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Chapter 1

Introduction

1.1 Motivation for this package

This package is about orbit enumeration. It bundles fundamental algorithms for orbit enumeration as
well as more sophisticated special-purpose algorithms for very large orbits.

The fundamental methods are basically an alternative implementation to the orbit algorithms in
the GAP library. We tried to make them more flexible and more efficient at the same time, therefore
backwards compatibility with respect to the user interface had to be given up. In addition, more
information about how an orbit was produced is retained and is available for further usage. These
orbit enumeration algorithms build on even more fundamental code for hash tables.

The higher level algorithms basically implement the idea to enumerate an orbit “by suborbits” with
respect to one or more subgroups. While these orbit-by-suborbit algorithms are much more efficient
in many cases, they very often need careful and sometimes difficult preparations by the user. They are
definitely not intended to be “push-the-button-tools” but require a considerable amount of knowledge
from the “pilot”.

Quite a bit of the code in this package consists in fact of interactive tools to enable users to prepare
the data for the orbit-by-suborbit algorithms to work.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 describes our reimplementation of the
basic orbit algorithm. Chapter 4 describes our toolbox for hash tables, Chapter 5 explains caching data
structures, whereas Chapter 8 describes our implementation of AVL trees. Chapter 6 covers tools to
use random methods in groups. Chapter 7 describes a lot of tools to search in groups and orbits. These
techniques are basically intended to provide the data structures necessary to run the code described in
Chapter 9 to use the orbit-by-suborbit algorithms. Currently, Chapter 10 is an empty placeholder. In
some future version of this package it will contain a description of code which helps users to find nice
quotients of modules which is also needed for the orbit-by-suborbit algorithms. However, since the
interface to this code is not yet stable, we chose not to document it as of now, in particular because it
relies on other not yet published packages as of the time of this writing. Finally, Chapter 11 shows an
instructive examples for the more sophisticated usage of this package.
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1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

https://github.com/gap-packages/orb/issues


Chapter 2

Installation of the orb-Package

To install this package just extract the package’s archive file to the GAP pkg directory.
By default the orb package is not automatically loaded by GAP when it is installed. You must

load the package with LoadPackage("orb"); before its functions become available.
As of version 3.0, the orb package has a GAP kernel component which should be compiled. This

component does not actually contain new functionality but will improve the performance of AVL trees
and hash tables significantly since many core routines are implemented in the C language at kernel
level.

To compile the C part of the package do (in the pkg directory)

cd orb
./configure
make

If you installed the package in another “pkg” directory than the standard “pkg” directory in your
GAP 4 installation, then you have to do two things. Firstly during compilation you have to use the
option –with-gaproot=PATH of the configure script where “PATH” is a path to the main GAP root
directory (if not given the default “../..” is assumed).

Secondly you have to specify the path to the directory containing your “pkg” directory to GAP’s
list of directories. This can be done by starting GAP with the “-l” command line option followed by
the name of the directory and a semicolon. Then your directory is prepended to the list of directories
searched. Otherwise the package is not found by GAP. Of course, you can add this option to your
GAP startup script.

If you installed GAP on several architectures, you must execute the configure/make step for each
of the architectures. You can either do this immediately after configuring and compiling GAP itself
on this architecture, or alternatively (when using version 4.5 of GAP or newer) set the environment
variable CONFIGNAME to the name of the configuration you used when compiling GAP before running
./configure. Note however that your compiler choice and flags (environment variables CC and
CFLAGS) need to be chosen to match the setup of the original GAP compilation. For example you
have to specify 32-bit or 64-bit mode correctly!

2.1 Recompiling the documentation

Recompiling the documentation is possible by the command “gap makedoc.g” in the orb directory.
But this should not be necessary.
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Chapter 3

Basic orbit enumeration

This package contains a new implementation of the standard orbit enumeration algorithm. The design
principles for this implementation have been:

• Allow partial orbit enumeration and later continuation.

• Consequently use hashing techniques.

• Implement stabiliser calculation and Schreier transversals on demand.

• Allow for searching in orbits during orbit enumeration.

Some of these design principles made it necessary to change the user interface in comparison to the
standard GAP one.

3.1 Enumerating orbits

The enumeration of an orbit works in at least two stages: First an orbit object is created with all the
necessary information to describe the orbit. Then the actual enumeration is started. The latter stage
can be repeated as many times as needed in the case that the orbit enumeration stopped for some reason
before the orbit was enumerated completely. See below for conditions under which this happens.

For orbit object creation there is the following function:

3.1.1 Orb

. Orb(gens, point, op[, opt]) (function)

Returns: An orbit object
The argument gens is either a GAP group, semigroup or monoid object or a list of generators of

the magma acting, point is a point in the orbit to be enumerated, op is a GAP function describing
the action of the generators on points in the usual way, that is, op(p,g) returns the result of the action
of the element g on the point p.

Note that in the case of a semigroup or monoid acting not all options make sense (for example
stabilisers only work for groups). In this case the “directed” or “weak” orbit is computed.

The optional argument opt is a GAP record which can contain quite a few options changing the
orbit enumeration. For a list of possible options see Subsection 3.1.4 at the end of this section.

8
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The function returns an “orbit” object that can later be used to enumerate (a part of) the orbit of
point under the action of the group generated by gens .

If gens is a group, semigroup or monoid object, then its generators are taken as the list of gener-
ators acting. If a group object knows its size, then this size is used to speed up orbit and in particular
stabiliser computations.

The following operation actually starts the orbit enumeration:

3.1.2 Enumerate

. Enumerate(orb[, limit]) (operation)

Returns: The orbit object orb
orb must be an orbit object created by Orb (3.1.1). The optional argument limit must be a

positive integer meaning that the orbit enumeration should stop if limit points have been found,
regardless whether the orbit is complete or not. Note that the orbit enumeration can be continued
by again calling the Enumerate operation. If the argument limit is omitted, the whole orbit is
enumerated, unless other options lead to prior termination.

To see whether an orbit is closed you can use the following operation:

3.1.3 IsClosed

. IsClosed(orb) (operation)

Returns: true or false
The result indicates, whether the orbit orb is already complete or not.
Here is an example of an orbit enumeration:

Example
gap> g := GeneratorsOfGroup(MathieuGroup(24));
[ (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),

(3,17,10,7,9)(4,13,14,19,5)(8,18,11,12,23)(15,20,22,21,16),
(1,24)(2,23)(3,12)(4,16)(5,18)(6,10)(7,20)(8,14)(9,21)(11,17)
(13,22)(15,19)

]
gap> o := Orb(g,2,OnPoints);
<open Int-orbit, 1 points>
gap> Enumerate(o,20);
<open Int-orbit, 21 points>
gap> IsClosed(o);
false
gap> Enumerate(o);
<closed Int-orbit, 24 points>
gap> IsClosed(o);
true

The orbit object o now behaves like an immutable dense list, the entries of which are the points in the
orbit in the order as they were found during the orbit enumeration (note that this is not always true
when one uses the function AddGeneratorsToOrbit (3.1.20)). So you can ask the orbit for its length,
access entries, and ask, whether a given point lies in the orbit or not. Due to the hashing techniques
used such lookups are quite fast, they usually only use a constant time regardless of the length of the
orbit!
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Example
gap> Length(o);
24
gap> o[1];
2
gap> o[2];
3
gap> o{[3..5]};
[ 23, 4, 17 ]
gap> 17 in o;
true
gap> Position(o,17);
5

3.1.4 Options for orbits

The optional fourth argument opt of the function Orb (3.1.1) is a GAP record and its components
change the behaviour of the orbit enumeration. In this subsection we explain the use of the components
of this options record. All components are themselves optional. For every component we also describe
the possible values in the following list:

eqfunc
This component always has to be given together with the component hashfunc. If both are
given, they are used to set up a hash table to store the points in the orbit. You have to use this if
the automatic mechanism to find a suitable hash function does not work for your starting point
in the orbit.

Note that if you use this feature, the hash table cannot grow automatically any more, unless you
also use the components hfbig and hfdbig as well. See the description of GrowHT (4.4.5) for
an explanation how to use this feature.

genstoapply
This is only used internally and is intentionally not documented.

gradingfunc
If this component is bound it must be bound to a function taking two arguments, the first is
the orbit object, the second is a new point. This function is called for every new point and
is supposed to compute a “grade” for the point which can be an arbitrary GAP object. The
resulting values are then stored in a list of equal length to the orbit and can later be queried
with the Grades (3.1.11) operation. If this feature is used the orbit object will lie in the filter
IsGradedOrbit (3.1.10). In connection with the onlygrades option the enumeration of an
orbit can be limited to points with certain grades, see below.

grpsizebound
Possible values for this component are positive integers. By setting this value one can help the
orbit enumeration to complete earlier. The given number must be an upper bound for the order
of the group. If the exact group order is given and the stabiliser is calculated during the orbit
enumeration (see component permgens), then the orbit enumeration can stop as soon as the
orbit is found completely and the stabiliser is complete, which is usually much earlier than after
all generator are applied to all points in the orbit.
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forflatplainlists
If this component is set to true then the user guarantees that all the points in the orbit will be
flat plain lists, that is, plain lists with no subobjects. For example lists of immediate integers
will fulfill this requirement, but ranges don’t. In this case, a particularly good and efficient
hash function will automatically be taken and the components hf, hfd, hfbig and hfdbig are
ignored. Note that this cannot be automatically detected because it depends not only on the first
point of the orbit but also on the other points in the orbit and thus on the group generators given.

hashfunc
This component always has to be given together with the eqfunc component (see also there).
The value should be a record with components func and data. The former is used as the hash
function (component hf in the options to HTCreate (4.3.1)) and the latter as data argument
(component hfd). The length of the hash is determined by the value of the component hashlen.
If a tree hash is to be used, the component treehashsize has to be used instead of hashlen. If
you want to use a hash table that can grow automatically, use the hfbig and htdbig components
together with hashlen for the initial size. See HTCreate (4.3.1) for details.

hashlen
Possible values are positive integers. This component determines the initial size of the hash
used for the orbit enumeration. The default value is 10000. If the hash table turns out not to be
large enough, it is automatically increased by a factor of two during the calculation. Although
this process is quite fast it still improves performance to give a sensible hash size in advance.

hfbig and hfdbig
These components can only be used in connection with eqfunc and hashfunc and are otherwise
ignored. There values are simply passed on to the hash table created. The idea is to still be able
to grow the hash table if need be. See Section 4.5 for more details.

treehashsize
This component indicates that instead of a normal hash table a tree hash table (TreeHashTab)
should be used (see Section 4.1). If bound, it must be set to the length of the tree hash table.
You should still choose this length big enough, however, this type of hash table should be more
resilient to bad hash functions since the performance of operations will only deteriorate up
to log(n) instead of to n (number of entries). If you use this option your hash keys must be
comparable by < and not only by =. You can supply your own three-way comparison function
(see HTCreate (4.3.1)) by using the cmpfunc component.

cmpfunc
If the previous component treehashsize is bound, you can specify a three-way comparison
function for the hash keys in this component. See HTCreate (4.3.1) and AVLCmp (8.2.2) for
details.

log If this component is set to true then a log of the enumeration of the orbit is written into the
components log, logind and logpos. Every time a new point is found in the orbit enumeration,
two numbers are appended to the log, first the number of the generator applied, then the index,
under which the new point is stored in the orbit. For each point in the orbit, the start of the entries
for that point in log is stored in logind and the end of those entries is marked by storing the
number of the last generator producing a new point negated.
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The purpose of a log is the following: With a log one can later add group generators to the orbit
and thus get a different Schreier tree, such that the resulting orbit enumeration is still a breadth
first enumeration using the new generating set! This is desirable to decrease the depth of the
Schreier tree. The log helps to implement this in a way, such that the old generators do not
again have to be applied to all the points in the orbit. See AddGeneratorsToOrbit (3.1.20) for
details.

A log needs roughly 3 machine words per point in the orbit as memory.

lookingfor
This component is used to search for something in the orbit. The idea is that the orbit enu-
meration is stopped when some condition is met. This condition can be specified with a great
flexibility. The first way is to store a list of points into orb.lookingfor. In that case the orbit
enumeration stops, when a point is found that is in that list. A second possiblity is to store a hash
table object into orb.lookingfor. Then every newly found point in the orbit is looked up in
that hash table and the orbit enumeration stops as soon as a point is found that is also in the hash
table. The third possibility is functional: You can store a GAP function into opt.lookingfor
which is called for every newly found point in the orbit. It gets both the orbit object and the
point as its two arguments. This function has to return false or true and in the latter case the
orbit enumeration is stopped.

Whenever the orbit enumeration is stopped the component found is set to the number of the
found point in the orbit. Access this information using PositionOfFound(orb).

matgens
This is not yet implemented. It will allow for stabiliser computations in matrix groups.

onlygrades
This option is to limit the orbit enumeration to points with certain grades (see option
gradingfunc). The primary way to do this is to bind onlygrades to a function taking two argu-
ments. The first is the grade value, the second is the value bound to the option onlygradesdata
below. The function is then called for every new point after its grade is computed. If the func-
tion returns true the point is stored in the orbit as usual, if it returns false the point is dropped.
Note that using this option can (and ought to) lead to incomplete orbits which claim to be closed.

As a shorthand notation one can bind a list or hash table to the component onlygrades. In
this case a standard membership test of the grade value in the list or hash table is performed to
decide whether or not the point is stored. One does not have to assign onlygradesdata in this
case.

onlygradesdata
As described above this component holds the data for the second argument of the onlygrades
test function. See option onlygrades above.

onlystab
If this boolean flag is set to true then the orbit enumeration stops once the stabiliser is com-
pletely determined. Note that this can only be known, if a bound for the group size is given in
the opt.grpsizebound option and when more than half of the orbit is already found, or when
opt.stabsizebound is given.
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orbsizebound
Possible values for this component are positive integers. The given number must be an upper
bound for the orbit length. Giving this number helps the orbit enumeration to stop earlier, when
the orbit is found completely.

orbitgraph
If this component is true then the so called orbit graph is computed. The vertices of this graph
are the points of the orbit and the (directed) edges are given by the generators acting. So if a
generator g maps point a to b then there is a directed edge from the vertex a to the vertex b. This
graph can later be queried using the OrbitGraph (3.1.12) and OrbitGraphAsSets (3.1.13)
operations. The data format in which the graph is returned is described there.

permbase
This component is used to tell the orbit enumerator that a certain list of points is a base of
the permutation representation given in the opt.permgens component. This information is
often available beforehand and can drastically speed up the calculation of Schreier generators,
especially for the common case that they are trivial. The value is just a list of integers.

permgens
If this component is set, it must be set to a list of permutations, that represent the same group
as the generators used to define the orbit. This permutation representation is then used to cal-
culate the stabiliser of the starting point. After the orbit enumeration is complete, you can
call Stabilizer(orb) with orb being the orbit object and get the stabiliser as a permutation
group. The stabiliser is also stored in the stab component of the orbit object. Furthermore, the
size of the stabiliser is stored in the stabsize component of the orbit object and the component
stabwords contains the stabiliser generators as words in the original group generators. Access
these words with StabWords(orb). Here, a word is a list of integers, where positive integers
are numbers of generators and a negative integer i indicates the inverse of the generator with
number −i. In this way, complete information about the stabiliser can be derived from the orbit
object.

report
Possible values are non-negative integers. This value asks for a status report whenever the orbit
enumeration has applied all generators to opt.report points. A value of 0, which is the default,
switches off this report. In each report, the total number of points already found are given.

schreier
This boolean flag decides, whether a Schreier tree is stored together with the orbit. A
Schreier tree just stores for each point, which generator was applied to which other point
in the orbit to get it. Thus, having the Schreier tree enables the usage of the operations
TraceSchreierTreeForward (3.1.16) and TraceSchreierTreeBack (3.1.17). A Schreier
tree needs two additional machine words of memory per point in the orbit. The opt.schreier
flag is automatically set when a stabiliser is computed during orbit enumeration (see components
opt.permgens and opt.matgens).

schreiergenaction
The value of this component must be a function with 4 arguments: the orbit object, an index i ,
an integer j , and an index pos . It is called, whenever during the orbit enumeration generator
number j was applied to point number i and the result was an already known point with number
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pos . The function has to return true or false. The former case is used internally and triggers
the evaluation of some conditions for stabiliser computations. Simply return false if you do
not want this to happen.

