Goto Chapter: Top 1 2 3 4 5 Bib Ind

### 5 Information Messages

It is possible to get informations about the status of the computation of the functions of Chapter 2 of this manual.

#### 5.1 Info Class

##### 5.1-1 InfoPolenta
 ‣ InfoPolenta ( info class )

is the Info class of the Polenta package (for more details on the Info mechanism see Section Reference: Info Functions of the GAP Reference Manual). With the help of the function SetInfoLevel(InfoPolenta,level) you can change the info level of InfoPolenta.

• If InfoLevel( InfoPolenta ) is equal to 0 then no information messages are displayed.

• If InfoLevel( InfoPolenta ) is equal to 1 then basic informations about the process are provided. For further background on the displayed informations we refer to [Ass03] (publicly available via the Internet address http://www.icm.tu-bs.de/ag_algebra/software/assmann/diploma.pdf).

• If InfoLevel( InfoPolenta ) is equal to 2 then, in addition to the basic information, the generators of computed subgroups and module series are displayed.

#### 5.2 Example

gap> SetInfoLevel( InfoPolenta, 1 );

gap> PcpGroupByMatGroup( PolExamples(11) );
#I  Determine a constructive polycyclic sequence
for the input group ...
#I
#I
#I  Determine a constructive polycyclic sequence
for the image under the p-congruence homomorphism ...
#I  finished.
#I  Finite image has relative orders [ 3, 2, 3, 3, 3 ].
#I
#I  Compute normal subgroup generators for the kernel
of the p-congruence homomorphism ...
#I  finished.
#I
#I  Compute the radical series ...
#I  finished.
#I  The radical series has length 4.
#I
#I  Compute the composition series ...
#I  finished.
#I  The composition series has length 5.
#I
#I  Compute a constructive polycyclic sequence
for the induced action of the kernel to the composition series ...
#I  finished.
#I  This polycyclic sequence has relative orders [  ].
#I
#I  Calculate normal subgroup generators for the
unipotent part ...
#I  finished.
#I
#I  Determine a constructive polycyclic  sequence
for the unipotent part ...
#I  finished.
#I  The unipotent part has relative orders
#I  [ 0, 0, 0 ].
#I
#I  ... computation of a constructive
polycyclic sequence for the whole group finished.
#I
#I  Compute the relations of the polycyclic
presentation of the group ...
#I  Compute power relations ...
#I  ... finished.
#I  Compute conjugation relations ...
#I  ... finished.
#I  Update polycyclic collector ...
#I  ... finished.
#I  finished.
#I
#I  Construct the polycyclic presented group ...
#I  finished.
#I
Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]

gap> SetInfoLevel( InfoPolenta, 2 );

gap> PcpGroupByMatGroup( PolExamples(11) );
#I  Determine a constructive polycyclic sequence
for the input group ...
#I
#I
#I  Determine a constructive polycyclic sequence
for the image under the p-congruence homomorphism ...
#I  finished.
#I  Finite image has relative orders [ 3, 2, 3, 3, 3 ].
#I
#I  Compute normal subgroup generators for the kernel
of the p-congruence homomorphism ...
#I  finished.
#I  The normal subgroup generators are
#I  [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ]
, [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ]
],
[ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ]
#I
#I  Compute the radical series ...
#I  finished.
#I  The radical series has length 4.
#I  [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ],
[  ] ]
#I
#I  Compute the composition series ...
#I  finished.
#I  The composition series has length 5.
#I  The composition series is
#I  [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 1 ] ], [  ] ]
#I
#I  Compute a constructive polycyclic sequence
for the induced action of the kernel to the composition series ...
#I  finished.
#I  This polycyclic sequence has relative orders [  ].
#I
#I  Calculate normal subgroup generators for the
unipotent part ...
#I  finished.
#I  The normal subgroup generators for the unipotent part are
#I  [ [ [ 1, -3/2, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 0, 0, 24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3, 3, 15 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3, 3, 9 ], [ 0, 1, 0, 6 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3/2, 3/2, 3/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3/2, 9/2, -69/2 ], [ 0, 1, 0, 9 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ] ]
, [ [ 1, 0, 0, -24 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, -3, -15 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, -3, -9 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3, 0, 9 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, -3/2, -3/2, -9/2 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, 3 ], [ 0, 0, 0, 1 ]
],
[ [ 1, -3, -3, -12 ], [ 0, 1, 0, -6 ], [ 0, 0, 1, 6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3, -3/2, -21 ], [ 0, 1, 0, -3 ], [ 0, 0, 1, -6 ], [ 0, 0, 0, 1 ] ],
[ [ 1, 3/2, 3/2, 9/2 ], [ 0, 1, 0, 3 ], [ 0, 0, 1, -3 ], [ 0, 0, 0, 1 ] ] ]
#I
#I  Determine a constructive polycyclic  sequence
for the unipotent part ...
#I  finished.
#I  The unipotent part has relative orders
#I  [ 0, 0, 0 ].
#I
#I  ... computation of a constructive
polycyclic sequence for the whole group finished.
#I
#I  Compute the relations of the polycyclic
presentation of the group ...
#I  Compute power relations ...
.....
#I  ... finished.
#I  Compute conjugation relations ...
..............................................
#I  ... finished.
#I  Update polycyclic collector ...
#I  ... finished.
#I  finished.
#I
#I  Construct the polycyclic presented group ...
#I  finished.
#I
Pcp-group with orders [ 3, 2, 3, 3, 3, 0, 0, 0 ]

Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML