
ModIsom—
A GAP4 Package

Version 2.4.0

by

Bettina Eick
Institut Computational Mathematics, TU Braunschweig

Pockelsstrasse 14, 38106 Braunschweig, Germany

email: beick@tu-bs.de

September 2018

Contents

1 Introduction 3

2 Tables 5

2.1 Nilpotent tables 5

2.2 Algebras in the GAP sense 6

3 Automorphism groups and Canonical
Forms 8

3.1 Automorphism groups 8

3.2 Canonical forms 8

3.3 Example of canonical form computation 8

4 The modular isomorphism problem 10

4.1 Computing and checking bins . . . 10

4.2 Example for groups of order 64 . . . 10

5 Nilpotent Quotients 12

5.1 Computing nilpotent quotients . . . 12

5.2 Example of nilpotent quotient computation 12

6 Relatively free Algebras 13

6.1 Computing Kurosh Algebras 13

6.2 A Library of Kurosh Algebras . . . 13

6.3 Example of accessing the library of Kurosh
algebras 13

Bibliography 14

Index 15

1 Introduction
This package contains various algorithms related to finite dimensional nilpotent associative algebras. We first give a
brief introduction to these algebras and then an overview of the main algorithms.

Associative algebras and nilpotency

Let A be an associative algebra of dimension d over a field F. Let {b1, . . . , bd} be a basis for A. We identify the
element x1b1 + . . .+ xdbd of A with the element (x1, . . . , xd) of Fd. The multiplication of A can then be described by
a structure constants table: a 3-dimensional array with entries ai,j,k ∈ F satisfying that

bibj =
d

∑
k=1

ai,j,kbk·

An associative algebra A is nilpotent if its power series terminates at the trivial ideal of A; that is

A > A2 > . . . > Ac > Ac+1 = {0}

where Aj is the ideal of A generated by all products of length at least j. The length c of the power series is also called
the class of A and the dimension of A/A2 is the rank of A. Note that A is generated by dim(A/A2) elements. Clearly,
A does not contain a multiplicative identity.

For computational purposes we describe a nilpotent associative algebra by a weighted basis and a description of the
corresponding structure constants table. A basis of a nilpotent associative algebra A is weighted if there is a sequence
of weights (w1, . . . ,wd) so that

Aj = 〈bi | wi ≥ j〉·

Note that AAj = Aj+1 for every j. Thus it is possible to choose all basis elements of weight at least 2 so that bi = bkbl

holds for some k and l, where bk is of weight 1 and bl is of weight wi − 1. This feature allows an effective description
of A via a nilpotent structure constants table. This contains the structure constants ai,j,k for all i with wi = 1 and
1 ≤ j, k ≤ d. For i with wi > 1 it either contains a description as bi = bkbl or the structure constants ai,j,k for
1 ≤ j, k ≤ d. It may also contain both or some partial overlap of these informations.

Isomorphisms and Automorphisms

Let A be a finite dimensional nilpotent associative algebra over a finite field. This package contains an implementation
of the methods in [Eic08] which allow the determination of the automorphism group Aut(A) and a canonical form
Can(A).

The automorphism group is given by generators and it represented as a subgroup of GL(dim(A),F). Also the order of
Aut(A) is available.

A canonical form Can(A) for A is a nilpotent structure constants table for A which is unique for the isomorphism type
of A; that is, two algebras A and B are isomorphic if and only if Can(A) = Can(B) holds. Hence the canonical form
can be used to solve the isomorphism problem.

The modular isomorphism problem

4 Chapter 1. Introduction

The modular isomorphism problem asks whether FG ∼= FH implies that G ∼= H for two p-groups G and H and
F the field with p elements. This problem is still open, despite various efforts towards proving the claim or finding
counterexamples to it.

Computational approaches have been used to investigate the modular isomorphism problem. Based on an algorithm
by Roggenkamp and Scott [RS93], Wursthorn [Wur93] described an algorithm for checking the modular isomorphism
problem; that is, he described an algorithm for checking whether two modular group algebras FG and FH are iso-
morphic. This algorithm has been implemented in C by Wursthorn and has been used applied to the groups of order
dividing 27 without finding a counterexample, see [BKRW99].