Once the component stabcomplete is set to true during the orbit computation (which happens
when there is evidence that the stabiliser is already completely determined), no more calls to
schreiergenaction happen.

This component is mainly used internally when the permgens component was set and the sta-
biliser is calculated.

seeds
In this component you can specify a list of additional seed points, which are appended to the
orbit before the enumeration starts.

stab
This component is used to tell the orbit enumerator that a subgroup of the stabiliser of the
starting point is already known. Store a subgroup of the group generated by the permutations in
opt.permgens stabilising the starting point into this component.

stabchainrandom
This value can be a positive integer between 1 and 1000. If opt.permgens is given, an integer
value is used to set the random option when calculating a stabiliser chain to compute the size of
the group generated by the Schreier generators. Although this size computation can be speeded
up considerably, the user should be aware that for values smaller than 1000 this triggers a Monte
Carlo algorithm that can produce wrong results with a certain error probability. A verification
of the obtained results is advisable. Note however, that such computations can only err in one
direction, namely underestimating the size of the group.

stabsizebound
Possible values for this component are positive integers. The given number must be an upper
bound for the size of the stabiliser. Giving this number helps the orbit enumeration to stop ear-
lier, when also opt.orbsizebound or opt.grpsizebound are given or when opt.onlystab
is set.

storenumbers
This boolean flag decides, whether the positions of points in the orbit are stored in the hash. The
memory requirement for this is one machine word (4 or 8 bytes depending on the architecture)
per point in the orbit. If you just need the orbit itself this is not necessary. If you however want
to find the position of a point in the orbit efficiently after enumeration, then you should switch
this on. That is, the operation \in is always fast, but Position(orb, point) is only fast if
opt.storenumbers was set to true or the orbit is “permutations acting on positive integers”.
In the latter case this flag is ignored.

For some examples using these options see Chapter 11.

3.1.5 Output components of orbits

The following components are bound in an orbit object. There might be some more, but those are
implementation specific and not guaranteed to be there in future versions. Note that you have to
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access these components using the “.~” dot exclamation mark notation and you should avoid using
these if at all possible.

depth and depthmarks
If the orbit has either a Schreier tree or a log, then the component depth holds its depth, that
is the maximal number of generator applications needed to reach any point in the orbit. The
corresponding component depthmarks is a list of indices, at position i it holds the index of the
first point in the orbit in depth i in the Schreier tree.

gens
The list of group generators.

ht If the orbit uses a hash table it is stored in this component.

op The operation function.

orbind
If generators have been added to the orbit later then the order in which the points are actually
stored in the orbit might not correspond to a breadth first search. To cover this case, the com-
ponent orbind contains in position i the index under which the i-th point in the breadth-first
search using the new generating set is actually stored in the orbit.

schreiergen and schreierpos
If a Schreier tree of the orbit was kept then both these components are lists containing inte-
gers. If point number i was found by applying generator number j to point number p then
position i of schreiergen is j and position i of schreierpos is p. You can use the opera-
tions TraceSchreierTreeForward (3.1.16) and TraceSchreierTreeBack (3.1.17) to com-
pute words in the generators using these two components.

tab For an orbit in which permutations act on positive integers this component is bound to a list
containing in position i the index in the orbit, where the number i is stored.

The following operations help to ask additional information about orbit objects:

3.1.6 StabWords (basic)

. StabWords(orb) (operation)

Returns: A list of words
If the stabiliser was computed during the orbit enumeration, then this function returns the stabiliser

generators found as words in the generators. A word is a sequence of integers, where positive integers
stand for generators and negative numbers for their inverses.

3.1.7 PositionOfFound

. PositionOfFound(orb) (operation)

Returns: An integer
If during the orbit enumeration the option lookingfor was used and the orbit enumerator looked

for something, then this operation returns the index in the orbit, where the something was found most
recently.
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3.1.8 UnderlyingPlist

. UnderlyingPlist(orb) (operation)

Returns: An plain list
This returns the current elements in the orbit represented by orb as a plain list. This is guaranteed

to be a very fast operation using only constant time. However, it does give you a part of the internal
data structure of orb . Note that it is not allowed to change the resulting list in any way because that
would corrupt the data structures of the orbit.

3.1.9 DepthOfSchreierTree

. DepthOfSchreierTree(orb) (operation)

Returns: An integer
If a Schreier tree or a log was stored during orbit enumeration, then this operation returns the depth

of the Schreier tree.

3.1.10 IsGradedOrbit

. IsGradedOrbit(orb) (filter)

Returns: true or false
If the option gradingfunc has been used when creating the orbit object, then a “grade” is com-

puted for every point in the orbit. In this case the orbit object lies in this filter. The list of grades can
then be queried using the Grades (3.1.11) operation below.

3.1.11 Grades

. Grades(orb) (operation)

Returns: a list of grades
If the option gradingfunc has been used when creating the orbit object, then a “grade” is com-

puted for every point in the orbit. This operation retrieves the list of grades from the orbit object orb .
Note that this is in general a mutable list which must not be changed. It needs to be mutable if the
orbit enumeration goes on and this operation does not copy it for efficiency reasons.

3.1.12 OrbitGraph

. OrbitGraph(orb) (operation)

Returns: a list of lists
The vertices of the orbit graph are the points of the orbit and the (directed) edges are given by the

generators acting. So if a generator g maps point a to b then there is a directed edge from the vertex a
to the vertex b. This operation returns the orbit graph can in the following format: The result is a list
of equal length as the orbit. Each entry (corresponding to a point in the orbit) contains a list of orbit
point numbers, one for each generator used for the orbit enumeration. That is, position [i][ j] in the list
contains the number in the orbit of the image of orbit point number i under the generator with number
j.

Note that if the gradingfunc and onlygrades options are used some entries in these lists can be
unbound. This shows that some edges of the complete orbit graph leave the part of the orbit which has
been enumerated by the grade restriction.
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3.1.13 OrbitGraphAsSets

. OrbitGraphAsSets(orb) (operation)

Returns: a list of sets
This operation returns the same graph as OrbitGraph (3.1.12) in a slightly different format. The

neighbours of a point are reported as a set of numbers rather than as a tuple. That is, position [i] of the
resulting lists is the set of numbers of the (directed) neighbours of point number i.

We present a few more operations one can do with orbit objects. One can express the action of a
given group element in the group generated by the generators given in the Orb command on this orbit
as a permutation:

3.1.14 ActionOnOrbit

. ActionOnOrbit(orb, grpels) (operation)

Returns: A permutation or fail
orb must be an orbit object and grpels a list of group elements acting on the orbit. This operation

calculates the action of grpels on orb as GAP permutations, where the numbering of the points is
in the same order as the points have been found in the orbit. Note that this operation is particularly
fast if the orbit is an orbit of a permutation group acting on positive integers or if you used the option
storenumbers described in Subsection 3.1.4.

3.1.15 OrbActionHomomorphism

. OrbActionHomomorphism(g, orb) (operation)

Returns: An action homomorphism
The argument g must be a group and orb an orbit on which g acts in the action of the orbit object.

This operation returns a homomorphism into a permutation group acquired by taking the action of g
on the orbit.

3.1.16 TraceSchreierTreeForward

. TraceSchreierTreeForward(orb, nr) (operation)

Returns: A word in the generators
orb must be an orbit object with a Schreier tree, that is, the option schreier must have been set

during creation, and nr must be the number of a point in the orbit. This operation traces the Schreier
tree and returns a word in the generators that maps the starting point to the point with number nr .
Here, a word is a list of positive integers which are numbers of generators of the orbit.

3.1.17 TraceSchreierTreeBack

. TraceSchreierTreeBack(orb, nr) (operation)

Returns: A word in the generators
orb must be an orbit object with a Schreier tree, that is, the option schreier must have been set

during creation, and nr must be the number of a point in the orbit. This operation traces the Schreier
tree and returns a word in the inverses of the generators that maps the point with number nr to the
starting point. As above, a word is here a list of positive integers which are numbers of inverses of the
generators of the orbit.



orb 18

3.1.18 ActWithWord

. ActWithWord(gens, w, op, p) (operation)

Returns: A point
gens must be a list of group generators, w a list of positive integers less than or equal to the length

of gens , op an action function and p a point. This operation computes the action of the word w in the
generators gens on the point p and returns the result.

3.1.19 EvaluateWord

. EvaluateWord(gens, w) (operation)

Returns: A group element
gens must be a list of group generators, w a list of positive integers less than or equal to the length

of gens . This operation evaluates the word w in the generators gens and returns the result.

3.1.20 AddGeneratorsToOrbit

. AddGeneratorsToOrbit(orb, l[, p]) (operation)

Returns: The orbit object orb
orb must be an orbit object, l a list of new generators and, if given, p must be a list of permu-

tations of equal length. p must be given if and only if the component permgens was specified upon
creation of the orbit object. The new generators are appended to the old list of generators. The orbit
object is changed such that it then shows the outcome of a breadth-first orbit enumeration with the
new list of generators. Note that the order of the points already enumerated will not be changed. How-
ever, the Schreier tree changes, the component orbind is changed to indicate the order in which the
points were found in the breadth-first search with the new generators and the components depth and
depthmarks are changed.

Note that all this is particularly efficient if the orbit has a log. If you add generators to an orbit
with log, the old generators do not have to be applied again to all points!

Note that new generators can actually enlarge an orbit if they generate a larger group than the old
ones alone. Note also that when adding generators, the orbit is automatically enumerated completely

3.1.21 MakeSchreierTreeShallow

. MakeSchreierTreeShallow(orb[, d]) (operation)

Returns: nothing
The argument orb must be a closed orbit object with a log and a Schreier tree, that is, the options

log and schreier must have been set to true during creation.
Uses AddGeneratorsToOrbit (3.1.20) to add more generators to the orbit in order to make the

Schreier tree shallower. If d it is given, generators are added until the depth is less than or equal to d
or until three more generators did not reduce the depth any more. If d is not given, then the logarithm
to base 2 of the orbit length is taken as a default value.

3.1.22 FindSuborbits

. FindSuborbits(orb, subgens[, nrsuborbits]) (operation)

Returns: A record
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The argument orb must be a closed orbit object with a Schreier vector, subgens a list of gener-
ators for a subgroup of the originally acting group. If given, nrsuborbits must be a lower limit for
the number of suborbits.

The returned record describes the suborbit structure of orb with respect to the group generated
by subgens using the following components: issuborbitrecord is bound to true, o is bound to
orb , nrsuborbits is bound to the number of suborbits and reps is a list of length nrsuborbits
containing the index in the orbit of a representative for each suborbit. Likewise, words contains
words in the original group generators of the orbit that map the starting point of the orbit to those
representatives. lens is a list containing the lengths of the suborbits. The component suborbs is
bound to a list of lists, one for each suborbit containing the indices of the points in the orbit. The
component suborbnr is a list with the same length as the orbit, containing in position i the number of
the suborbit in which point i in the orbit is contained.

Finally, the component conjsuborbit is bound to a list of length nrsuborbits, containing for
each suborbit the number the suborbit reached from the starting point by the inverse of the word used
to reach the orbit representative. This latter information probably only makes sense when the subgroup
generated by subgens is contained in the point stabiliser of the starting point of the orbit, because then
this is the so-called conjugate suborbit of a suborbit.

3.1.23 OrbitIntersectionMatrix

. OrbitIntersectionMatrix(r, g) (operation)

Returns: An integer matrix
The argument r must be a suborbit record as returned by the operation FindSuborbits (3.1.22)

above, describing the suborbit structure of an orbit with respect to a subgroup. g must be an element
of the acting group. If k is the number of suborbits and the suborbits are O1, . . . ,Ok, then the matrix
returned by this operation has the integer |Oi ·g ∩O j| in its (i, j)-entry.

3.1.24 ORB_EstimateOrbitSize

. ORB_EstimateOrbitSize(gens, pt, op, L, limit, timeout) (function)

Returns: fail or a record
The argument gens is a list of group generators for a group G, the argument pt a point and op

and action function for a group action of G acting on points like pt . This function starts to act with
random elements of G on pt producing random elements of the orbit pt ∗G and uses the birthday
paradox to estimate the orbit size. To this end it creates points of the orbit until L coincidences (points
found twice) have been found. If before this happens limit tries have been reached or if more than
timeout milliseconds have ellapsed, the function gives up and returns fail. Otherwise it estimates
the orbit size giving an estimate in the component estimate, a confidence interval described by the
components lowerbound and upperbound, a list of generators for the stabiliser in the component
Sgens and the number of coincidences that were caused by picking the same group element. The
length of Sgens is L−grpcoinc. Use at least 15 for L , otherwise the statistics are not valid.
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Hashing techniques

4.1 The idea of hashing

If one wants to store a certain set of similar objects and wants to quickly access a given one (or come
back with the result that it is unknown), the first idea would be to store them in a list, possibly sorted
for faster access. This however still would need log(n) comparisons to find a given element or to
decide that it is not yet stored.

Therefore one uses a much bigger array and uses a function on the space of possible objects with
integer values to decide, where in the array to store a certain object. If this so called hash function
distributes the actually stored objects well enough over the array, the access time is constant in average.
Of course, a hash function will usually not be injective, so one needs a strategy what to do in case of
a so-called “collision”, that is, if more than one object with the same hash value has to be stored. This
package provides two ways to deal with collisions, one is implemented in the so called “HashTabs”
and another in the “TreeHashTabs”. The former simply uses other parts of the array to store the data
involved in the collisions and the latter uses an AVL tree (see Chapter 8) to store all data objects with
the same hash value. Both are used basically in the same way but sometimes behave a bit differently.

The basic functions to work with hash tables are HTCreate (4.3.1), HTAdd (4.3.2), HTValue
(4.3.3), HTDelete (4.3.5) and HTUpdate (4.3.4). They are described in Section 4.3.

The legacy functions from older versions of this package to work with hash tables are NewHT
(4.4.1), AddHT (4.4.2), and ValueHT (4.4.3). They are described in Section 4.4. In the next section,
we first describe the infrastructure for hash functions.

4.2 Hash functions

In the orb package hash functions are chosen automatically by giving a sample object together with
the length of the hash table. This is done with the following operation:

4.2.1 ChooseHashFunction

. ChooseHashFunction(ob, len) (operation)

Returns: a record
The first argument ob must be a sample object, that is, an object like those we want to store in

the hash table later on. The argument len is an integer that gives the length of the hash table. Note
that this might be called later on automatically, when a hash table is increased in size. The operation

20
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returns a record with two components. The component func is a GAP function taking two arguments,
see below. The component data is some GAP object. Later on, the hash function will be called with
two arguments, the first is the object for which it should call the hash value and the second argument
must be the data stored in the data component.

The hash function has to return values between 1 and the hash length len inclusively.
This setup is chosen such that the hash functions can be global objects that are not created during

the execution of ChooseHashFunction but still can change their behaviour depending on the data.
In the following we just document, for which types of objects there are hash functions that can be

found using ChooseHashFunction (4.2.1).

4.2.2 ChooseHashFunction (gf2vec)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for compressed vectors over the field GF(2) of two elements. Note that there is

no hash function for non-compressed vectors over GF(2) because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for vectors of the same length.

4.2.3 ChooseHashFunction (8bitvec)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for compressed vectors over a finite field with up to 256 elements. Note that

there is no hash function for non-compressed such vectors because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for vectors of the same length.

4.2.4 ChooseHashFunction (gf2mat)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for compressed matrices over the field GF(2) of two elements. Note that there is

no hash function for non-compressed matrices over GF(2) because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for matrices of the same size.

4.2.5 ChooseHashFunction (8bitmat)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for compressed matrices over a finite field with up to 256 elements. Note that

there is no hash function for non-compressed such vectors because those objects cannot efficiently be
recognised from their type.

