example

```
gap> P1P1 := Polytope([1,1],[1,-1],[-1,-1],[-1,1]);
<A polytope in \mathbb{R}^2>
gap> P1P1 := ToricVariety( P1P1 );
<A projective toric variety of dimension 2>
gap> IsProjective( P1P1 );
ture
gap> IsComplete( P1P1 );
true
gap> CoordinateRingOfTorus( P1P1, "x" );
Q[x_1,\ldots,x_2]/(x_2*x_2-1, x_1*x_1-1)
gap> IsVeryAmple( Polytope( P1P1 ) );
true
gap> ProjectiveEmbedding( P1P1 );
[ [ x_1*\ldots*x_2_\ldots* ] , [ \ldots ] , [ x_1*\ldots*x_2_\ldots* ] ]
gap> Length( last );
9
```
Chapter 7

Toric morphisms

7.1 Toric morphisms: Category and Representations

7.1.1 IsToricMorphism

\[\text{IsToricMorphism}(M) \]

\(\text{Returns: true or false} \)

The GAP category of toric morphisms. A toric morphism is defined by a grid homomorphism, which is compatible with the fan structure of the two varieties.

7.2 Toric morphisms: Properties

7.2.1 IsMorphism

\[\text{IsMorphism}(\text{morph}) \]

\(\text{Returns: true or false} \)

Checks if the grid morphism \(\text{morph} \) respects the fan structure.

7.2.2 IsProper

\[\text{IsProper}(\text{morph}) \]

\(\text{Returns: true or false} \)

Checks if the defined morphism \(\text{morph} \) is proper.

7.3 Toric morphisms: Attributes

7.3.1 SourceObject

\[\text{SourceObject}(\text{morph}) \]

\(\text{Returns: a variety} \)

Returns the source object of the morphism \(\text{morph} \). This attribute is a must have.
7.3.2 UnderlyingGridMorphism

- UnderlyingGridMorphism(morph) (attribute)
 Returns: a map
 Returns the grid map which defines morph.

7.3.3 ToricImageObject

- ToricImageObject(morph) (attribute)
 Returns: a variety
 Returns the variety which is created by the fan which is the image of the fan of the source of morph. This is not an image in the usual sense, but a toric image.

7.3.4 RangeObject

- RangeObject(morph) (attribute)
 Returns: a variety
 Returns the range of the morphism morph. If no range is given (yes, this is possible), the method returns the image.

7.3.5 MorphismOnWeilDivisorGroup

- MorphismOnWeilDivisorGroup(morph) (attribute)
 Returns: a morphism
 Returns the associated morphism between the divisor group of the range of morph and the divisor group of the source.

7.3.6 ClassGroup (for toric morphisms)

- ClassGroup(morph) (attribute)
 Returns: a morphism
 Returns the associated morphism between the class groups of source and range of the morphism morph.

7.3.7 MorphismOnCartierDivisorGroup

- MorphismOnCartierDivisorGroup(morph) (attribute)
 Returns: a morphism
 Returns the associated morphism between the Cartier divisor groups of source and range of the morphism morph.

7.3.8 PicardGroup (for toric morphisms)

- PicardGroup(morph) (attribute)
 Returns: a morphism
 Returns the associated morphism between the class groups of source and range of the morphism morph.
7.4 Toric morphisms: Methods

7.4.1 UnderlyingListList

- UnderlyingListList(morph) (attribute)
 Returns: a list
 Returns a list of list which represents the grid homomorphism.

7.5 Toric morphisms: Constructors

7.5.1 ToricMorphism (for a source and a matrix)

- ToricMorphism(vari, lis) (operation)
 Returns: a morphism
 Returns the toric morphism with source vari which is represented by the matrix lis. The range is set to the image.

7.5.2 ToricMorphism (for a source, matrix and target)

- ToricMorphism(vari, lis, vari2) (operation)
 Returns: a morphism
 Returns the toric morphism with source vari and range vari2 which is represented by the matrix lis.