This package contains an implementation of the new algorithm described in [Eic08] for checking isomorphism of
modular group algebras. It is based on the fact that the Jacobson radical J(FG) is nilpotent if FG is a modular group
algebra. Hence the automorphism group and canonical form algorithm of this package apply and can be used to solve
the isomorphism problem for modular group algebras.

The methods of this package have been used to check the modular isomorphism problem for the groups of order
dividing 36 and 28 ([Eic08]) and for the groups of order 29 ([EKo11]).

A nilpotent quotient algorithm

Given a finitely presented associative algebra A over an arbitrary field F, this package contains an algorithm to de-
termine a nilpotent structure constants table for the class-c nilpotent quotient of A. See [Eic11] for details on the
underlying algorithm.

Kurosh Algebras

Let F(d,F) denote the free non-unital associative algebra on d generators over the field F. Then

A(d, n,F) = F(d,F)/〈〈wn | w ∈ F(d,F)〉〉

is the Kurosh Algebra on d generators of exponent n over the field F. Kurosh Algebras can be considered as an
algebra-theoretic analogue to Burnside groups.

This package contains a method that allows to determine A(d, n,F) for given d, n, F. This can also be used to determine
A(d, n,F) for all fields of a given characteristic. We refer to [Eic11] for details on the algorithms.

This package also contains a database of Kurosh Algebras that have been determined with the methods of this package.

2 Tables
Finite dimensional algebras can be described by structure contants tables. For nilpotent algebras it is not neccessary
to store a full structure contants table. To use this feature, we introduce nilpotent structure constants tables or just
nilpotent tables for short. These are used heavily throughout the package.

2.1 Nilpotent tables

Let A be a finite-dimensional nilpotent associative algebra over a field F. Let (b1, . . . , bd) be a weighted basis of A;
that is, a basis with weights (w1, . . . ,wd) satifying that Aj = 〈bi | wi ≥ j〉. Let

bibj = ∑
k

ai,j,kbk·

The nilpotent table T for A (with respect to the basis (b1, . . . , bd)) is a record with the following entries.

dim
the dimension d of A;

fld
the field F of A;

wgs
the weights (w1, . . . ,wd);

rnk
the rank e of A (i.e. the dimension of A/A2).

wds
a list of length d with holes; If the ith entry is bounded, then it is of the form [k, l]. In this case, wi > 1 and
bi = bkbl and wk = 1 and wl = wi − 1 holds.

tab
a partial structure contants table for A; If tab[i][j][k] is bounded, then it is ai,j,k. Note that either a full vector
tab[i][j] is given or tab[i][j] is unbounded. The entry tab[i][j][k] is available for 1 ≤ i, j ≤ e and if wds[i] is
unbounded.

com
optional; If this is bounded, then it is a boolean. If this boolean is true, then the algebra is assumed to be
commutative.

In a nilpotent table not all structure contants are readily available. The following function determines the structure
constants for the product bibj. If the global variable STORE is true, then the function stores the computed entry in the
table.

1 I GetEntryTable(T, i, j) F

We consider two nilpotent tables as equal, if they would be equal if the full set of structure constants tables would be
bound. The following function provides an effective check for this.

6 Chapter 2. Tables

2 I CompareTables(T1, T2) F

A nilpotent table contains redundant information and hence can be inconsistent. The next functions can be used to
check this to some extend.

3 I CheckAssociativity(T) F

Checks that (bibj)bk = bi(bjbk) for all i, j, k. Note that this may be time-consuming.

4 I CheckCommutativity(T) F

Checks whether T defines a commutative algebra and sets the entry com accordingly.

5 I CheckConsistency(T) F

Checks that wds and tab are compatible. This assumes that CheckAssociativity returns true.

All later described algorithms of this package assume that the tables considered are fully consistent.

gap> T := rec(dim := 3,

fld := GF(2),

rnk := 2,

wgs := [1, 1, 2],

wds := [,, [2, 1]],

tab := []);;

gap> T.tab[1] := [[0,0,0],[0,0,1]] * One(T.fld);;

gap> T.tab[2] := [[0,0,1],[0,0,0]] * One(T.fld);;

gap> GetEntryTable(T, 3, 1);

[0*Z(2), 0*Z(2), 0*Z(2)]

2.2 Algebras in the GAP sense

We provide functions to convert back and forth between algebras in the GAP sense and nilpotent tables.