Note that you can only use the resulting hash functions for matrices of the same size.
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4.2.6 ChooseHashFunction (int)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for integers.

4.2.7 ChooseHashFunction (perm)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for permutations.

4.2.8 ChooseHashFunction (intlist)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for lists of integers.

4.2.9 ChooseHashFunction (NBitsPcWord)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for kernel Pc words.

4.2.10 ChooseHashFunction (IntLists)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for lists of integers.

4.2.11 ChooseHashFunction (MatLists)

. ChooseHashFunction(ob, len) (method)

Returns: a record
This method is for lists of matrices.

4.3 Using hash tables

4.3.1 HTCreate

. HTCreate(sample[, opt]) (operation)

Returns: a new hash table object
A new hash table for objects like sample is created. The second argument opt is an optional

options record, which will supplied in most cases, if only to specify the length and type of the hash
table to be used. The following components in this record can be bound:

treehashsize
If this component is bound the type of the hash table is a TreeHashTab. The value must be a
positive integer and will be the size of the hash table. Note that for this type of hash table the
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keys to be stored in the hash must be comparable using <. A three-way comparison function
can be supplied using the component cmpfunc (see below).

treehashtab
If this component is bound the type of the hash table is a TreeHashTab. This option is superflu-
ous if treehashsize is used.

forflatplainlists
If this component is set to true then the user guarantees that all the elements in the hash will
be flat plain lists, that is, plain lists with no subobjects. For example lists of immediate integers
will fulfill this requirement, but ranges don’t. In this case, a particularly good and efficient
hash function will automatically be taken and the components hashfunc, hfbig and hfdbig
are ignored. Note that this cannot be automatically detected because it depends not only on the
sample point but also potentially on all the other points to be stored in the hash table.

hf and hfd
If these components are bound, they are used as the hash function. The value of hf must be
a function taking two arguments, the first being the object for which the hash function shall
be computed and the second being the value of hfd. The returned value must be an integer
in the range from 1 to the length of the hash. If either of these components is not bound, an
automatic choice for the hash function is done using ChooseHashFunction (4.2.1) and the
supplied sample object sample .

Note that if you specify these two components and are using a HashTab table then this table
cannot grow unless you also bind the components hfbig, hfdbig and cangrow.

cmpfunc
This component can be bound to a three-way comparison function taking two arguments a and
b (which will be keys for the TreeHashTab) and returns −1 if a < b , 0 if a = b and 1 if a > b .
If this component is not bound the function AVLCmp (8.2.2) is taken, which simply calls the
generic operations < and = to do the job.

hashlen
If this component is bound the type of the hash table is a standard HashTab table. That is, col-
lisions are dealt with by storing additional entries in other slots. This is the traditional way to
implement a hash table. Note that currently deleting entries in such a hash table is not imple-
mented, since it could only be done by leaving a “deleted” mark which could pollute that hash
table. Use TreeHashTabs instead if you need deletion. The value bound to hashlen must be a
positive integer and will be the initial length of the hash table.

Note that it is a good idea to choose a prime number as the hash length due to the algorithm
for collision handling which works particularly well in that case. The hash function is chosen
automatically.

hashtab
If this component is bound the type of the hash table is a standard HashTab table. This compo-
nent is superfluous if hashlen is bound.

eqf For HashTab tables the function taking two arguments bound to this component is used to com-
pare keys in the hash table. If this component is not bound the usual = operation is taken.
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hfbig and hfdbig and cangrow
If you have used the components hf and hfd then your hash table cannot automatically grow
when it fills up. This is because the length of the table is built into the hash function. If you
still want your hash table to be able to grow automatically, then bind a hash function returning
arbitrary integers to hfbig, the corresponding data for the second argument to hfdbig and bind
cangrow to true. Then the hash table will automatically grow and take this new hash function
modulo the new length of the hash table as hash function.

4.3.2 HTAdd

. HTAdd(ht, key, value) (operation)

Returns: a hash value
Stores the object key into the hash table ht and stores the value val together with ob . The result

is fail if an error occurred, which can be that an object equal to key is already stored in the hash table
or that the hash table is already full. The latter can only happen, if the hash table is no TreeHashTab
and cannot grow automatically.

If no error occurs, the result is an integer indicating the place in the hash table where the object is
stored. Note that once the hash table grows automatically this number is no longer the same!

If the value val is true for all objects in the hash, no extra memory is used for the values. All
other values are stored in the hash. The value fail cannot be stored as it indicates that the object is
not found in the hash.

See Section 4.5 for details on the data structures and especially about memory requirements.

4.3.3 HTValue

. HTValue(ht, key) (operation)

Returns: fail or true or a value
Looks up the object key in the hash table ht . If the object is not found, fail is returned. Other-

wise, the value stored with the object is returned. Note that if this value was true no extra memory is
used for this.

4.3.4 HTUpdate

. HTUpdate(ht, key, value) (operation)

Returns: fail or true or a value
The object key must already be stored in the hash table ht , otherwise this operation returns

fail. The value stored with key in the hash is replaced by value and the previously stored value is
returned.

4.3.5 HTDelete

. HTDelete(ht, key) (operation)

Returns: fail or true or a value
The object key along with its stored value is removed from the hash table ht . Note that this

currently only works for TreeHashTabs and not for HashTab tables. It is an error if key is not found
in the hash table and fail is returned in this case.
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4.3.6 HTGrow

. HTGrow(ht, ob) (function)

Returns: nothing
This is a more or less internal operation. It is called when the space in a hash table becomes scarce.

The first argument ht must be a hash table object, the second a sample point. The function increases
the hash size by a factor of 2. This makes it necessary to choose a new hash function. Usually this
is done with the usual ChooseHashFunction method. However, one can bind the two components
hfbig and hfdbig in the options record of HTCreate (4.3.1) to a function and a record respectively
and bind cangrow to true. In that case, upon growing the hash, a new hash function is created by
taking the function hfbig together with hfdbig as second data argument and reducing the resulting
integer modulo the hash length. In this way one can specify a hash function suitable for all hash sizes
by simply producing big enough hash values.

4.4 Using hash tables (legacy code)

Note that the functions described in this section are obsolete since version 3.0 of orb and are only kept
for backward compatibility. Please use the functions in Section 4.3 in new code.

The following functions are needed to use hash tables. For details about the data structures see
Section 4.5.

4.4.1 NewHT

. NewHT(sample, len) (function)

Returns: a new hash table object
A new hash table for objects like sample of length len is created. Note that it is a good idea to

choose a prime number as the hash length due to the algorithm for collision handling which works
particularly well in that case. The hash function is chosen automatically. The resulting object can be
used with the functions AddHT (4.4.2) and ValueHT (4.4.3). It will start with length len but will grow
as necessary.

4.4.2 AddHT

. AddHT(ht, ob, val) (function)

Returns: an integer or fail
Stores the object ob into the hash table ht and stores the value val together with ob . The result is

fail if an error occurred, which can only be that the hash table is already full. This can only happen,
if the hash table cannot grow automatically.

If no error occurs, the result is an integer indicating the place in the hash table where the object is
stored. Note that once the hash table grows automatically this number is no longer the same!

If the value val is true for all objects in the hash, no extra memory is used for the values. All
other values are stored in the hash. The value fail cannot be stored as it indicates that the object is
not found in the hash.

See Section 4.5 for details on the data structures and especially about memory requirements.
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4.4.3 ValueHT

. ValueHT(ht, ob) (function)

Returns: the stored value, true, or fail
Looks up the object ob in the hash table ht . If the object is not found, fail is returned. Otherwise,

the value stored with the object is returned. Note that if this value was true no extra memory is used
for this.

The following function is only documented for the sake of completeness and for emergency situ-
ations, where NewHT (4.4.1) tries to be too intelligent.

4.4.4 InitHT

. InitHT(len, hfun, eqfun) (function)

Returns: a new hash table object
This is usually only an internal function. It is called from NewHT (4.4.1). The argument len is

the length of the hash table, hfun is the hash function record as returned by ChooseHashFunction
(4.2.1) and eqfun is a comparison function taking two arguments and returning true or false.

Note that automatic growing is switched on for the new hash table which means that if the hash
table grows, a new hash function is chosen using ChooseHashFunction (4.2.1). If you do not want
this, change the component cangrow to false after creating the hash table.

4.4.5 GrowHT

. GrowHT(ht, ob) (function)

Returns: nothing
This is a more or less internal function. It is called when the space in a hash table becomes

scarce. The first argument ht must be a hash table object, the second a sample point. The function
increases the hash size by a factor of 2 for hash tables and 20 for tree hash tables. This makes it
necessary to choose a new hash function. Usually this is done with the usual ChooseHashFunction
method. However, one can assign the two components hfbig and hfdbig to a function and a record
respectively. In that case, upon growing the hash, a new hash function is created by taking the function
hfbig together with hfdbig as second data argument and reducing the resulting integer modulo the
hash length. In this way one can specify a hash function suitable for all hash sizes by simply producing
big enough hash values.

4.5 The data structures for hash tables

A legacy hash table object is just a record with the following components:

els A GAP list storing the elements. Its length can be as long as the component len indicates but
will only grow as necessary when elements are stored in the hash.

vals
A GAP list storing the corresponding values. If a value is true nothing is stored here to save
memory.

len Length of the hash table.

nr Number of elements stored in the hash table.
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hf The hash function (value of the func component in the record returned by
ChooseHashFunction (4.2.1)).

hfd The data for the second argument of the hash function (value of the data component in the
record returned by ChooseHashFunction (4.2.1)).

eqf A comparison function taking two arguments and returning true for equality or false other-
wise.

collisions
Number of collisions (see below).

accesses
Number of lookup or store accesses to the hash.

cangrow
A boolean value indicating whether the hash can grow automatically or not.

ishash
Is true to indicate that this is a hash table record.

hfbig and hfdbig
Used for hash tables which need to be able to grow but where the user supplied the hash function.
See Section HTCreate (4.3.1) for more details.

A new style HashTab objects are component objects with the same components except that there is no
component ishash since these objects are recognised by their type.

A TreeHashTab is very similar. It is a positional object with basically the same components,
except that eqf is replaced by the three-way comparison function cmpfunc. Since TreeHashTabs
do not grow, the components hfbig, hfdbig and cangrow are never bound. Each slot in the els
component is either unbound (empty), or bound to the only key stored in the hash which has this hash
value or, if there is more than one key for that hash value, the slot is bound to an AVL tree containing
all such keys (and values).

4.5.1 Memory requirements

Due to the data structure defined above the hash table will need one machine word (4 bytes on 32bit
machines and 8 bytes on 64bit machines) per possible entry in the hash if all values corresponding
to objects in the hash are true and two machine words otherwise. This means that the memory
requirement for the hash itself is proportional to the hash table length and not to the number of objects
actually stored in the hash!

In addition one of course needs the memory to store the objects themselves.
For TreeHashTabs there are additional memory requirements. As soon as there are more than one

key hashing to the same value, the memory for an AVL tree object is needed in addition. An AVL tree
objects needs about 10 machine words for the tree object and then another 4 machine words for each
entry stored in the tree. Note that for many collisions this can be significantly more than for HashTab
tables. However, the advantage of TreeHashTabs is that even for a bad hash function the performance
is never worse than log(n) for each operation where n is the number of keys in the hash with the same
hash value.
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4.5.2 Handling of collisions

This section is only relevant for HashTab objects.
If two or more objects have the same hash value, the following is done: If the hash value is coprime

to the hash length, the hash value is taken as “the increment”, otherwise 1 is taken. The code to find
the proper place for an object just repeatedly adds the increment to the current position modulo the
hash length. Due to the choice of the increment this will eventually try all places in the hash table.
Every such increment step is counted as a collision in the collisions component in the hash table.
This algorithm explains why it is sensible to choose a prime number as the length of a hash table.

4.5.3 Efficiency

Hashing is efficient as long as there are not too many collisions. It is not a problem if the number of
collisions (counted in the collisions component) is smaller than the number of accesses (counted
in the accesses component).

A high number of collisions can be caused by a bad hash function, because the hash table is too
small (do not fill a hash table to more than about 80%), or because the objects to store are just not well
enough distributed. Hash tables will grow automatically if too many collisions are detected or if they
are filled to 80%.

The advantage of TreeHashTabs is that even for a bad hash function the performance is never
worse than log(n) for each operation where n is the number of keys in the hash with the same hash
value. However, they need a bit more memory.
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Caching techniques

5.1 The idea of caching

If one wants to work with a large number of large objects which require some time to prepare and
one does not know beforehand, how often one will need each one, it makes sense to work with some
sort of cache. A cache is a data structure to keep some of the objects already produced but not too
many of them to waste a lot of memory. That is, objects which have not been used for some time
can automatically be removed from the cache, whereas the objects which are used more frequently
stay in the cache. This chapter describes an implementation of this idea used in the orbit-by-suborbit
algorithms.

5.2 Using caches

A cache is created using the following operation:

5.2.1 LinkedListCache

. LinkedListCache(memorylimit) (operation)

Returns: A new cache object
This operation creates a new linked list cache that uses at most memorylimit bytes to store its

entries. The cache is organised as a linked list, newly cached objects are appended at the beginning
of the list, when the used memory grows over the limit, old objects are removed at the end of this list
automatically.

New objects are entered into the hash with the following function:

5.2.2 CacheObject

. CacheObject(c, ob, mem) (operation)

Returns: A new node in the linked list cache
This operation enters the object ob into the cache c . The argument mem is an integer with the

memory usage of the object ob . The object is prepended to the linked list cache and enough objects
at the end are removed to enforce the memory usage limit.
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5.2.3 ClearCache

. ClearCache(c) (operation)

Returns: Nothing
Completely clears the cache c removing all nodes.
A linked list cache is used as follows: Whenever you compute one of the objects you store it in

the cache using CacheObject (5.2.2) and retain the linked list node that is returned. The usual place
to retain it would be in a weak pointer object, such that this reference does not prevent the object to be
garbage collected. When you next need this object, you check its corresponding position in the weak
pointer object, if the reference is still there, you just use it and tell the cache that it was used again by
calling UseCacheObject (5.2.4), otherwise you create it anew and store it in the cache again.

As long as the object stays in the cache it is not garbage collected and the weak pointer object
will still have its reference. As soon as the object is thrown out of the cache, the only reference to its
node is the weak pointer object, thus if a garbage collection happens, it can be garbage collected. Note
that before that garbage collection happens, the object might still be accessible via the weak pointer
object. In this way, the available main memory in the workspace is used very efficiently and can be
freed immediately when needed.

5.2.4 UseCacheObject

. UseCacheObject(c, r) (operation)

Returns: Nothing
The argument c must be a cache object and r a node for such a cache. The object is either moved

to the front of the linked list (if it is still in the cache) or it is re-cached. If necessary, objects at the end
are removed from the cache to enforce the memory usage limit.
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Random elements

In this chapter we describe some fundamental mechanisms to produce (pseudo-) random elements that
are used later in Chapter 7 about searching in groups and orbits.

6.1 Randomizing mutable objects

For certain types of mutable objects one can get a “random one” by calling the following operation:

6.1.1 Randomize

. Randomize(ob[, rs]) (operation)

Returns: nothing
The mutable object ob is changed in place. The value afterwards is random. The optional second

argument rs must be a random source and the random numbers used to randomize ob are created
using the random source rs (see (Reference: Random Sources)). If rs is not given, then the global
GAP random number generator is used.

Currently, there are Randomize methods for compressed vectors and compressed matrices over
finite fields. See also the cvec package for methods for cvecs and cmats.

For vectors and one-dimensional subspaces there are two special functions to create a list of ran-
dom objects:

6.1.2 MakeRandomVectors

. MakeRandomVectors(sample, number[, rs]) (function)

Returns: a list of random vectors
sample must be a vector for the mutable copies of which Randomize (6.1.1) is applicable and

number must be a positive integer. If given, rs must be a random source. This function creates a list
of number random vectors with the same type as sample using Randomize (6.1.1). For the creation
of random numbers the random source rs is used or, if not given, the global GAP random number
generator.