7.6 Toric morphisms: Examples

7.6.1 Morphism between toric varieties and their class groups

Example

```
gap> P1 := Polytope([[0],[1]]);  # A polytope in \mathbb{R}^1
< A polytope in |R^1>
gap> P2 := Polytope([[0,0],[0,1],[1,0]]);  # A polytope in \mathbb{R}^2
< A polytope in |R^2>
gap> P1 := ToricVariety( P1 );  # A projective toric variety of dimension 1
< A projective toric variety of dimension 1>
gap> P2 := ToricVariety( P2 );  # A projective toric variety of dimension 2
< A projective toric variety of dimension 2>
gap> P1P2 := P1*P2;  # A product of 2 toric varieties
< A projective toric variety of dimension 3
 which is a product of 2 toric varieties>
gap> ClassGroup( P1 );  # A non-torsion left module presented by 1 relation for 2 generators
< A non-torsion left module presented by 1 relation for 2 generators>
gap> Display(ByASmallerPresentation(last));  # \mathbb{Z} \times \mathbb{Z}
gap> ClassGroup( P2 );  # A non-torsion left module presented by 2 relations for 3 generators
< A non-torsion left module presented by 2 relations for 3 generators>
gap> Display(ByASmallerPresentation(last));  # \mathbb{Z} \times \mathbb{Z}
gap> ClassGroup( P1P2 );  # A free left module of rank 2 on free generators
< A free left module of rank 2 on free generators>
gap> Display(last);  # Display the class group
```
Z^*(1 x 2)
gap> PicardGroup(P1P2);
<A free left module of rank 2 on free generators>
gap> P1P2;
<A projective smooth toric variety of dimension 3
which is a product of 2 toric varieties>
gap> P2P1:=P2*P1;
<A projective toric variety of dimension 3
which is a product of 2 toric varieties>
gap> M := \[
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\]
< A "homomorphism" of right objects>
gap> M := ToricMorphism(P1P2,M,P2P1);
gap> IsMorphism(M);
true
gap> ClassGroup(M);
<A homomorphism of left modules>
gap> Display(last);
[[0, 1],
 [1, 0]]
the map is currently represented by the above 2 x 2 matrix
gap> ByASmallerPresentation(ClassGroup(M));
<A non-zero homomorphism of left modules>
gap> Display(last);
[[0, 1],
 [1, 0]]
the map is currently represented by the above 2 x 2 matrix
Chapter 8

Toric divisors

8.1 Toric divisors: Category and Representations

8.1.1 IsToricDivisor

\(\text{IsToricDivisor}(M) \)
\text{(Category)}

Returns: true or false

The GAP category of torus invariant Weil divisors.

8.2 Toric divisors: Properties

8.2.1 IsCartier

\(\text{IsCartier}(\text{divi}) \)
\text{(property)}

Returns: true or false

Checks if the torus invariant Weil divisor \(\text{divi} \) is Cartier i.e. if it is locally principal.

8.2.2 IsPrincipal

\(\text{IsPrincipal}(\text{divi}) \)
\text{(property)}

Returns: true or false

Checks if the torus invariant Weil divisor \(\text{divi} \) is principal which in the toric invariant case means that it is the divisor of a character.

8.2.3 IsPrimedivisor

\(\text{IsPrimedivisor}(\text{divi}) \)
\text{(property)}

Returns: true or false

Checks if the Weil divisor \(\text{divi} \) represents a prime divisor, i.e. if it is a standard generator of the divisor group.

8.2.4 IsBasepointFree

\(\text{IsBasepointFree}(\text{divi}) \)
\text{(property)}

Returns: true or false

Checks if the divisor \(\text{divi} \) is basepoint free. What else?
8.2.5 IsAmple

▷ IsAmple(divi)
 Returns: true or false
 Checks if the divisor divi is ample, i.e. if it is colored red, yellow and green.

8.2.6 IsVeryAmple

▷ IsVeryAmple(divi)
 Returns: true or false
 Checks if the divisor divi is very ample.

8.3 Toric divisors: Attributes

8.3.1 CartierData

▷ CartierData(divi)
 Returns: a list
 Returns the Cartier data of the divisor divi, if it is Cartier, and fails otherwise.