1 I AlgebraByTable(T) F
I NilpotentTable(A) F

Note that the second function fails if A is not nilpotent.

For modular group algebras of p-groups, the group algebra itself is not nilpotent (as it contains a unit), but its Jacobson
radial is. The following function determines a nilpotent table for the Jacobson radical.

2 I NilpotentTableOfRad(FG) F

gap> A := GroupRing(GF(2), SmallGroup(8,3));

<algebra-with-one over GF(2), with 3 generators>

gap> NilpotentTableOfRad(A);

rec(dim := 7, fld := GF(2), rnk := 2,

tab :=

[

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],

[[0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0],

Section 2. Algebras in the GAP sense 7

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],,

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]]],

wds := [,, [1, 2],, [1, 4], [2, 4], [1, 6]],

wgs := [1, 1, 2, 2, 3, 3, 4])

3 Automorphism groups
and Canonical Forms

We refer to [Eic08] for background on the algorithms used in this Chapter. Throughout the chapter, we assume that F
is a finite field.

3.1 Automorphism groups

Let T be a nilpotent table over F. The following function can be used to determine the automorphism group of the
algebra described by T . The automorphism group is determined as subgroup of GL(T ·dim,T ·fld) given by generators
and its order. There is a variation available to determine the automorphism group of a modular group algebra FG,
where F is a finite field and G is a p-group.

1 I AutGroupOfTable(T) F
I AutGroupOfRad(FG) F

In both cases, the automorphism group is described by a record. The matrices in the lists glAutos and agAutos generate
together the automorphism group. The matrices in agAutos generate a p-group. The entry size contains the order of
the automorphism group.

3.2 Canonical forms

Let T be a nilpotent table. The following function can be used to determine the automorphism group of T if the
underlying field of T is finite. The canonical form is a nilpotent table which is unique for the isomorphism type of the
algebra defined by T . Again there a variation available for modular group algebras.

1 I CanonicalFormOfTable(T) F
I CanonicalFormOfRad(FG) F

The automorphism group of T is determined as a side-product of computing the canonical form. The following func-
tions can be used to return both.

2 I CanoFormWithAutGroupOfTable(T) F
I CanoFormWithAutGroupOfRad(FG) F

In both cases, these functions return a record with entries cano and auto.

3.3 Example of canonical form computation

We compute the automorphism group and a canonical form for the modular group algebra of the dihedral group of
order 8.

gap> A := GroupRing(GF(2), SmallGroup(8,3));;

gap> T := TableByWeightedBasisOfRad(A);;

gap> C := CanoFormWithAutGroupOfTable(T);;

check that the canonical form is not equal to T

gap> CompareTables(C.cano, T);

false

Section 3. Example of canonical form computation 9

the order of the automorphism group

gap> C.auto.size;

512

the entries of the canonical table as far as they are bounded

gap> C.cano.tab;

[[<a GF2 vector of length 7>, <a GF2 vector of length 7>,

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],

[<a GF2 vector of length 7>, <a GF2 vector of length 7>,

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]],

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]],

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]]]

4 The modular
isomorphism problem

An application of the methods in this package has been the checking of the modular isomorphism problems for the
groups of order dividing 28, 36 and 29 [Eic07,EKo10]. This section contains the functions used for this purpose.

4.1 Computing and checking bins
1 I BinsByGT(p, n) F

returns a partion of the list [1 · ·NumberSmallGroups(pn)] into sublists so that the modular group algebras of two
groups SmallGroup(pn, i) and SmallGroup(pn, j) can not be isomorphic if i and j are in different lists. The function
BinsByGT uses various group theoretic invariants to split the groups of order pn in bins.

2 I CheckBin(p, n, k, bin) F

For i ∈ bin let Gi denote SmallGroup(pn, i) and let Ai be the augementation ideal of FGi. This function computes and
compares the canonical forms of the algebras Ai/Aj

i for every i ∈ bin and increasing j ∈ {1, . . . , k + 1}.