6.1.3 MakeRandomLines

. MakeRandomLines(sample, number[, rs]) (function)

Returns: a list of normalised random vectors

31



orb 32

sample must be a vector for the mutable copies of which Randomize (6.1.1) is applicable and
number must be a positive integer. If given, rs must be a random source. This function creates a
list of number normalised random vectors with the same type as sample using Randomize (6.1.1).
“Normalised” here means that the first non-zero entry in the vector is equal to 1. For the creation
of random numbers the random source rs is used or, if not given, the global GAP random number
generator.

6.2 Product replacement

For computations in finite groups product replacement algorithms are a viable method of generating
pseudo-random elements. This section describes a framework and an object type to provide these
algorithms. Roughly speaking a “product replacer object” is something that is created with a list
of group generators and produces a sequence of pseudo random group elements using some random
source for random numbers.

6.2.1 ProductReplacer

. ProductReplacer(gens[, opt]) (operation)

Returns: a new product replacer object
gens must be a list of group generators. If given, opt is a GAP record with options. The operation

creates a new product replacer object producing pseudo random elements in the group generated by
the generators gens .

The exact algorithm used is explained below after the description of the options.
The following components in the options record have a defined meaning:

randomsource
A random source object that is used to generate the random numbers used. If none is specified
the global GAP random number generator is used.

scramble
The scramble value in the algorithm described below can be set using this option. The default
value is 30.

scramblefactor
The scramblefactor value in the algorithm described below can be set using this option. The
default value is 4.

addslots
The addslots value in the algorithm described below can be set using this option. The default
value is 5.

maxdepth
If maxdepth is set, then the production of pseudo random elements starts all over whenever
maxdepth product replacements have been performed. The rationale behind this is that the
elements created should be evenly distributed but that the expressions in the generators should
not be too long. A good compromise is usually to set maxdepth to 300 or 400.
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noaccu
Without this option set to true the “rattle” version of product replacement is used which in-
volves an accumulator and uses two or three products per random element. To use the “shake”
version with only one or two product replacement per random element set this component to
true. The exact number of multiplications per random element also depends on the value of
the accelerator component.

normalin
There is a variant of the product replacement algorithm that produces elements in the normal
closure of the group generated by a list of elements. It needs random elements in the ambient
group in which the normal closure is defined. This is implemented here by setting the normalin
component to a product replacer object working in the ambient group. In every step two ele-
ments a and b are picked and then a is either replaced by a∗bc or bc ∗a (with equal probability),
where c is a random element from the ambient group produced by the product replacer in the
normalin component. It is recommended to switch off the accumulator and accelerator in the
product replacer object for the ambient group. Then to produce one random element in the
normal closure needs four multiplications.

accelerator
If this option is set to true (which is the default), then the accelerator is used. This means that in
each step two product replacement steps are performed, where both involve one distinguished
slot called the “captain”. The idea is that the current “team” of random elements uses one
amongst them more often to increase the length of the words produced. See below for details of
the algorithm with and without accelerator.

retirecaptain
If this component is bound to a positive integer then the captain retires after so many steps of
the algorithm. This is to use only two multiplications for each random element in the long run
after proper mixing. The default value for retirecaptain is twice the scrambling time.

accus
This component (default is 5) is the number of accumulators to use in the rattle variant. All
accus are used in a round robin fashion. The purpose of multiple accus is to have a greater
stochastical independence of adjacent random elements in the sequence.

The algorithm used does the following: A list of Length(gens)+addslots elements is created that
starts with the elements gens and is filled up with random generators from gens . This element is
called the “team”. A product replacement without accelerator randomly chooses two elements in the
list and replaces one of them by the product of the two. If an accelerator is used, then one product
replacement step randomly chooses two slots i and j where i, j > 1 but i = j is possible. Then first l[1]
is replaced by l[1]∗ l[i] and after that l[ j] is replaced by l[ j]∗ l[1]. The first team member is called the
“captain”, so the captain is involved in every product replacement.

One step in the algorithm is to do one product replacement followed by post-multiplying the result
to the accumulator if one (or more) is used. Multiple accus (see the accus component) are used in a
round robin fashion.

First Maximum(Length(gens)*scramblefactor,scramble) steps are performed. After this
initialisation for every random element requested one step is done and the resulting element returned.
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6.2.2 Next

. Next(pr) (operation)

Returns: a (pseudo-) random group element g
pr must be a product replacer object. This operation makes the object generate the next random

element and return it.

6.2.3 Reset

. Reset(pr) (operation)

Returns: nothing
pr must be a product replacer object. This operation resets the object in the sense that it resets the

product replacement back to the state it had after scrambling. Note that since the random source is not
reset, the product replacer object will return another sequence of random elements than before.

6.2.4 AddGeneratorToProductReplacer

. AddGeneratorToProductReplacer(pr, el) (operation)

Returns: nothing
pr must be a product replacer object. This operation adds the new generator el to the product

replacer without needing a completely new initialisation phase. From after this call on the product
replacer will generate random elements in the group generated by the old generators and the new
element el .
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Searching in groups and orbits

7.1 Searching using orbit enumeration

As described in Subsection 3.1.4 the standard orbit enumeration routines can perform search opera-
tions during orbit enumeration. If one is looking for a shortest word in the generators of a group to
express a group element with a certain property, then this natural breadth-first search can be used, for
example by letting the group act on its own elements, either by multiplication or by conjugation.

All technical instructions to do this are already given in Subsection 3.1.4, so we are content to
provide an example here. Assume you want to find the shortest way to express some 7-cycle in the
symmetric group S10 as a product of generators a :=(1,2,3,4,5,6,7,8,9,10) and b :=(1,2). Then
you could do this in the following way:

Example
gap> gens := [(1,2,3,4,5,6,7,8,9,10),(1,2)];
[ (1,2,3,4,5,6,7,8,9,10), (1,2) ]
gap> o := Orb(gens,(),OnRight,rec( report := 2000,
> lookingfor :=
> function(o,x) return NrMovedPoints(x) = 7 and Order(x)=7; end,
> schreier := true ));
<open orbit, 1 points with Schreier tree looking for sth.>
gap> Enumerate(o);
<open orbit, 614 points with Schreier tree looking for sth.>
gap> w := TraceSchreierTreeForward(o,PositionOfFound(o));
[ 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2 ]
gap> ActWithWord(o!.gens,w,o!.op,o[1]);
(1,10,9,8,7,6,5)
gap> o[PositionOfFound(o)] = ActWithWord(o!.gens,w,o!.op,o[1]);
true
gap> EvaluateWord(o!.gens,w);
(1,10,9,8,7,6,5)

The result shows that a6 · (a ·b)3 is a 7-cycle and that there is no word in a and b with fewer than 12
letters expressing a 7-cycle.

Note that we can go on with the above orbit enumeration to find further words to express 7-cycles.
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7.2 Random searches in groups

Another possibility to look for elements in a group satisfying certain properties is to look at random
elements, usually obtained by doing product replacement (see Section 6.2). Although this can lead
to very long expressions as words in the generators, one can cope with this problem by using the
maxdepth option of the product replacer objects, which just reinitialises the product replacement table
after a certain number of product replacements has been performed. To organise all this conveniently,
there is the concept of “random searcher objects” described here.

7.2.1 RandomSearcher

. RandomSearcher(gens, testfunc[, opt]) (operation)

Returns: a random searcher object
gens must be a list of group generators, testfunc a function taking as argument one group

element and returning true or false. opt is an optional options record. For possible options see
below.

At first, the random searcher object is just initialised but no random searching is performed. The
actual search is triggered by the Search (7.2.2) operation (see below). The idea of random searcher
objects is that a product replacer object is created and during a search random elements are produced
using this product replacer object, and for each group element produced the function testfunc is
called. If this function returns true, the search stops and the group element found is returned.

The following options can be bound in the options record opt :

exceptions
This component can be a list to initialise the exception list in the random searcher object. Group
elements in this list are not considered as successful searches. This list is also used to continue
search operations to found more suitable group elements as every group element considered
“found” is added to that list before returning it. Thus every element will only be found once.

maxdepth
Sets the maxdepth option of the created product replacer object. This limits the length of the
expression as product of the generators of the found group elements.

addslots
Sets the addslots option of the created product replacer object.

scramble
If this component is bound at all, then the created product replacer object is created with
options scramble=100 and scramblefactor=10 (the default values), otherwise the op-
tions scramble=0 and scramblefactor=0 are used, leading to no scrambling at all. See
ProductReplacer (6.2.1) for details on the product replacement algorithm.

Note that of course the generators in gens may have memory. However, the function testfunc is
called with the group element with memory stripped off.

7.2.2 Search

. Search(rs) (operation)

Returns: a group element
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Runs the search with the random searcher object rs and returns with the first group element
found.

7.3 The dihedral trick and applications

With the “dihedral” trick we mean the following: Two involutions a and b in a group always generate
a dihedral group. Thus, to find a pseudo-random element in the centraliser of an involution a, we can
proceed as follows: Create a pseudo-random element c, then b := ac is another involution. If then ab
has order 2o, we can use (ab)o. Otherwise, if the order of ab is 2o−1, then (ab)o · c−1 centralises a.

This trick allows to efficiently produce elements in the centraliser of an involution and thus, with
high probability, generators for the full centraliser.

There are the following functions:

7.3.1 FindInvolution

. FindInvolution(pr) (function)

Returns: an involution
pr must be a product replacer object (see Section 6.2). Searches an involution by finding a random

element of even order and powering up. Returns the involution.

7.3.2 FindCentralisingElementOfInvolution

. FindCentralisingElementOfInvolution(pr, a) (function)

Returns: a group element
pr must be a product replacer object (see Section 6.2). Produces one random element and builds

an element the centralises the involution a using the dihedral trick described above.

7.3.3 FindInvolutionCentralizer

. FindInvolutionCentralizer(pr, a, nr) (function)

Returns: a list of nr group elements
pr must be a product replacer object (see Section 6.2) and a and involution. This function uses

FindCentralisingElementOfInvolution (7.3.2) nr times to produce an element centralising the
involution a and returns the list of results.

7.4 Orbit statistics on vector spaces

The following two functions are tools to get a rough and quick estimate about the average orbit length
of a group acting on a vector space.

7.4.1 OrbitStatisticOnVectorSpace

. OrbitStatisticOnVectorSpace(gens, size, ti) (function)

Returns: nothing
gens must be a list of matrix group generators and size an integer giving an upper bound for the

lengths of orbits (for example given by the order of the group generated by gens ). ti is an integer
specifying the number of seconds to run. This function enumerates orbits of random vectors in the



orb 38

natural space the group is acting on (with an upper limit of length given by size ). The average length
and some other information is printed on the screen.

7.4.2 OrbitStatisticOnVectorSpaceLines

. OrbitStatisticOnVectorSpaceLines(gens, size, ti) (function)

Returns: nothing
gens must be a list of matrix group generators and size an integer giving an upper bound for the

lengths of orbits (for example the order of the group generated by gens ). ti is an integer specifying
the number of seconds to run. This function enumerates orbits of random one-dimensional subspaces
in the natural space the group is acting on (with an upper limit of length given by size ). The average
length and some other information is printed on the screen.

7.5 Finding generating sets of subgroups

The following function can be used to find generators of a subgroup of a group G, expressed as a
straight line program in the generators of G.

7.5.1 FindShortGeneratorsOfSubgroup

. FindShortGeneratorsOfSubgroup(G, U[, membopt]) (method)

Returns: a record described below
The arguments U and G must be GAP group objects with U being a subgroup of G . The argument

membopt can be a function taking two arguments, namely a group element and a group, that checks,
whether the group element lies in the group or not, returning true or false accordingly. You can
usually just use the function \in as third argument. Note that this function will only ever be called
with U as its second argument so you can in fact provide a function which ignores its second argument
and has U somehow built in it.

Optionally, the third argument membopt can also be an options record. The component
membershiptest has the same meaning like the third argument membopt above. The compo-
nent sizetester can be bound to a function which estimates the size of a group generated by
some elements in U . This estimate function can for example be a function which runs a random
Schreier-Sims algorithm. In particular it may underestimate the size with a certain probability. The
method FindShortGeneratorsOfSubgroup will keep looking for elements to generate U until the
sizetester returns the same number as for U itself. Note that to avoid the possibility that the
sizetester underestimates the size of U in the first place you can bind the component sizeU in
the options record to the correct size of U or make sure that the group object U does know its size
before the call to FindShortGeneratorsOfSubgroup.

This function does a breadth-first search to find elements in U using the generators of G . It then
uses calculates the size of the group generated and proceeds in this way, until a generating system for
U is found in terms of the generators of G . Those generators are guaranteed to be shortest words in the
generators of G lying in U .

The function returns a record with two components bound: gens is a list of generators for U and
slp is a GAP straight line program expressing exactly those generators in the generators of G .

Note that this function only performs satisfactorily when the index of U in G is not to huge. It also
helps if the groups come in a representation in which GAP can compute efficiently for example as
permutation groups.
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AVL trees

8.1 The idea of AVL trees

AVL trees are balanced binary trees called “AVL trees” in honour of their inventors G.M. Adelson-
Velskii and E.M. Landis (see [AVM62]). A description in English can be found in [Knu97] in Section
6.2.3 about balanced trees.

The general idea is to store data in a binary tree such that all entries in the left subtree of a node
are smaller than the entry at the node and all entries in the right subtree are bigger. The tree is kept
“balanced” which means that for each node the depth of the left and right subtrees differs by at most
1. In this way, finding something in the tree, adding a new entry, deleting an entry all have complexity
log(n) where n is the number of entries in the tree. If one additionally stores the number of entries in
the left subtree of each node, then finding the k-th entry, removing the k-th entry and inserting an entry
in position k also have complexity log(n). The orb contains an implementation of such tree objects
providing all these operations.

“Entries” in AVL tree objects are key-value pairs and the sorting is done by the key. If all values as
true then no memory is needed to store the values (see the corresponding behaviour for hash tables).
The only requirement on the type of the keys is that two arbitrary keys must be comparable in the
sense that one can decide which of them is smaller. If GAPs standard comparison operations < and
= work for your keys, no further action is required, if not, then you must provide your own three-way
comparison function (see below).

Note that the AVL trees implemented here can be used in basically two different ways, which can
sometimes be mixed: The usual way is by accessing entries by their key, the tree is then automatically
kept sorted. The alternative way is by accessing entries by their index in the tree! Since the nodes of
the trees remember how many elements are stored in their left subtree, it is in fact possible to access
the k-th entry in the tree or delete it. It is even possible to insert something in position k. However,
note that if you do this latter operation, you are yourself responsible to keep the entries in the tree
sorted. You can ignore this responsibility, but then you can no longer access the entries in the tree by
their key and the corresponding functions might fail or even run into errors.

This usage can be useful, since in this way AVL trees provide an implementation of a list data
structure where the operation list access (by index), adding an element (in an arbitrary position) and
deleting an element (by its index) all have complexity log(n) where n is the number of entries in the
list.
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8.2 Using AVL trees

An AVL tree is created using the following function:

8.2.1 AVLTree

. AVLTree([opt]) (function)

Returns: A new AVL tree object
This function creates a new AVL tree object. The optional argument opt is an options record, in

which you can bind the following components:
cmpfunc is a three-way comparison function taking two arguments a and b and returning −1 if

a < b , +1 if a > b and 0 if a = b . If no function is given then the generic function AVLCmp (8.2.2)
is taken. This three-way comparison function is stored with the tree and is used for all comparisons in
tree operations. allocsize is the number of nodes which are allocated for the tree initially. It can be
useful to specify this if you know that your tree will eventually contain a lot of entries, since then the
tree object does not have to grow that many times.

For every AVL tree a three-way comparison function is needed, usually you can get away with
using the following default one:

8.2.2 AVLCmp

. AVLCmp(a, b) (function)

Returns: -1, 0 or 1
This function calls the < operation and the = operation to provide a generic three-way comparison

function to be used in AVL tree operations. See AVLTree (8.2.1) for a description of the return value.
This function is implemented in the kernel and should be particularly fast.