8.3.2 CharacterOfPrincipalDivisor

▷ CharacterOfPrincipalDivisor(divi)
 Returns: an element
 Returns the character corresponding to principal divisor divi.

8.3.3 ToricVarietyOfDivisor

▷ ToricVarietyOfDivisor(divi)
 Returns: a variety
 Returns the closure of the torus orbit corresponding to the prime divisor divi. Not implemented for other divisors. Maybe we should add the support here. Is this even a toric variety? Exercise left to the reader.

8.3.4 ClassOfDivisor

▷ ClassOfDivisor(divi)
 Returns: an element
 Returns the class group element corresponding to the divisor divi.

8.3.5 PolytopeOfDivisor

▷ PolytopeOfDivisor(divi)
 Returns: a polytope
 Returns the polytope corresponding to the divisor divi.
8.3.6 BasisOfGlobalSections

▷ BasisOfGlobalSections(divi) (attribute)

Returns: a list

Returns a basis of the global section module of the quasi-coherent sheaf of the divisor divi.

8.3.7 IntegerForWhichIsSureVeryAmple

▷ IntegerForWhichIsSureVeryAmple(divi) (attribute)

Returns: an integer

Returns an integer which, to be multiplied with the ample divisor divi, someone gets a very ample divisor.

8.3.8 AmbientToricVariety (for toric divisors)

▷ AmbientToricVariety(divi) (attribute)

Returns: a variety

Returns the containing variety of the prime divisors of the divisor divi.

8.3.9 UnderlyingGroupElement

▷ UnderlyingGroupElement(divi) (attribute)

Returns: an element

Returns an element which represents the divisor divi in the Weil group.

8.3.10 UnderlyingToricVariety (for prime divisors)

▷ UnderlyingToricVariety(divi) (attribute)

Returns: a variety

Returns the closure of the torus orbit corresponding to the prime divisor divi. Not implemented for other divisors. Maybe we should add the support here. Is this even a toric variety? Exercise left to the reader.

8.3.11 DegreeOfDivisor

▷ DegreeOfDivisor(divi) (attribute)

Returns: an integer

Returns the degree of the divisor divi.

8.3.12 MonomsOfCoxRingOfDegree

▷ MonomsOfCoxRingOfDegree(divi) (attribute)

Returns: a list

Returns the variety corresponding to the polytope of the divisor divi.
8.3.13 CoxRingOfTargetOfDivisorMorphism

▷ CoxRingOfTargetOfDivisorMorphism(divi) (attribute)
 Returns: a ring
 A basepoint free divisor \(divi \) defines a map from its ambient variety in a projective space. This method returns the cox ring of such a projective space.

8.3.14 RingMorphismOfDivisor

▷ RingMorphismOfDivisor(divi) (attribute)
 Returns: a ring
 A basepoint free divisor \(divi \) defines a map from its ambient variety in a projective space. This method returns the morphism between the cox ring of this projective space to the cox ring of the ambient variety of \(divi \).

8.4 Toric divisors: Methods

8.4.1 VeryAmpleMultiple

▷ VeryAmpleMultiple(divi) (operation)
 Returns: a divisor
 Returns a very ample multiple of the ample divisor \(divi \). Will fail if divisor is not ample.

8.4.2 CharactersForClosedEmbedding

▷ CharactersForClosedEmbedding(divi) (operation)
 Returns: a list
 Returns characters for closed embedding defined via the ample divisor \(divi \). Fails if divisor is not ample.

8.4.3 MonomsOfCoxRingOfDegree (for an homalg element)

▷ MonomsOfCoxRingOfDegree(vari, elem) (operation)
 Returns: a list
 Returns the monoms of the Cox ring of the variety \(vari \) with degree to the class group element \(elem \). The variable \(elem \) can also be a list.

8.4.4 DivisorOfGivenClass

▷ DivisorOfGivenClass(vari, elem) (operation)
 Returns: a list
 Computes a divisor of the variety \(divi \) which is member of the divisor class presented by \(elem \). The variable \(elem \) can be a homalg element or a list presenting an element.