At each level j it splits the current bins into sub-bins according to the different canonical forms of Ai/Aj
i. Bins of length

1 are then discarded.

The function returns if no further bins are available or if j = k + 1 is reached. In the later case the function returns the
remaining bins.

4.2 Example for groups of order 64

We show how to check the modular isomorphism problem for the groups of order 64. We first use BinsByGT to
determine bins and we then check the first of the resulting bins with CheckBin. The fact that CheckBin ends with an
empty list of bins shows that all groups are splitted.

gap> bins := BinsByGT(2,6);

refine by abelian invariants of group (Sehgal/Ward)

13 bins with 256 groups

refine by abelian invariants of center (Sehgal/Ward)

30 bins with 237 groups

refine by lower central series (Sandling)

32 bins with 127 groups

refine by jennings series (Passi+Sehgal/Ritter+Sehgal)

36 bins with 123 groups

refine by conjugacy classes (Roggenkamp/Wursthorn)

16 bins with 36 groups

refine by elem-ab subgroups (Quillen)

start bin 1 of 16

start bin 2 of 16

start bin 3 of 16

start bin 4 of 16

start bin 5 of 16

Section 2. Example for groups of order 64 11

start bin 6 of 16

start bin 7 of 16

start bin 8 of 16

start bin 9 of 16

start bin 10 of 16

start bin 11 of 16

start bin 12 of 16

start bin 13 of 16

start bin 14 of 16

start bin 15 of 16

start bin 16 of 16

9 bins with 21 groups

[[13, 14], [18, 19], [20, 22], [97, 101], [108, 110],

[155, 157, 159], [156, 158, 160], [173, 176], [179, 180, 181]]

gap> CheckBin(2,6,100,bins[1]);

compute tables through power series

determined table for 1

determined table for 2

refine bin

weights yields bins [[1, 2]]

layer 1 yields bins [[1, 2]]

layer 2 yields bins [[1, 2]]

layer 3 yields bins [[1, 2]]

layer 4 yields bins []

5 Nilpotent Quotients

This chapter contains a description of the nilpotent quotient algorithm for associative finitely presented algebras. We
refer to [Eic11] for background on the algorithms used in this Chapter.

5.1 Computing nilpotent quotients
Let A be a finitely presented algebra in the GAP sense. The following function can be used to determine the class-c
nilpotent quotient of A. The quotient is described by a nilpotent table.

1 I NilpotentQuotientOfFpAlgebra(A, c) F

The output of this function is a nilpotent table with some additional entries. In particular, there is the additional entry
img which describes the images of the generators of A in the nilpotent table.

5.2 Example of nilpotent quotient computation

gap> F := FreeAssociativeAlgebra(GF(2), 2);;

gap> g := GeneratorsOfAlgebra(F);;

gap> r := [g[1]^2, g[2]^2];;

gap> A := F/r;;

gap> NilpotentQuotientOfFpAlgebra(A,3);

rec(def := [1, 2], dim := 8, fld := GF(2),

img := [<a GF2 vector of length 8>, <a GF2 vector of length 8>],

mat := [[], []], rnk := 2,

tab :=

[[<a GF2 vector of length 8>, <a GF2 vector of length 8>,

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],

[<a GF2 vector of length 8>, <a GF2 vector of length 8>,

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]],

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)]],

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)]]],

wds := [,, [2, 1], [1, 2], [1, 3], [2, 4], [2, 5], [1, 6]],

wgs := [1, 1, 2, 2, 3, 3, 4, 4])

6 Relatively
free Algebras

As described in [Eic11], the nilpotent quotient algorithm also allows to determine certain relatively free algebras; that
is, algebras that are free within a variety.

6.1 Computing Kurosh Algebras
1 I KuroshAlgebra(d, n, F) F

determines a nilpotent table for the largest associative algebra on d generators over the field F so that every element a
of the algebra satisfies an = 0.

2 I ExpandExponentLaw(T, n)

suppose that T is the nilpotent table of a Kurosh algebra of exponent n defined over a prime field. This function
determines polynomials describing the corresponding Kurosh algebras over all fields with the same characteristic as
the prime field.