The following functions are used to access entries by key:

8.2.3 AVLAdd

. AVLAdd(t, key, val) (function)

Returns: true or fail
The first argument t must be an AVL tree. This function stores the key key with value value in

the tree assuming that the keys in it are sorted according to the three-way comparison function stored
with the tree. If value is true then no additional memory is needed. It is an error if there is already
a key equal to key in the tree, in this case the function returns fail. Otherwise it returns true.

8.2.4 AVLLookup

. AVLLookup(t, key) (function)

Returns: an value or fail
The first argument t must be an AVL tree. This function looks up the key key in the tree and

returns the value which is associated to it. If the key is not in the tree, the value fail is returned. This
function assumes that the keys in the tree are sorted according to the three-way comparison function
stored with the tree.
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8.2.5 AVLDelete

. AVLDelete(t, key) (function)

Returns: an value or fail
The first argument t must be an AVL tree. This function looks up the key key in the tree, deletes

it and returns the value which was associated with it. If key is not contained in the tree then fail
is returned. This function assumes that the keys in the tree are sorted according to the three-way
comparison function stored with the tree.

8.2.6 AVLFindIndex

. AVLFindIndex(t, key) (function)

Returns: an integer or fail
The first argument t must be an AVL tree. This function looks up the key key in the tree and

returns the index, under which it is stored in the tree. This index is one-based, that is, it takes values
from 1 to the number of entries in the tree. If key is not contained in the tree then fail is returned.
This function assumes that the keys in the tree are sorted according to the three-way comparison
function stored with the tree.

The following functions are used to access entries in trees by their index:

8.2.7 AVLIndex

. AVLIndex(t, index) (function)

Returns: a key or fail
The first argument t must be an AVL tree. This function returns the key at index index in the

tree, so index must be an integer in the range 1 to the number of elements in the tree. If the value is
out of these bounds, fail is returned. Note that to use this function it is not necessary that the keys in
the tree are sorted according to the three-way comparison function stored with the tree.

8.2.8 AVLIndexLookup

. AVLIndexLookup(t, index) (function)

Returns: a value or fail
The first argument t must be an AVL tree. This function returns the value associated to the key

at index index in the tree, so index must be an integer in the range 1 to the number of elements in
the tree. If the value is out of these bounds, fail is returned. Note that to use this function it is not
necessary that the keys in the tree are sorted according to the three-way comparison function stored
with the tree.

8.2.9 AVLIndexAdd

. AVLIndexAdd(t, key, value, index) (function)

Returns: a key or fail
The first argument t must be an AVL tree. This function inserts the key key at index index in the

tree and associates the value value with it. If value is true then no additional memory is needed to
store the value. The index index must be an integer in the range 1 to n+1 where n is the number of
entries in the tree. The new key is inserted before the key which currently is stored at index index ,
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so calling with index equal to n+1 puts the new key at the end. If index is not in the corrent range,
this function returns fail and the tree remains unchanged.

CAUTION: With this function it is possible to put a key into the tree at a position such that the keys
in the tree are no longer sorted according to the three-way comparison function stored with the tree! If
you do this, the functions AVLAdd (8.2.3), AVLLookup (8.2.4), AVLDelete (8.2.5) and AVLFindIndex
(8.2.6) will no longer work since they assume that the keys are sorted!

8.2.10 AVLIndexDelete

. AVLIndexDelete(t, index) (function)

Returns: a key or fail
The first argument t must be an AVL tree. This function deletes the key at index index in the

tree and returns the value which was associated with it.
The following functions allow low level access to the AVL tree object:

8.2.11 AVLFind

. AVLFind(t, key) (function)

Returns: an integer or fail
The first argument t must be an AVL tree. This function locates the key key in the tree and returns

the position in the positional object, at which the node which contains the key is stored. This position
will always be divisible by 4. Use the functions AVLData (8.2.13) and AVLValue (8.2.14) to access
the key and value of the node respectively. The function returns fail if the key is not found in the
tree. This function assumes that the keys in the tree are sorted according to the three-way comparison
function stored with the tree.

8.2.12 AVLIndexFind

. AVLIndexFind(t, index) (function)

Returns: an integer or fail
The first argument t must be an AVL tree. This function locates the index index in the tree and

returns the position in the positional object, at which the node which hash this index is stored. This
position will always be divisible by 4. Use the functions AVLData (8.2.13) and AVLValue (8.2.14) to
access the key and value of the node respectively. The function returns fail if the key is not found in
the tree. This function does not assume that the keys in the tree are sorted according to the three-way
comparison function stored with the tree.

8.2.13 AVLData

. AVLData(t, pos) (function)

Returns: an key
The first argument t must be an AVL tree and the second a position in the positional object

corresponding to a node as returned by AVLFind (8.2.11). The function returns the key associated
with this node.
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8.2.14 AVLValue

. AVLValue(t, pos) (function)

Returns: a value
The first argument t must be an AVL tree and the second a position in the positional object

corresponding to a node as returned by AVLFind (8.2.11). The function returns the value associated
with this node.

The following convenience methods for standard list methods are implemented for AVL tree ob-
jects:

8.2.15 Display

. Display(t) (method)

Returns: nothing
This function displays the tree in a user-friendly way. Do not try this with trees containing many

nodes!

8.2.16 ELM_LIST

. ELM_LIST(t, index) (method)

Returns: A key or fail
This method allows for easy access to the key at index index in the tree using the square bracket

notation t[index]. It does exactly the same as AVLIndex (8.2.7). This is to make AVL trees behave
more like lists.

8.2.17 Position

. Position(t, key) (method)

Returns: an integer or fail
This method allows to use the Position operation to locate the index at which the key key is

stored in the tree. It does exactly the same as AVLFindIndex (8.2.6). This is to make AVL trees
behave more like lists.

8.2.18 Add

. Add(t, key[, index]) (method)

Returns: nothing
This method allows to use the Add operation to add a key (with associated value true) to the tree at

index index . It does exactly the same as AVLIndexAdd (8.2.9), so the same warning about sortedness
as there applies! If index is omitted, the key is added at the end. This is to make AVL trees behave
more like lists.

8.2.19 Remove

. Remove(t, index) (method)

Returns: a key
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This method allows to use the Remove operation to remove a key from the tree at index index . If
index is omitted, the last key in the tree is remove. This method returns the deleted key or fail if
the tree was empty. This is to make AVL trees behave more like lists.

8.2.20 Length

. Length(t) (method)

Returns: a key
This method returns the number of entries stored in the tree t . This is to make AVL trees behave

more like lists.

8.2.21 \in

. \in(key, t) (method)

Returns: true or false
This method tests whether or not the key key is stored in the AVL tree t . This is to make AVL

trees behave more like lists.

8.3 The internal data structures

An AVL tree is a positional object in which the first 7 positions are used for administrative data (see
table below) and then from position 8 on follow the nodes of the tree. Each node uses 4 positions such
that all nodes begin at positions divisible by 4. The system allocates the positional object larger than
actually needed such that not every new node leads to the object being copied. Nodes which become
free are collected in a free list. The following table contains the information what is stored in each of
the first 7 entries:

1 last actually used position, is always congruent 3 mod 4
2 position of first node in free list
3 number of currently used nodes in the tree
4 position of largest allocated position is always congruent 3 mod 4
5 three-way comparison function
6 position of the top node
7 a plain list holding the values stored under the keys

The four positions used for a node contain the following information, recall that each node starts
at a position divisible by 4:

0 mod 4 reference to the key
1 mod 4 position of left node or 0 if empty, balance factor (see below)
2 mod 4 position of right node or 0 if empty
3 mod 4 index: number of nodes in left subtree plus one

Since all positions of nodes are divisible by 4, we can use the least significant two bits of the left
node reference for the so called balance factor. Balance factor 0 (both bits 0) indicates that the depth
of the left subtree is equal to the depth of the right subtree. Balance factor 1 (bits 01) indicates that
the depth of the right subtree is one greater than the depth of the left subtree. Balance factor 2 (or -1
in [Knu97], here bits 10) indicates that the depth of the left subtree is one greater than the depth of the
right subtree.
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For freed nodes the position of the next free node in the free list is held in the 0 mod 4 position
and 0 means the end of the free list.

Position 7 in the positional object can contain the value fail, in this case all stored values are
true. This is a measure to limit the memory usage in the case that the only relevant information in
the tree is the key and no values are stored there. This is in particular interesting if the tree structure is
just used as a list implementation.

Note that all functions dealing with AVL trees are both implemented on the GAP level and on the
kernel level. Both implementations do exactly the same thing, the kernel version is only much faster
and tuned for efficiency whereas the GAP version documents the functionality better and is used as a
fallback if the C-part of the orb is not compiled.



Chapter 9

Orbit enumeration by suborbits

The code described in this chapter is quite complicated and one has to understand quite a lot of theory
to use it. The reason for this is that a lot of preparatory data has to be found and supplied by the user in
order for this code to run at all. Also the situations in which it can be used are quite special. However,
in such a situation, the user is rewarded with impressive performance.

The main reference for the theory is [MNW07]. We briefly recall the basic setup: Let G be a group
acting from the right on some set X . Let k be a natural number, set Xk+1 := X , and let

U1 <U2 < .. . <Uk <Uk+1 = G

be a chain of “helper” subgroups. Further, for 1 ≤ i ≤ k let Xi be a Ui set and let πi : Xi+1→ Xi be a
homomorphism of Ui-sets.

This chapter starts with a section about the main orbit enumeration function and the corresponding
preparation functions. It then proceeds with a section on the used data structures, which will necessar-
ily be rather technical. Finally, the chapter concludes with a section on higher level data structures like
lists of orbit-by-suborbit objects and their administration. Note that there are quite a few examples in
Chapter 11.

9.1 OrbitBySuborbits and its resulting objects

9.1.1 OrbitBySuborbit

. OrbitBySuborbit(setup, p, j, l, i, percentage) (function)

Returns: an orbit-by-suborbit object
This is the main function in the whole business. All notations from the beginning of this

Chapter 9 remain in place. The argument setup must be a setup record lying in the filter
IsOrbitBySuborbitSetup (9.3.1) described in detail in Section 9.3 and produced for example
by OrbitBySuborbitBootstrapForVectors (9.2.1) or OrbitBySuborbitBootstrapForLines
(9.2.2) described below. In particular, it contains all the generators for G and the helper subgroups
acting on the various sets. The argument p must be the starting point of the orbit. Note that the
function possibly does not take p itself as starting point but rather its Uk-minimalisation, which is a
point in the same Uk-orbit as p . This information is important for the resulting stabiliser and words
representing the Uk-suborbits.

The integers j , l , and i , for which k + 1 ≥ j ≥ l > i ≥ 1 must hold, determine the running
mode. j indicates in which set X j the point p lies and thus in which set the orbit enumeration takes
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place, with j = k+1 indicating the original set X . The value l indicates which group to use for orbit
enumeration. So the result will be a Ul orbit, with l = k + 1 indicating a G-orbit. Finally, the value
i indicates which group to use for the “by suborbit” part, that is, the orbit will be enumerated “by
Ui -orbits”. Note that nearly all possible combinations of these parameters actually occur, because
this function is also used in the “on-the-fly” precomputation happening behind the scenes. The most
common usage of this function for the user is j = l = k +1 and i = k.

Finally, the integer percentage says, how much of the full orbit should be enumerated, the value
is in percent, thus 100 means the full orbit. Usually, only values greater than 50 are sensible, because
one can only prove the size of the orbit after enumerating at least half of it.

The result is an “orbit-by-suborbit” object. For such an object in particular the operations
Size (9.1.3), Seed (9.1.4), SuborbitsDb (9.1.5), WordsToSuborbits (9.1.6), Memory (9.1.7),
Stabilizer (9.1.8), and Seed (9.1.4) are defined, see below.

9.1.2 OrbitBySuborbitKnownSize

. OrbitBySuborbitKnownSize(setup, p, j, l, i, percentage, knownsize) (function)

Returns: an orbit-by-suborbit object
Basically does the same as OrbitBySuborbit (9.1.1) but does not compute the stabiliser by eval-

uating Schreier words. Instead, the size of the orbit to enumerate must already be known and be given
in the argument knownsize . The other arguments are as for the function OrbitBySuborbit (9.1.1).

9.1.3 Size (fororb)

. Size(orb) (method)

Returns: an integer
Returns the number of points in the orbit-by-suborbit orb .

9.1.4 Seed

. Seed(orb) (method)

Returns: a point in the orbit
Returns the starting point of the orbit-by-suborbit orb . It is the Ui-minimalisation of the starting

point given to OrbitBySuborbit (9.1.1).

9.1.5 SuborbitsDb

. SuborbitsDb(orb) (operation)

Returns: a database of suborbits
Returns the data base of suborbits of the orbit-by-suborbit object orb . In particular, such

a database object has methods for the operations Memory (9.1.7), TotalLength (9.1.11), and
Representatives (9.1.12). For descriptions see below.

9.1.6 WordsToSuborbits

. WordsToSuborbits(orb) (operation)

Returns: a list of words
Returns a list of words in the groups U∗ reaching each of the suborbits in the orbit-by-suborbit

orb . Here a word is a list of integers. Positive numbers index generators in following numbering: The
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first few numbers are numbers of generators of U1 the next few adjacent numbers index the generators
of U2 and so on until the generators of G in the end. Negative numbers indicate the corresponding
inverses of these generators.

Note that OrbitBySuborbit (9.1.1) takes the Ui-minimalisation of the starting point as its starting
point and the words here are all relative to this new starting point.

9.1.7 Memory (forob)

. Memory(ob) (operation)

Returns: an integer
Returns the amount of memory needed by the object ob , which can be either an orbit-by-suborbit

object, a suborbit database object, or an object in the filter IsOrbitBySuborbitSetup (9.3.1). The
amount of memory used is given in bytes. Note that this includes all hashes, databases, and preparatory
data of substantial size. For orbit-by-suborbits the memory needed for the precomputation is not
included, ask the setup object for that.

9.1.8 Stabilizer (obso)

. Stabilizer(orb) (method)

Returns: a permutation group
Returns the stabiliser of the starting point of the orbit-by-suborbit in orb in form of a permutation

group, using the given faithful permutation representation in the setup record.
Note that OrbitBySuborbit (9.1.1) takes the Ui-minimalisation of the starting point as its starting

point and the stabiliser returned here is the one of this new starting point.

9.1.9 StabWords

. StabWords(orb) (operation)

Returns: a list of words
Returns generators for the stabiliser of the starting point of the orbit-by-suborbit in orb in

form of words as described with the operation WordsToSuborbits (9.1.6). Note again that
OrbitBySuborbit (9.1.1) takes the Ui-minimalisation of the starting point as its starting point and
the stabiliser returned here is the one of this new starting point.

9.1.10 SavingFactor (fororb)

. SavingFactor(orb) (operation)

Returns: an integer
Returns the quotient of the total number of points stored in the orbit-by-suborbit orb and the total

number of U-minimal points stored. Note that the memory for the precomputations is not considered
here!

The following operations apply to orbit-by-suborbit database objects:

9.1.11 TotalLength (fordb)

. TotalLength(db) (operation)

Returns: an integer
Returns the total number of points stored in all suborbits in the orbit-by-suborbit database db .
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9.1.12 Representatives

. Representatives(db) (operation)

Returns: a list of points
Returns a list of representatives of the suborbits stored in the orbit-by-suborbit database db .

9.1.13 SavingFactor (fordb)

. SavingFactor(db) (operation)

Returns: an integer
Returns the quotient of the total number of points stored in the suborbit database db and the total

number of U-minimal points stored. Note that the memory for the precomputations is not considered
here!

9.1.14 OrigSeed

. OrigSeed(orb) (operation)

Returns: a point
Returns the original starting point for the orbit, not yet minimalised.