8.4.5 AddDivisorToItsAmbientVariety

▷ AddDivisorToItsAmbientVariety(divi) (operation)
 Returns:
 Adds the divisor \(divi \) to the Weil divisor list of its ambient variety.
8.4.6 Polytope (for toric divisors)

\[\text{Polytope(divi)} \]
\(\text{Returns:} \) a polytope

Returns the polytope of the divisor \(\text{divi} \). Another name for \text{PolytopeOfDivisor} for compatibility and shortness.

8.4.7 +

\[\text{+(divi1, divi2)} \]
\(\text{Returns:} \) a divisor

Returns the sum of the divisors \(\text{divi1} \) and \(\text{divi2} \).

8.4.8 -

\[\text{-(divi1, divi2)} \]
\(\text{Returns:} \) a divisor

Returns the divisor \(\text{divi1} \) minus \(\text{divi2} \).

8.4.9 * (for toric divisors)

\[\text{*}(k, \text{divi)} \]
\(\text{Returns:} \) a divisor

Returns \(k \) times the divisor \(\text{divi} \).

8.5 Toric divisors: Constructors

8.5.1 DivisorOfCharacter

\[\text{DivisorOfCharacter(elem, vari)} \]
\(\text{Returns:} \) a divisor

Returns the divisor of the toric variety \(\text{vari} \) which corresponds to the character \(\text{elem} \).

8.5.2 DivisorOfCharacter (for a list of integers)

\[\text{DivisorOfCharacter(lis, vari)} \]
\(\text{Returns:} \) a divisor

Returns the divisor of the toric variety \(\text{vari} \) which corresponds to the character which is created by the list \(\text{lis} \).

8.5.3 CreateDivisor (for a homalg element)

\[\text{CreateDivisor(elem, vari)} \]
\(\text{Returns:} \) a divisor

Returns the divisor of the toric variety \(\text{vari} \) which corresponds to the Weil group element \(\text{elem} \).
8.5.4 CreateDivisor (for a list of integers)

> CreateDivisor(lis, vari)
(operation)

Returns: a divisor

Returns the divisor of the toric variety vari which corresponds to the Weil group element which is created by the list lis.

8.6 Toric divisors: Examples

8.6.1 Divisors on a toric variety

Example

```
gap> H7 := Fan( [[0,1],[1,0],[0,-1],[-1,7]],[[1,2],[2,3],[3,4],[4,1]] );
<A fan in |R^2>
gap> H7 := ToricVariety( H7 );
<A toric variety of dimension 2>
gap> P := TorusInvariantPrimeDivisors( H7 );
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,
  <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>,
  <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,
  <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
gap> D := P[3]+P[4];
<A divisor of a toric variety with coordinates [ 0, 0, 1, 1 ]>
gap> IsBasepointFree(D);
true
gap> IsAmple(D);
true
gap> CoordinateRingOfTorus(H7,"x");
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
gap> Polytope(D);
<A polytope in |R^2>
gap> CharactersForClosedEmbedding(D);
[ [ 1 ], [ x2 ], [ x1 ], [ x1*x2 ], [ x1^-2*x2 ],
  [ x1^-3*x2 ], [ x1^-4*x2 ], [ x1^-5*x2 ],
  [ x1^-6*x2 ], [ x1^-7*x2 ], [ x1^-8*x2 ] ]
gap> CoxRingOfTargetOfDivisorMorphism(D);
Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_10,x_11]
(weights: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
gap> RingMorphismOfDivisor(D);
"A homomorphism of rings"
gap> Display(last);
Q[x_1,x_2,x_3,x_4]
(weights: [ 0, 0, 1, -7 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ])
```

<A free left module of rank 2 on free generators>

\begin{verbatim}
gap> Display(RingMorphismOfDivisor(D));
Q[x_1,x_2,x_3,x_4]
(weights: [[1, -7], [0, 1], [1, 0], [0, 1]])
^ |
[x_3*x_4, x_1*x_2^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,
 x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,
 x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8]
|
| Q[x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_{10},x_{11}]
(weights: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
\end{verbatim}

\begin{verbatim}
gap> MonomsOfCoxRingOfDegree(D);
[x_3*x_4, x_1*x_4^8, x_2*x_3, x_1*x_2*x_4^7, x_1*x_2^2*x_4^6,
 x_1*x_2^3*x_4^5, x_1*x_2^4*x_4^4, x_1*x_2^5*x_4^3,
 x_1*x_2^6*x_4^2, x_1*x_2^7*x_4, x_1*x_2^8]
gap> D2:=D-2*P[2];
<A divisor of a toric variety with coordinates [0, -2, 1, 1]>
\end{verbatim}

\begin{verbatim}
gap> IsBasepointFree(D2);
false
gap> IsAmple(D2);
false
\end{verbatim}
Index