6.2 A Library of Kurosh Algebras

The package contains a library of Kurosh algebras. This can be accessed as follows.

1 I KuroshAlgebraByLib(d, n, F) F

At current, the library contains the Kurosh algebras for n = 2, (d, n) = (2, 3), (d, n) = (3, 3) and F = Q or
|F| ∈ {2, 3, 4}, (d, n) = (4, 3) and F = Q or |F| ∈ {2, 3, 4}, (d, n) = (2, 4) and F = Q or |F| ∈ {2, 3, 4, 9},
(d, n) = (2, 5) and F = Q or |F| ∈ {2, 3, 4, 5, 8, 9}.

6.3 Example of accessing the library of Kurosh algebras

gap> KuroshAlgebra(2,2,Rationals);

... some printout ..

rec(bas := [[1, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]

, com := false, dim := 3, fld := Rationals, rnk := 2,

tab := [[[0, 0, 0], [0, 0, -1], [0, 0, 0]],

[[0, 0, 1], [0, 0, 0], [0, 0, 0]]], wds := [,, [2, 1]],

wgs := [1, 1, 2])

Bibliography

[BKRW99] Frauke M. Bleher, Wolfgang Kimmerle, Klaus W. Roggenkamp, and Martin Wursthorn. Computational
aspects of the isomorphism problem. In Algorithmic algebra and number theory (Heidelberg, 1997), pages
313–329. Springer, Berlin, 1999.

[Eic08] Bettina Eick. Computing automorphism groups and testing isomorphisms for modular group algebras. J.
Algebra, 320(11):3895–3910, 2008.

[Eic11] Bettina Eick. A nilpotent quotient algorithm for finitely presented associative algebras and algebras satisfying
a polynomial identity. Accepted for IJAC, 2011.

[EK11] Bettina Eick and Alexander Konovalov. The modular isomorphism problem for the groups of order 29. In
Proceedings of ’Groups St. Andrews’ 2009, 2011.

[RS93] K. W. Roggenkamp and L. L. Scott. Automorphisms and nonabelian cohomology: an algorithm. Linear
Algebra Appl., 192:355–382, 1993.

[Wur93] Martin Wursthorn. Isomorphisms of modular group algebras: an algorithm and its application to groups of
order 26. J. Symbolic Comput., 15(2):211–227, 1993.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.

A
AlgebraByTable, 6
Algebras in the GAP sense, 6
A Library of Kurosh Algebras, 13
AutGroupOfRad, 8
AutGroupOfTable, 8
Automorphism groups, 8

B
BinsByGT, 10

C
CanoFormWithAutGroupOfRad, 8
CanoFormWithAutGroupOfTable, 8
CanonicalFormOfRad, 8
CanonicalFormOfTable, 8
Canonical forms, 8
CheckAssociativity, 6
CheckBin, 10
CheckCommutativity, 6
CheckConsistency, 6
CompareTables, 6

Computing and checking bins, 10
Computing Kurosh Algebras, 13
Computing nilpotent quotients, 12

E
Example for groups of order 64, 10
Example of accessing the library of Kurosh algebras, 13
Example of canonical form computation, 8
Example of nilpotent quotient computation, 12
ExpandExponentLaw, 13

G
GetEntryTable, 5

K
KuroshAlgebra, 13
KuroshAlgebraByLib, 13

N
NilpotentQuotientOfFpAlgebra, 12
NilpotentTable, 6
NilpotentTableOfRad, 6
Nilpotent tables, 5

	Contents
	Introduction
	Tables
	Nilpotent tables
	Algebras in the GAP sense

	Automorphism groups and Canonical Forms
	Automorphism groups
	Canonical forms
	Example of canonical form computation

	The modular isomorphism problem
	Computing and checking bins
	Example for groups of order 64

	Nilpotent Quotients
	Computing nilpotent quotients
	Example of nilpotent quotient computation

	Relatively free Algebras
	Computing Kurosh Algebras
	A Library of Kurosh Algebras
	Example of accessing the library of Kurosh algebras

	Bibliography
	Index
	A
	B
	C
	E
	G
	K
	N