9.2 Preparation functions for OrbitBySuborbit (9.1.1)

9.2.1 OrbitBySuborbitBootstrapForVectors

. OrbitBySuborbitBootstrapForVectors(gens, permgens, sizes, codims, opt) (func-

tion)

Returns: a setup record in the filter IsOrbitBySuborbitSetup (9.3.1)
All notations from the beginning of this Chapter 9 remain in place. This function is for the action

of matrices on row vectors, so all generators must be matrices. The set X thus is a row space usually
over a finite field and the sets Xi are quotient spaces. The matrix generators for the various groups
have to be adjusted with a base change, such that the canonical projection onto Xi is just to take the
first few entries in a vector, which means, that the submodules divided out are generated by the last
standard basis vectors.

The first argument gens must be a list of lists of generators. The outer list must have length
k+ 1 with entry i being a list of matrices generating Ui, given in the action on X = Xk+1. The above
mentioned base change must have been done. The second argument permgens must be an analogous
list with generator lists for the Ui. These representations are used to compute membership and group
orders of stabilisers. In its simplest form, permgens is a list of permutation representations of the same
degree, giving a set of generators for each individual group Ui. Alternatively, if for some Ui, i > 1,
it is required that the stabilizer of its action is to be calculated as a matrix group, generators of Ui in
some matrix representation may be supplied. However, it is then mandatory that for all 1 < i≤ k+1
the generator lists have the following format: The i-th entry of permgens is a list concatenating the
generator lists of U1 up to Ui (in this order) all of whose elements are in either some permutation or
some matrix representation. Note that currently, the generators of U1 need to be always given in a
permutation representation. The argument sizes must be a list of length k+1 and entry i must be the
group order of Ui (again with Uk+1 being G). Finally, the argument codims must be a list of length
k containing integers with the ith entry being the codimension of the Ui-invariant subspace Yi of X
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with Xi = X/Yi. These codimensions must not decrease for obvious reasons, but some of them may be
equal. The last argument opt is an options record. See below for possible entries.

The function does all necessary steps to fill a setup record (see 9.3) to be used with
OrbitBySuborbit (9.1.1). For details see the code.

Currently, the following components in the options record opt have a meaning:

regvecfachints
If bound it must be a list. In position i for i > 1 there may be a list of vectors in the i-th quotient
space Xi that can be used to distinguish the left Ui−1 cosets in Ui. All vectors in this list are tried
and the first one that actually works is used.

regvecfullhints
If bound it must be a list. In position i for i > 1 there may be a list of vectors in the full space X
that can be used to distinguish the left Ui−1 cosets in Ui. All vectors in this list are tried and the
first one that actually works is used.

stabchainrandom
If bound the value is copied into the stabchainrandom component of the setup record.

nostabchainfullgroup
If bound it must be true or false. If it is unbound or set to true, no stabilizer chain is
computed for the group Uk+1. Its default value is false.

9.2.2 OrbitBySuborbitBootstrapForLines

. OrbitBySuborbitBootstrapForLines(gens, permgens, sizes, codims, opt) (function)

Returns: a setup record in the filter IsOrbitBySuborbitSetup (9.3.1)
All notations from the beginning of this Chapter 9 remain in place. This does exactly the same

as OrbitBySuborbitBootstrapForVectors (9.2.1) except that it handles the case of matrices act-
ing on one-dimensional subspaces. Those one-dimensional subspaces are represented by normalised
vectors, where a vector is normalised if its first non-vanishing entry is equal to 1.

9.2.3 OrbitBySuborbitBootstrapForSpaces

. OrbitBySuborbitBootstrapForSpaces(gens, permgens, sizes, codims, spcdim,
opt) (function)

Returns: a setup record in the filter IsOrbitBySuborbitSetup (9.3.1)
All notations from the beginning of this Chapter 9 remain in place. This does exactly the same as

OrbitBySuborbitBootstrapForVectors (9.2.1) except that it handles the case of matrices acting
on spcdim -dimensional subspaces. Those subspaces are represented by fully echelonised bases.

9.3 Data structures for orbit-by-suborbits

The description in this section is necessarily technical. It is meant more as extended annotations to
the source code than as user documentation. Usually it should not be necessary for the user to know
the details presented here. The function OrbitBySuborbit (9.1.1) needs an information record of the
following form:
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9.3.1 IsOrbitBySuborbitSetup

. IsOrbitBySuborbitSetup(ob) (Category)

Returns: true or false
Objects in this category are also in IsComponentObjRep. We describe the components, refering

to the setup at the beginning of this Chapter 9.

k The number of helper subgroups.

size
A list of length k+1 containing the orders of the groups Ui, including Uk+1 = G.

index
A list of length k with the index [Ui : Ui−1] in position i (U0 = {1}).

els A list of length k + 1 containing generators of the groups in their action on various sets. In
position i we store all the generators for all groups acting on Xi, that is for the groups U1, . . . ,Ui

(where position k+1 includes the generators for G. In each position the generators of all those
groups are concatentated starting with U1 and ending with Ui.

elsinv
The inverses of all the elements in the els component in the same arrangement.

trans
A list of length k in which position i for i > 1 contains a list of words in the generators for a
transversal of Ui−1 in Ui (with U0 = 1).

pifunc
Projection functions. This is a list of length k+1 containing in position j a list of length j−1
containing in position i a GAP function doing the projection X j → Xi. These GAP functions
take two arguments, namely the point to map and secondly the value of the pi component at
positions [j][i]. Usually pifunc is just the slicing operator in GAP and pi contains the
components to project onto as a range object.

pi See the description of the pifunc component.

op A list of k+ 1 GAP operation functions, each taking a point p and a generator g in the action
given by the index and returning pg.

info
A list of length k containing a hash table with the minimalisation lookup data. These hash tables
grow during orbit enumerations as precomputations are done behind the scenes.

info[1] contains precomputation data for X1. Assume x∈ X1 to be U1-minimal. For all z∈ xU1
with z 6= x we store the number of an element in the wordcache mapping z to x. For z = x
we store a record with two components gens and size, where gens stores generators for the
stabiliser StabU1(x) as words in the group generators and size stores the size of that stabiliser.

info[i] for i > 1 contains precomputation data for Xi. Assume x ∈ Xi to be Ui-minimal. For all
Ui−1-minimal z ∈ xUi \ xUi−1 we store the number of an element in trans[i] mapping z into
xUi−1. For all Ui−1-minimal z ∈ xUi−1 with z 6= x we store the negative of the number of a word
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in wordcache that is in the generators of Ui−1 and maps z to x. For z = x we store the stabiliser
information as in the case i = 1.

This information together with the information in the following componente allows the mini-
malisation function to do its job.

cosetrecog
A list of length k beginning with the index 1. The entry at position i is bound to a function
taking 3 arguments, namely i itself, a word in the group generators of U1, . . . ,Uk which lies in
Ui, and the setup record. The function computes the number j of an element in trans[i], such
that the element of Ui described by the word lies in trans[i][j] U_{{i-1}}.

cosetinfo
A list of things that can be used by the functions in cosetrecog.

suborbnr
A list of length k that contains in position i the number of Ui-orbits in Xi archived in info[i]
during precomputation.

sumstabl
A list of length k that contains in position i the sum of the point stabiliser sizes of all Ui-orbits
Xi archived in info[i] during precomputation.

permgens
A list of length k + 1 containing in position i generators for U1, . . . ,Ui in a faithful per-
mutation representation of Ui. Generators fit to the generators in els. For the variant
OrbitBySuborbitKnownSize (9.1.2) the k+1 entry can be unbound.

permgensinv
The inverses of the generators in permgens in the same arrangement.

sample
A list of length k+1 containing sample points in the sets Xi.

stabchainrandom
The value is used as the value for the random option for StabChain calculations to determine
stabiliser sizes. Note that the algorithms are randomized if you use this feature with a value
smaller than 1000.

wordhash
A hash to quickly recognise already used words. For every word in the hash the position of that
word in the wordcache list is stored as value in the hash.

wordcache
A list of words in the wordcache for indexing purposes.

hashlen
Initial length of hash tables used for the enumeration of lists of Ui-minimal points.

staborblenlimit
This contains the limit, up to which orbits of stabilisers are computed using word action. After
this limit, the stabiliser elements are actually evaluated in the group.
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stabsizelimitnostore
If the stabiliser in the quotient is larger than this limit, the suborbit is not stored.

cache
A linked list cache object (see LinkedListCache (5.2.1)) to store already computed transversal
elements. The cache nodes are referenced in the transcache component and are stored in the
cache cache.

transcache
This is a list of lists of weak pointer objects. The weak pointer object at position [i][j] holds
references to cache nodes of transversal elements of Ui−1 in Ui in representation j.

9.3.2 The global record ORB

In this section we describe the global record ORB, which contains some entries that can tune the be-
haviour of the orbit-by-suborbit functions. The record has the following components:

MINSHASHLEN
This positive integer is the initial value of the hash size when enumerating orbits of stored
stabilisers to find all or search through Ui−1-minimal vectors in an Ui-orbit. The default value is
1000.

ORBITBYSUBORBITDEPTH
This integer indicates how many recursive calls to OrbitBySubOrbitInner have been done.
The initial value is 0 to indicate that no such call has happened. This variable is neces-
sary since the minimalisation routine sometimes uses OrbitBySubOrbitInner recursively to
complete some precomputation “on the fly” during some other orbit-by-suborbit enumeration.
This component is always set to 0 automatically when calling OrbitBySuborbit (9.1.1) or
OrbitBySuborbitKnownSize (9.1.2) so the user should usually not have to worry about it at
all.

PATIENCEFORSTAB
This integer indicates how many Schreier generators for the stabiliser are tried before assum-
ing that the stabiliser is complete. Whenever a new generator for the stabiliser is found that
increases the size of the currently known stabiliser, the count is reset to 0 that is, only when
ORB.PATIENCEFORSTAB unsuccessful Schreier generators have been tried no more Schreier
generators are created. The default value for this component is 1000. This feature is purely
heuristical and therefore this value has to be adjusted for some orbit enumerations.

PLEASEEXITNOW
This value is usually set to false. Setting it to true in a break loop tells the orbit-by-suborbit
routines to exit gracefully at the next possible time. Simply leaving such a break loop with
quit; is not safe, since the routines might be in the process of updating precomputation data
and the data structures might be left corrupt. Always use this component to leave an orbit
enumeration prematurely.

REPORTSUBORBITS
This positive integer governs how often information messages about newly found suborbits are
printed. The default value is 1000 saying that after every 1000 suborbits a message is printed, if



orb 54

the info level is at its default value 1. If the info level is increased, then this component does no
longer affect the printing and all found suborbits are reported.

TRIESINQUOTIENT and TRIESINWHOLESPACE
The bootstrap routines OrbitBySuborbitBootstrapForVectors
(9.2.1), OrbitBySuborbitBootstrapForLines (9.2.2) and
OrbitBySuborbitBootstrapForSpaces (9.2.3) all need to compute transversals of one
helper subgroup in the next one. They use orbit enumerations in various spaces to achieve this.
The component TRIESINQUOTIENT must be a non-negative integer and indicates how often a
random vector in the corresponding quotient space is tried to find an orbit that can distinguish
between cosets. The other component TRIESINWHOLESPACE also must be a non-negative
integer and indicates how often a random vector in the whole space is tried. The default values
are 3 and 20 resepectively.

9.4 Lists of orbit-by-suborbit objects

There are a few functions that help to administrate lists of orbit-by-suborbits.

9.4.1 InitOrbitBySuborbitList

. InitOrbitBySuborbitList(setup, nrrandels) (function)

Returns: a list of orbit-by-suborbits object
Creates an object that stores a list of orbit-by-suborbits. The argument setup must be an orbit-

by-suborbit setup record and nrrandels must be an integer. It indicates how many random elements
in G should be used to do a probabilistic check for membership in case an orbit-by-suborbit is only
partially known.

9.4.2 IsVectorInOrbitBySuborbitList

. IsVectorInOrbitBySuborbitList(v, obsol) (function)

Returns: fail or an integer
Checks probabilistically, if the element v lies in one of the partially enumerated orbit-by-suborbits

in the orbit-by-suborbit list object obsol . If yes, the number of that orbit-by-suborbit is returned and
the answer is guaranteed to be correct. If the answer is fail there is a small probability that the point
actually lies in one of the orbits but this could not be shown.

9.4.3 OrbitsFromSeedsToOrbitList

. OrbitsFromSeedsToOrbitList(obsol, li) (function)

Returns: nothing
Takes the elements in the list li as seeds for orbit-by-suborbits. For each such seed it is first

checked whether it lies in one of the orbit-by-suborbits in obsol , which must be an orbit-by-suborbit
list object. If not found, 51% of the orbit-by-suborbit of the seed is enumerated and added to the list
obsol .

This function is a good way to quickly enumerate a greater number of orbit-by-suborbits.
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9.4.4 VerifyDisjointness

. VerifyDisjointness(obsol) (function)

Returns: true or false
This function checks deterministically, whether the orbit-by-suborbits in the orbit-by-suborbit list

object obsol are disjoint or not and returns the corresponding boolean value. This is not a Monte-
Carlo algorithm. If the answer is false, the function writes out, which orbits are in fact identical.

9.4.5 Memory (forobsol)

. Memory(obsol) (operation)

Returns: an integer
Returns the total memory used for all orbit-by-suborbits in the orbit-by-suborbit-list obsol . Pre-

computation data is not included, ask the setup object instead.

9.4.6 TotalLength (forobsol)

. TotalLength(obsol) (operation)

Returns: an integer
Returns the total number of points stored in all orbit-by-suborbits in the orbit-by-suborbit-list

obsol .

9.4.7 Size (forobsol)

. Size(obsol) (method)

Returns: an integer
Returns the total number of points in the orbit-by-suborbit-list obsol .

9.4.8 SavingFactor (forobsol)

. SavingFactor(obsol) (operation)

Returns: an integer
Returns the quotient of the total number of points stored in all orbit-by-suborbits in the orbit-by-

suborbit-list obsol and the total number of U-minimal points stored, which is the average saving
factor considering all orbit-by-suborbits together. Note that the memory for the precomputations is
not considered here!
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Finding nice quotients

This chapter will be written when the chop is documented and released, because the functions to be
described here depend on that package.

For the moment it should be enough to say that the functions to be described here are used to
find nice quotient modules for the orbit algorithms using the orbit-by-suborbit techniques described in
Chapter 9.
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Examples

To actually run an orbit enumeration by suborbits, we have to collect some insight into the structure of
the group under consideration and into its representation theory. In general, preparing the input data
is more of an art than a science. The mathematical details are described in [MNW07].

In Section 11.1 we present a small example of the usage of the orbit-by-suborbit machinery. We
use the sporadic simple Mathieu group M11 acting projectively on its irreducible module of dimension
24 over the field with 3 elements.

In Section 11.2 we present another example of the usage of the orbit-by-suborbit programs. In this
example we determine 35 of the 36 double coset representatives of the sporadic simple Fischer group
Fi23 with respect to its seventh maximal subgroup.

In Section 11.3 we present a bigger example of the usage of the orbit-by-suborbit machinery. In
this example the orbit lengths of the sporadic simple Conway group Co1 acting in in its irreducible
projective representation over the field with 5 elements in dimension 24 are determined, which were
previously unknown. These orbit lengths were needed to rule out a case in [Mal06].

In Section 11.4 we present as an extended worked example how to enumerate the smallest non-
trivial orbit of the sporadic simple Baby Monster group B. We give a log of a GAP session with
explanations in between, being intended to illustrate a few of the tools which are available in the orb
package as well as in related packages. Actually, the orb package has also been applied to two much
larger permutation actions of B, namely its action on its 2B involutions, having degree ≈ 1.2 · 1013,
and its action on the cosets of a maximal subgroup isomorphic to Fi23, having degree ≈ 1.0 ·1015; for
details see [Mül08] and [MNW07], respectively.

Note that for all this to work you have to acquire and install the packages IO, cvec, and atlasrep,
and for Section 11.4 you additionally need the packages chop and genss.