* for toric divisors, 29
*., 11
+, 29
-, 29

ToricVarieties, 5

AddDivisorToItsAmbientVariety, 28
AffineCone, 19
AffineOpenCovering, 8
AmbientToricVariety, 15
for toric divisors, 27

BasisOfGlobalSections, 27

CartierData, 26
CartierTorusInvariantDivisorGroup, 10
CharacterLattice, 10
CharacterOfPrincipalDivisor, 26
CharactersForClosedEmbedding, 28
CharacterToRationalFunction, 11
ClassGroup, 9
for toric morphisms, 22
ClassOfDivisor, 26
ClosureOfTorusOrbitOfCone, 15
Cone, 17
ConeOfVariety, 17
CoordinateRing, 16
for affine Varieties, 17
CoordinateRingOfTorus, 9
for a variety and a list of variables, 11
CoxRing, 8
for a variety and a string of variables, 11
CoxRingOfTargetOfDivisorMorphism, 28
CoxVariety, 10
CreateDivisor
for a homalg element, 29
for a list of integers, 30

DegreeOfDivisor, 27

Dimension, 9
DimensionOfTorusfactor, 9
DivisorOfCharacter, 29
for a list of integers, 29
DivisorOfGivenClass, 28

Fan, 12
FanOfVariety, 10

HasNoTorusfactor, 8
HasTorusfactor, 8

InclusionMorphism, 15
IntegerForWhichIsSureVeryAmple, 27
IrrelevantIdeal, 10
IsAffine, 7
IsAffineToricVariety, 16
IsAmple, 26
IsBasepointFree, 25
IsCartier, 25
IsClosed, 14
IsComplete, 7
IsMorphism, 21
IsNormalVariety, 7
IsOpen, 14
IsOrbifold, 8
IsPrimedivisor, 25
IsPrincipal, 25
IsProductOf, 10
IsProjective, 7
IsProjectiveToricVariety, 19
IsProper, 21
IsSmooth, 8
IsToricDivisor, 25
IsToricMorphism, 21
IsToricSubvariety, 14
IsToricVariety, 7
IsVeryAmple, 26
IsWholeVariety, 14
ToricVarieties

ListOfVariablesOfCoordinateRing, 16
ListOfVariablesOfCoxRing, 8

MapFromCharacterToPrincipalDivisor, 9
MonomsOfCoxRingOfDegree, 27
 for an homalg element, 28
MorphismFromCoordinateRingTo-
 CoordinateRingOfTorus, 16
MorphismFromCoxVariety, 10
MorphismOnCartierDivisorGroup, 22
MorphismOnWeilDivisorGroup, 22

NameOfVariety, 11

PicardGroup, 9
 for toric morphisms, 22
Polytope, 20
 for toric divisors, 29
PolytopeOfDivisor, 26
PolytopeOfVariety, 19
ProjectiveEmbedding, 19

RangeObject, 22
RingMorphismOfDivisor, 28

SourceObject, 21

ToricImageObject, 22
ToricMorphism
 for a source and a matrix, 23
 for a source, matrix and target, 23
ToricSubvariety, 15
ToricVariety, 12
ToricVarietyOfDivisor, 26
TorusInvariantDivisorGroup, 9
TorusInvariantPrimeDivisors, 10
twitter, 11

UnderlyingGridMorphism, 22
UnderlyingGroupElement, 27
UnderlyingListList, 23
UnderlyingSheaf, 11
UnderlyingToricVariety, 15
 for prime divisors, 27

VeryAmpleMultiple, 28

WeilDivisorsOfVariety, 12