11.1 The Mathieu group M11 acting in dimension 24

The example in this section is very small but our intention is that everything can still be analysed
and looked at more or less by hand. We want to enumerate orbits of the Mathieu group M11 acting
projectively on its irreducible module of dimension 24 over the field with 3 elements. All the files
for this example are located in the examples/m11PF3d24 subdirectory of the orb package. Then you
simply run the example in the following way:

Example
gap> ReadPackage("orb","examples/m11PF3d24/M11OrbitOnPF3d24.g");
...
gap> o := OrbitBySuborbit(setup,v,3,3,2,100);

57
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...
#I OrbitBySuborbit found 100% of a U3-orbit of size 7 920
...

Everything works instantly as it would have without the orbit-by-suborbits method. (Depending
on whether the matrix and permutation generators for M11 are already stored locally, some time might
be needed to fetch them.) The details of this computation can be directly read off from the code in the
file M11OrbitOnPF3d24.g:

Example
LoadPackage("orb");
LoadPackage("io");
LoadPackage("cvec");
LoadPackage("atlasrep");

SetInfoLevel(InfoOrb,2);
pgens := AtlasGenerators("M11",1).generators;

gens := AtlasGenerators("M11",14).generators;
cgens := List(gens,CMat);
basech := CVEC_ReadMatFromFile(Filename(DirectoriesPackageLibrary("orb",""),

"examples/m11PF3d24/m11basech.cmat"));
basechi := basech^-1;
cgens := List(cgens,x->basech*x*basechi);

ReadPackage("orb","examples/m11PF3d24/m11slps.g");
pgu2 := ResultOfStraightLineProgram(s2,pgens);
pgu1 := ResultOfStraightLineProgram(s1,pgu2);
cu2 := ResultOfStraightLineProgram(s2,cgens);
cu1 := ResultOfStraightLineProgram(s1,cu2);

setup := OrbitBySuborbitBootstrapForLines(
[cu1,cu2,cgens],[pgu1,pgu2,pgens],[20,720,7920],[5,11],rec());

setup!.stabchainrandom := 900;

v := ZeroMutable(cgens[1][1]);
Randomize(v);
ORB_NormalizeVector(v);

Print("Now do\n o := OrbitBySuborbit(setup,v,3,3,2,100);\n");

We are using two helper subgroups U1 <U2 < M11, where U2 ∼= A6.2 is the largest maximal sub-
group of M11, having order 720, and U2∼= 5 : 4 is a maximal subgroup of U2 of order 20, see [CCN+85]
or the CTblLib package. The quotient spaces we use for the helper subgroups have dimensions 5 and
11 respectively. Straight line programs to compute generators of the helper subgroups in terms of the
given generators of M11, and an appropriate basis exhibiting the quotients, have already been com-
puted, and are stored in the files m11slps.g and m11basech.cmat, respectively. (In Section 11.4
we show in detail how such straight line programs and suitable bases can be found using the tools
available in in the orb package.) The command OrbitBySuborbitBootstrapForLines invokes the
precomputation, and in particular says that we want to use projective action.
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11.2 The Fischer group Fi23 acting in dimension 1494

The example in this section shows how to compute 35 of the 36 double coset representatives of the
Fischer group Fi23 with respect to its seventh maximal subgroup H ∼= 31+8

+ .21+6
− .31+2

+ .2S4, which has
order 3265173504 ≈ 3.2 · 109 and index [Fi23:H] = 1252451200 ≈ 1.3 · 109, see [CCN+85] or the
CTblLib package. All the files for this example are located in the examples/fi23m7 subdirectory of
the orb package. You simply run the example in the following way:

Example
gap> ReadPackage("orb","examples/fi23m7/GOrbitByKOrbitsPrepare.g");
...
gap> ReadPackage("orb","examples/fi23m7/GOrbitByKOrbitsSearch35.g");
...

We will not go into the details of the computation here, but they can be read off directly from the
code in the files in that directory. In the first part, run by the file GOrbitByKOrbitsPrepare.g, we
prepare the necessary input data, by using similar techniques as described at length in Section 11.4.
(Actually, this example has been dealt with before the advent of the packages chop and genss, hence
we are using appropriate private code instead.) We are using two helper subgroups U1 < U2 < H <
Fi23, being 3-subgroups of H of order 81 and 6561, respectively. The 1494-dimensional irreducible
representation of Fi23 over the field with 2 elements contains a vector that is fixed by H, such that the
action on its Fi23-orbit is isomorphic to the action on the cosets of H.

The second part, in the file GOrbitByKOrbitsSearch35.g, is the actual enumeration of H-orbits:
Example

setup := OrbitBySuborbitBootstrapForVectors(
[cu1gens,cu2gens,cngens],[u1gensp,u2gensp,ngensp],
[81,6561,3265173504],[10,30],rec());

obsol := InitOrbitBySuborbitList(setup,40);
l := Orb(cggens,v,OnRight,rec(schreier := true));
Enumerate(l,100000);
OrbitsFromSeedsToOrbitList(obsol,l);
origseeds := List(obsol,OrigSeed);
positions := List(origseeds,x->Position(l,x));
words := List(positions,x->TraceSchreierTreeForward(l,x));

Note that this computation finds only 35 of the 36 double coset representatives. The last corresponds
to a very short suborbit which is very difficult to find. Knowing the number of missing points, we
guess the stabiliser in H of a missing representative, and find the latter amongst the fixed points of the
stabiliser. We can then choose the one which lies in the G-orbit we have nearly enumerated above.

These double coset representatives were needed to determine the 2-modular character table of
Fi23. Details of this can be found in [HNN06].

11.3 The Conway group Co1 acting in dimension 24

The example in this section shows how to compute all suborbit lengths of the Conway group Co1, in
its irreducible projective action on a module of dimension 24 over the field with 5 elements. All the
files for this example are located in the examples/co1F5d24 subdirectory of the orb package. Then
you simply run the example in the following way:
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Example
gap> ReadPackage("orb","examples/co1F5d24/Co1OrbitOnPF5d24.g");
...
gap> ReadPackage("orb","examples/co1F5d24/Co1OrbitOnPF5d24.findall.g");
...

We will not go into the details of the first part of the computation here, as they are very sim-
ilar to those reproduced in Section 11.1, and can be directly read off from the code in the file
Co1OrbitOnPF5d24.g: We are using three helper subgroups U1 < U2 < U3 < Co1, where Co1
has order 4157776806543360000 ≈ 4.2 · 1018, see [CCN+85] or the CTblLib package, and where
U3 ∼= 21+8

+ .O8(2) is the fifth maximal subgroup of Co1, having order 89181388800≈ 8.9 ·1010, while
U2 ∼= [28]:S6(2) is a maximal subgroup of U3 of order 371589120 ≈ 3.7 · 108, and U1 ∼= 26:L3(2) is
a maximal subgroup of S6(2) of order 10752 ≈ 1.1 · 104. The projective action comes from the irre-
ducible 24-dimensional linear representation of the Schur cover 2.Co1 of Co1, which by [Jan05] is the
smallest faithful representation of 2.Co1 over the field GF(5), and the quotient spaces we use for the
helper subgroups have dimensions 8, 8 and 16 respectively.

The details of the second part can be directly read off from the code in the file
Co1OrbitOnPF5d24.findall.g:

Example
oo := InitOrbitBySuborbitList(setup,80);
l := MakeRandomLines(v,1000);
OrbitsFromSeedsToOrbitList(oo,l);
intervecs := CVEC_ReadMatFromFile(Filename(DirectoriesPackageLibrary("orb",""),

"examples/co1F5d24/co1interestingvecs.cmat"));
OrbitsFromSeedsToOrbitList(oo,intervecs);
Length(oo!.obsos);
Sum(oo!.obsos,Size);
(5^24-1)/(5-1);

Note that this example needs about 2GB of main memory on a 32bit machine and probably nearly
4GB on a 64bit machine. However, the orbit lengths were previously unknown before they were
computed with this program. The orbit lengths were needed to rule out a case in [Mal06].

11.4 The Baby Monster B acting on its 2A involutions

The example in this section shows how to enumerate the smallest non-trivial orbit of the Baby Monster
group B. All the files for this example are located in the examples/bmF2d4370 subdirectory of the
orb package. You may simply run the example in the following way:

Example
gap> ReadPackage("orb","examples/bmF2d4370/BMOrbitOnF2d4370partI.g");
...
gap> ReadPackage("orb","examples/bmF2d4370/BMOrbitOnF2d4370partII.g");
...

In the sequel we comment in detail on how the necessary input data actually is prepared. We begin
by loading the packages we are going to use.

Example
gap> LoadPackage("orb");
...
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gap> LoadPackage("io");
...
gap> LoadPackage("cvec");
...
gap> LoadPackage("atlasrep");
...
gap> LoadPackage("chop");
...
gap> LoadPackage("genss");
...

The one-point stabilisers associated to the smallest non-trivial orbit of B are its largest maximal
subgroups E ∼= 2.2E6(2).2, which are the centralisers of its 2A involutions. Here E is a bicyclic
extension of the twisted Lie type group 2E6(2), and has index [B:E] = 13571955000≈ 1.4 ·1010, see
[CCN+85] or the CTblLib package.

We first try to find a matrix representation of B such that the B-orbit we look for is realised as a
set of vectors in the underlying vector space. The smallest faithful representation of B over the field
GF(2), by [Jan05] having dimension 4370, springs to mind. Explicit matrices in terms of standard
generators in the sense of [Wil96] are available in [Wil], and are accessibe through the atlasrep
package. Moreover, we find generators of E by applying a straight line program, also available in the
atlasrep package, expressing generators of E in terms of the generators of B.

Example
gap> gens := AtlasGenerators("B",1).generators;
[ <an immutable 4370x4370 matrix over GF2>,

<an immutable 4370x4370 matrix over GF2> ]
gap> bgens := List(gens,CMat);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]
gap> slpbtoe := AtlasStraightLineProgram("B",1).program;;
gap> egens := ResultOfStraightLineProgram(slpbtoe,bgens);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]

We look for a non-zero vector being fixed by both generators of E. It turns out that the latter have
a common fixed space of dimension 1. Then, since E is a maximal subgroup, the stabiliser in B of the
non-zero vector v in that fixed space coincides with E.

Example
gap> x := egens[1]-egens[1]^0;;
gap> nsx := NullspaceMat(x);
<immutable cmat 2202x4370 over GF(2,1)>
gap> y := nsx * (egens[2]-egens[2]^0);;
gap> nsy := NullspaceMat(y);
<immutable cmat 1x2202 over GF(2,1)>
gap> v := nsy[1]*nsx;
<immutable cvec over GF(2,1) of length 4370>

Storing eight elements of GF(2) into 1 byte, to store a vector of length 4370 needs 547 bytes plus
some organisational overhead resulting in about 580 bytes, hence to store the full B-orbit of v we need
580 · [B:E]≈ 7.9 ·1012 bytes. Hence we try to find helper subgroups suitable to achieve a saving factor
of ≈ 104, i. e. allowing to store only one out of ≈ 104 vectors. To this end, we look for a pair U1 <U2
of helper subgroups such that |U2| ≈ 105, where we take into account that typically the overall saving
factor achieved is somewhat smaller than the order of the largest helper subgroup.
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By [CCN+85], and a few computations with subgroup fusions using the CTblLib package, the
derived subgroup E ′ ∼= 2.2E6(2) of E turns out to possess maximal subgroups 2×Fi22 and 2.Fi22,
where Fi22 denotes one of the sporadic simple Fischer groups, and where the former constitute a
unique conjugacy class with associated normalizers in E of shape 2×Fi22.2, while the latter consist
of two conjugacy classes being self-normalising and interchanged by E.

Now Fi22 has a unique conjugacy class of maximal subgroups M12, where the latter denotes one of
the sporadic simple Mathieu groups; the subgroups M12 lift to a unique conjugacy class of subgroups
M12 of 2.Fi22, which turn out to constitute a conjugacy class of subgroups of E different from the
subgroups M12 being contained in Fi22. Anyway, we have |M12| = 95040, hence U2 = M12 seems
to be a good candidate for the larger helper subgroup. In particular, there is a unique conjugacy
class of maximal subgroups L2(11) of M12, and since |L2(11)|= 660 and [M12:L2(11)] = 144 letting
U1 = L2(11) seems to be a good candidate for the smaller helper subgroup. Recall that U1 and U2
are useful helper subgroups only if we are able to find suitable quotient modules allowing for the
envisaged saving factor.

To find U1 and U2, we first try to find a subgroup Fi22 or 2.Fi22 of E. We start a random search,
aiming at finding standard generators of either Fi22 or 2.Fi22, and we use GeneratorsWithMemory
in order to be able to express the generators found as words in the generators of E. To accelerate
computations we first construct a small representation of E; by [Jan05] the smallest faithful irreducible
representation of Fi22 over GF(2) has dimension 78, hence we cannot do better for E; note that the
latter is a representation of E := E/Z(E)∼= 2E6(2).2.

Example
gap> SetInfoLevel(InfoChop,2);
gap> m := Module(egens);
<module of dim. 4370 over GF(2)>
gap> r := Chop(m);
...
rec( ischoprecord := true,

db := [ <abs. simple module of dim. 78 over GF(2)>,
<trivial module of dim. 1 over GF(2)>,
<abs. simple module of dim. 1702 over GF(2)>,
<abs. simple module of dim. 572 over GF(2)> ],

mult := [ 5, 4, 2, 1 ], acs := [ 1, 2, 3, 1, 4, 1, 1, 2, 2, 3, 1, 2 ],
module := <reducible module of dim. 4370 over GF(2)> )

gap> i := Position(List(r.db,Dimension),78);;
gap> egens78 := GeneratorsWithMemory(RepresentingMatrices(r.db[i]));
[ <<immutable cmat 78x78 over GF(2,1)> with mem>,

<<immutable cmat 78x78 over GF(2,1)> with mem> ]

By [Wil], standard generators a,b of Fi22 are given as follows: a is an element of the 2A conju-
gacy class of Fi22, and b, ab, and (ab)4bab(abb)2 have order 13, 11, and 12, respectively; standard
generators of 2.Fi22 are lifts of standard generators of Fi22 having the same order fingerprint. The 2A
conjugacy class of Fi22 fuses into the 2A conjugacy class of E, where the latter is obtained as the 11-th
power of the unique conjugacy class of elements of order 22, and E has only one conjugacy class of
elements of order 13.

Example
gap> o := Orb(egens78,StripMemory(egens78[1])^0,OnRight,rec(schreier := true,
> lookingfor := function(o,x) return Order(x)=22; end));
<open orbit, 1 points with Schreier tree looking for sth.>
gap> Enumerate(o);
<open orbit, 393 points with Schreier tree looking for sth.>
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gap> word := TraceSchreierTreeForward(o,PositionOfFound(o));
[ 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2 ]
gap> g2a := Product(egens78{word})^11;
<<immutable cmat 78x78 over GF(2,1)> with mem>
gap> o := Orb(egens78,StripMemory(egens78[1])^0,OnRight,rec(schreier := true,
> lookingfor := function(o,x) return Order(x)=13; end));
<open orbit, 1 points with Schreier tree looking for sth.>
gap> Enumerate(o);
<open orbit, 144 points with Schreier tree looking for sth.>
gap> word := TraceSchreierTreeForward(o,PositionOfFound(o));
[ 1, 2, 1, 2, 1, 2, 1, 2, 2 ]
gap> b := Product(egens78{word});
<<immutable cmat 78x78 over GF(2,1)> with mem>

We search through the E-conjugates of g2a until we find a conjugate a together with b fulfilling
the defining conditions of standard generators of Fi22, and moreover fulfilling the relations of the
associated presentation of Fi22 available in [Wil].

To find conjugates, we use the product replacement algorithm to produce pseudo random ele-
ments of E. Assuming a genuine random search, the success probability of this approach is as
follows: Letting E ′ := E ′/Z(E ′) ∼= 2E6(2), out of the |E ′|/|CE ′(g2a)| conjugates of g2a there are
|CE ′(b)|/|CE ′(Fi22)|= |CE ′(b)| elements together with the fixed element b giving standard generators
of Fi22. Since Fi22 has two conjugacy classes of elements of order 13, and there are three conjugacy
classes of subgroups Fi22 of E ′, the success probability is 6 · |CE ′(g2a)| · |CE ′(b)|/|E ′| ≈ 2 ·10−5.

Example
gap> pr := ProductReplacer(egens78,rec(maxdepth := 150));
<product replacer nrgens=2 slots=12 scramble=100 maxdepth=150 steps=0 (rattle)>
gap> i := 0;;
gap> repeat
> i := i + 1;
> x := Next(pr);
> a := g2a^x;
> until IsOne((a*b)^11) and IsOne(((a*b)^4*b*a*b*(a*b*b)^2)^12) and
> IsOne((a*b^2)^21) and IsOne(Comm(a,b)^3) and
> IsOne(Comm(a,b^2)^3) and IsOne(Comm(a,b^3)^3) and
> IsOne(Comm(a,b^4)^2) and IsOne(Comm(a,b^5)^3) and
> IsOne(Comm(a,b*a*b^2)^3) and IsOne(Comm(a,b^-1*a*b^-2)^2) and
> IsOne(Comm(a,b*a*b^5)^2) and IsOne(Comm(a,b^2*a*b^5)^2);
gap> i;
53271

Note that the initial state of the random number generator does influence this randomised result:
it may very well be that you see some other value for i.

Due to a presentation being available we have proved that the elements found generate a subgroup
Fi22. If we had not had a presentation at hand, we might only have been able to find elements fulfill-
ing the defining conditions of standard generators of Fi22, but still generating a subgroup of another
isomorphism type. In that case, for further checks we can use the following tools: We try to find a
short orbit of vectors, and using a randomized Schreier-Sims algorithm gives a lower bound for the
order of the group seen. However, we can use the action on the orbit to get a homomorphism into a
permutation group, allowing to prove that the group generated indeed has Fi22 as a quotient.
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Example
gap> S := StabilizerChain(Group(a,b),rec(TryShortOrbit := 30,
> OrbitLengthLimit := 5000));
...
<stabchain size=64561751654400 orblen=3510 layer=1 SchreierDepth=8>
<stabchain size=18393661440 orblen=2816 layer=2 SchreierDepth=7>
<stabchain size=6531840 orblen=1680 layer=3 SchreierDepth=7>
<stabchain size=3888 orblen=243 layer=4 SchreierDepth=5>
<stabchain size=16 orblen=16 layer=5 SchreierDepth=2>

gap> Size(S)=Size(CharacterTable("Fi22"));
true
gap> p := Group(ActionOnOrbit(S!.orb,[a,b]));;
gap> DisplayCompositionSeries(p);
G (2 gens, size 64561751654400)
| Fi(22)

1 (0 gens, size 1)

We now return to our original representation.
Example

gap> SetInfoLevel(InfoSLP,2);
gap> slpetofi22 := SLPOfElms([a,b]);
<straight line program>
gap> Length(LinesOfStraightLineProgram(slpetofi22));
278
gap> SlotUsagePattern(slpetofi22);;
gap> fgens := ResultOfStraightLineProgram(slpetofi22,egens);
...
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]
gap> a := fgens[1];;
gap> b := fgens[2];;
gap> IsOne(b^13);
true
gap> IsOne((a*b)^11);
true
gap> IsOne((a*b^2)^21);
true

By construction the group generated by a,b is Fi22 or 2×Fi22 or 2.Fi22. Note that due to different
seeds in the random number generator it is in fact possible at this stage that you have created a different
group as displayed here! In our outcome, since a has even order, and both b and ab have odd order,
we cannot possibly have 2×Fi22; and by the presentation of 2.Fi22 available in [Wil] the order of ab2

being 21 implies that we cannot possibly have 2.Fi22 either. Hence we indeed have found standard
generators of Fi22. If we had hit one of the cases 2×Fi22 or 2.Fi22, we could just continue the above
search until we find a subgroup Fi22, or using the above order fingerprint we could easily modify the
elements found to obtain standard generators of either Fi22 or 2.Fi22.

Now, standard generators of U2 = M12 in terms of standard generators of Fi22, and generators of
U1 = L2(11) in terms of standard generators of M12 are accessible in the atlasrep package. Note that
if we had found a subgroup 2.Fi22 above, since M12 lifts to a subgroup 2×M12 of 2.Fi22, it would
again be easy to find standard generators of M12 from the generators of M12 or 2×M12 respectively
provided by the atlasrep package. Anyway, the next task is to find good quotient modules such that
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the helper subgroups have longish orbits on vectors. To this end, we restrict to M12 and compute the
radical series of the restricted module.

Example
gap> slpfi22tom12 := AtlasStraightLineProgram("Fi22",14).program;;
gap> slpm12tol211 := AtlasStraightLineProgram("M12",5).program;;
gap> mgens := ResultOfStraightLineProgram(slpfi22tom12,fgens);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]
gap> lgens := ResultOfStraightLineProgram(slpm12tol211,mgens);
[ <cmat 4370x4370 over GF(2,1)>, <cmat 4370x4370 over GF(2,1)> ]
gap> m := Module(mgens);;
gap> r := Chop(m);;
...
gap> rad := RadicalSeries(m,r.db);
...
rec(

db := [ <abs. simple module of dim. 144 over GF(2)>,
<abs. simple module of dim. 44 over GF(2)>,
<simple module of dim. 32 over GF(2) splitting field degree 2>,
<abs. simple module of dim. 10 over GF(2)>,
<trivial module of dim. 1 over GF(2)> ],

module := <reducible module of dim. 4370 over GF(2)>,
basis := <immutable cmat 4370x4370 over GF(2,1)>,
ibasis := <immutable cmat 4370x4370 over GF(2,1)>,
cfposs := [ [ [ 1 .. 144 ], [ 145 .. 288 ], [ 289 .. 432 ], [ 433 .. 576 ],

...
isotypes := [ [ 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ],
...

isradicalrecord := true )

We observe that there are faithful irreducible quotients of dimensions 10, 32, 44, and 144. Since we
look for a quotient module such that M12 has many regular orbits on vectors, we ignore the irreducible
module of dimension 10. We consider the one of dimension 32.

Example
gap> i := Position(List(rad.db,Dimension),32);;
gap> mgens32 := RepresentingMatrices(rad.db[i]);
[ <immutable cmat 32x32 over GF(2,1)>, <immutable cmat 32x32 over GF(2,1)> ]
gap> OrbitStatisticOnVectorSpace(mgens32,95040,30);
Found length 95040, have now 24 orbits, average length: 93060

This is excellent indeed. Hence we pick a summand of dimension 32 in the first radical layer, and
apply the associated base change to all the generators.

Example
gap> bgens := List(bgens,x->rad.basis*x*rad.ibasis);;
gap> egens := List(egens,x->rad.basis*x*rad.ibasis);;
gap> fgens := List(fgens,x->rad.basis*x*rad.ibasis);;
gap> mgens := List(mgens,x->rad.basis*x*rad.ibasis);;
gap> lgens := List(lgens,x->rad.basis*x*rad.ibasis);;
gap> j := Position(rad.isotypes[1],i);;
gap> l := rad.cfposs[1][j];;
gap> Append(l,Difference([1..4370],l));
gap> bgens := List(bgens,x->ORB_PermuteBasisVectors(x,l));;
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gap> egens := List(egens,x->ORB_PermuteBasisVectors(x,l));;
gap> fgens := List(fgens,x->ORB_PermuteBasisVectors(x,l));;
gap> mgens := List(mgens,x->ORB_PermuteBasisVectors(x,l));;
gap> lgens := List(lgens,x->ORB_PermuteBasisVectors(x,l));;

We consider the irreducible quotient module of M12 of dimension 32, whose restriction to L2(11)
turns out to be is semisimple. The irreducible quotients of dimension 10 are too small to have too
many regular orbits, but the direct sum of two of them turns out to work fine.

Example
gap> lgens32 := List(lgens,x->ExtractSubMatrix(x,[1..32],[1..32]));
[ <cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)> ]
gap> m := Module(lgens32);;
gap> r := Chop(m);
...
gap> soc := SocleSeries(m,r.db);
...
rec( issoclerecord := true,

db := [ <simple module of dim. 10 over GF(2) splitting field degree 2>,
<trivial module of dim. 1 over GF(2)>,
<abs. simple module of dim. 10 over GF(2)> ],

module := <reducible module of dim. 32 over GF(2)>,
basis := <cmat 32x32 over GF(2,1)>, ibasis := <cmat 32x32 over GF(2,1)>,
cfposs := [ [ [ 1 .. 10 ], [ 11 ], [ 12 ], [ 13 .. 22 ], [ 23 .. 32 ] ] ],
isotypes := [ [ 1, 2, 2, 3, 3 ] ] )

gap> i := Position(List(soc.db,x->[Dimension(x),DegreeOfSplittingField(x)]),
> [10,1]);;
gap> j := Position(soc.isotypes[1],i);;
gap> l := Concatenation(soc.cfposs[1]{[j,j+1]});;
gap> lgens32 := List(lgens32,x->soc.basis*x*soc.ibasis);
[ <cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)> ]
gap> lgens20 := List(lgens32,x->ExtractSubMatrix(x,l,l));
[ <cmat 20x20 over GF(2,1)>, <cmat 20x20 over GF(2,1)> ]
gap> OrbitStatisticOnVectorSpace(lgens20,660,30);
Found length 660, have now 4401 orbits, average length: 598

We apply the appropriate base change to all the generators.
Example

gap> t := ORB_EmbedBaseChangeTopLeft(soc.basis,4370);
<cmat 4370x4370 over GF(2,1)>
gap> ti := ORB_EmbedBaseChangeTopLeft(soc.ibasis,4370);
<cmat 4370x4370 over GF(2,1)>
gap> bgens := List(bgens,x->t*x*ti);;
gap> egens := List(egens,x->t*x*ti);;
gap> fgens := List(fgens,x->t*x*ti);;
gap> mgens := List(mgens,x->t*x*ti);;
gap> lgens := List(lgens,x->t*x*ti);;
gap> Append(l,Difference([1..4370],l));
gap> bgens := List(bgens,x->ORB_PermuteBasisVectors(x,l));;
gap> egens := List(egens,x->ORB_PermuteBasisVectors(x,l));;
gap> fgens := List(fgens,x->ORB_PermuteBasisVectors(x,l));;
gap> mgens := List(mgens,x->ORB_PermuteBasisVectors(x,l));;
gap> lgens := List(lgens,x->ORB_PermuteBasisVectors(x,l));;
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Having reached the ultimate choice of basis, we recreate the fixed vector v.
Example

gap> x := egens[1]-egens[1]^0;;
gap> nsx := NullspaceMat(x);;
gap> y := nsx * (egens[2]-egens[2]^0);;
gap> nsy := NullspaceMat(y);;
gap> v := nsy[1]*nsx;;

Finally we need small faithful permutation representations of the helper subgroups.
Example

gap> mgens32 := List(mgens,x->ExtractSubMatrix(x,[1..32],[1..32]));
[ <cmat 32x32 over GF(2,1)>, <cmat 32x32 over GF(2,1)> ]
gap> S := StabilizerChain(Group(mgens32),rec(TryShortOrbit := 10));
...
<stabchain size=95040 orblen=3960 layer=1 SchreierDepth=7>
<stabchain size=24 orblen=24 layer=2 SchreierDepth=4>

gap> p := Group(ActionOnOrbit(S!.orb,mgens32));
<permutation group with 2 generators>
gap> i := SmallerDegreePermutationRepresentation(p);;
gap> pp := Group(List(GeneratorsOfGroup(p),x->ImageElm(i,x)));
<permutation group with 2 generators>
gap> m12 := MathieuGroup(12);;
gap> i := IsomorphismGroups(pp,m12);;
gap> mpermgens := List(GeneratorsOfGroup(pp),x->ImageElm(i,x));
[ (5,7)(6,11)(8,9)(10,12), (1,10,3)(2,11,12)(4,5,6)(7,9,8) ]
gap> lpermgens := ResultOfStraightLineProgram(slpm12tol211,mpermgens);
[ (1,8)(2,5)(3,9)(4,7)(6,11)(10,12), (1,8,3)(2,7,12)(4,6,9)(5,11,10) ]

We could just go on from here, however, sometimes it is useful to save all the created data to disk.
Example

gap> f := IO_File("data.gp","w");;
gap> IO_Pickle(f,"seed");;
gap> IO_Pickle(f,v);;
gap> IO_Pickle(f,"generators");;
gap> IO_Pickle(f,bgens);;
gap> IO_Pickle(f,egens);;
gap> IO_Pickle(f,fgens);;
gap> IO_Pickle(f,mgens);;
gap> IO_Pickle(f,lgens);;
gap> IO_Pickle(f,"permutations");;
gap> IO_Pickle(f,mpermgens);;
gap> IO_Pickle(f,lpermgens);;
gap> IO_Close(f);;

This can be loaded again, in particular into a new GAP session, as follows.
Example

gap> LoadPackage("orb");;
...
gap> LoadPackage("cvec");;
...
gap> f := IO_File("data.gp");
<file fd=4 rbufsize=65536 rpos=1 rdata=0>
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gap> IO_Unpickle(f);
"seed"
gap> v:=IO_Unpickle(f);;
gap> IO_Unpickle(f);
"generators"
gap> bgens := IO_Unpickle(f);;
gap> egens := IO_Unpickle(f);;
gap> fgens := IO_Unpickle(f);;
gap> mgens := IO_Unpickle(f);;
gap> lgens := IO_Unpickle(f);;
gap> IO_Unpickle(f);
"permutations"
gap> mpermgens := IO_Unpickle(f);;
gap> lpermgens := IO_Unpickle(f);;
gap> IO_Close(f);;

Now we are prepared to actually run the orbit enumeration. Note that for the following memory es-
timates we assume that we are running things on a 64bit machine. On a 32bit machine the overhead is
smaller. We expect that all the vectors in the smaller quotient of dimension 20 will enumerated; need-
ing 3 bytes per vector for the actual data which results in 40 bytes including overhead, this amounts
to 40 · 220 ≈ 42 MB of memory space. Since 232 ≈ 4.3 · 109 is less than [B:E], we also expect that
the larger quotient of dimension 32 will be enumerated completely, by L2(11)-orbits; needing 4 bytes
per vector for the actual data resulting in 40 bytes including overhead, and assuming a saving fac-
tor as suggested by OrbitStatisticOnVectorSpace yields an estimated memory requirement of
40 ·232 ·1/598≈ 287 MB. For the large B-orbit, being enumerated by M12-orbits, we similarly get an
estimated memory requirement of 584 · [B:E] ·1/93060≈ 85 MB.

Example
gap> setup := OrbitBySuborbitBootstrapForVectors(
> [lgens,mgens,bgens],[lpermgens,mpermgens,[(),()]],
> [660,95040,4154781481226426191177580544000000],[20,32],rec());
#I Calculating stabilizer chain for whole group...
#I Trying smaller degree permutation representation for U2...
#I Trying smaller degree permutation representation for U1...
#I Enumerating permutation base images of U_1...
#I Looking for U1-coset-recognising U2-orbit in factor space...
#I OrbitBySuborbit found 100% of a U2-orbit of size 95 040
#I Found 144 suborbits (need 144)
<setup for an orbit-by-suborbit enumeration, k=2>
gap> o := OrbitBySuborbitKnownSize(setup,v,3,3,2,51,13571955000);
#I OrbitBySuborbit found 100% of a U2-orbit of size 1
#I OrbitBySuborbit found 100% of a U2-orbit of size 23 760
...
#I OrbitBySuborbit found 51% of a U3-orbit of size 13 571 955 000
<orbit-by-suborbit size=13571955000 stabsize=306129918735099415756800 (
51%) saving factor=56404>

Indeed the saving factor actually achieved is smaller than the best possible estimate given above,
but it still has the same order of magnitude.
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