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Isabel Araújo (A), Derek Holt (A), Alexander Hulpke (A), James Mitchell (M), Götz Pfeiffer (A),
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Copyright Notice

Copyright c© (1987–2004) by the GAP Group,
incorporating the Copyright c© 1999, 2000 by School of Mathematical and Computational Sciences, Univer-
sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland
being the Copyright c© 1992 by Lehrstuhl D für Mathematik, RWTH, 52056 Aachen, Germany, transferred
to St Andrews on July 21st, 1997.
except for files in the distribution, which have an explicit different copyright statement. In particular, the
copyright of packages distributed with GAP is usually with the package authors or their institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. For details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address
support@gap-system.org, containing your full name and address. This allows us to keep track of the
number of GAP users.
If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would
cite another paper that you used (see below for sample citation). Also we would appreciate if you could
inform us about such a paper.
Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.4.12; 2008
(http://www.gap-system.org)

GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute
GAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.
The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,
you assume the cost of all necessary servicing, repair or correction.
In no case unless required by applicable law will we, and/or any other party who may modify and redistribute
GAP as permitted above, be liable to you for damages, including lost profits, lost monies or other special,
incidental or consequential damages arising out of the use or inability to use GAP.
You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.
That is to say proprietary modifications will not be allowed. We want all versions of GAP to remain free.
If you modify any part of GAP and redistribute it, you must supply a README document. This should
specify what modifications you made in which files. We do not want to take credit or be blamed for your
modifications.
Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improve-
ments and new functions. So again we would appreciate it if you would inform us about all modifications
you make.
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About Programming

in GAP

This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner’s
introduction to GAP, the GAP Reference Manual, which contains the official definitions of GAP, and
Extending GAP, which explains how to create files and functions that will work together with mechanisms
built in GAP, how to write documentation, and so on.

This manual is divided into chapters. Each chapter is divided into sections, and within each section, impor-
tant definitions are numbered. References therefore are triples.

The chapters 2 and 3 of this manual describe how the knowledge about GAP objects is used by the system,
via the so-called method selection mechanism, and how such knowledge resp. objects with such knowledge
can be created.

Chapter 4 gives some simple examples of how to add new functionality to the system.

A more involved example for the design of new GAP objects can be found in Chapter 5. In particular,
see Sections 5.1 and 5.2 for finding out whether this manual is useful for you at all. One more example is
discussed in Chapter 6.

Pages are numbered consecutively in each of the four manuals. For manual conventions, see Section 1.1 in
the Reference Manual.



2 Method Selection

This chapter explains how GAP decides which function to call for which types of objects. It assumes that
you have read the chapters about objects (Chapter 12) and types (Chapter 13) in the Reference Manual.

An operation is a special GAP function that bundles a set of functions, its methods.

All methods of an operation compute the same result. But each method is installed for specific types of
arguments.

If an operation is called with a tuple of arguments, one of the applicable methods is selected and called.

Special cases of methods are partial methods, immediate methods, and logical implications.

2.1 Operations and Methods

Operations are functions in the category IsOperation (see 5.4.2 in the Reference Manual).

So on the one hand, operations are GAP functions, that is, they can be applied to arguments and return
a result or cause a side-effect.

On the other hand, operations are more. Namely, an operation corresponds to a set of GAP functions, called
the methods of the operation.

Each call of an operation causes a suitable method to be selected and then called. The choice of which
method to select is made according to the types of the arguments, the underlying mechanism is described
in the following sections.

Examples of operations are the binary infix operators =, + etc., and PrintObj is the operation that is called
for each argument of Print.

Also all attributes and properties are operations. Each attribute has a special method which is called if the
attribute value is already stored; this method of course simply returns this value.

The setter of an attribute is called automatically if an attribute value has been computed. Attribute setters
are operations, too. They have a default method that ignores the request to store the value. Depending on
the type of the object, there may be another method to store the value in a suitable way, and then set the
attribute tester for the object to true.

2.2 Method Installation

In order to describe what it means to select a method of an operation, we must describe how the methods
are connected to their operations.

1 I InstallMethod( opr[,info][,famp],args-filts[,val],method ) F

installs a function method method for the operation opr ; args-filts should be a list of requirements for the
arguments, each entry being a filter; if supplied info should be a short but informative string that describes
for what situation the method is installed, famp should be a function to be applied to the families of the
arguments, and val should be an integer that measures the priority of the method.
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The default values for info, famp, and val are the empty string, the function ReturnTrue, and the integer
zero, respectively.

The exact meaning of the arguments famp, args-filts, and val is explained in Section 2.3.

opr expects its methods to require certain filters for their arguments. For example, the argument of a method
for the operation Zero must be in the category IsAdditiveElementWithZero. It is not possible to use
InstallMethod to install a method for which the entries of args-filts do not imply the respective requirements
of the operation opr . If one wants to override this restriction, one has to use InstallOtherMethod instead.

2 I InstallOtherMethod( opr[,info][,famp],args-filts[,val],method ) F

installs a function method method for the operation opr , in the same way as for InstallMethod (see 2.2.1),
but without the restriction that the number of arguments must match the declaration of opr and without
the restriction that args-filts imply the respective requirements of the operation opr .

For attributes and properties there is InstallImmediateMethod (see 2.6.1).

For declaring that a filter is implied by other filters there is InstallTrueMethod (see 2.7.1).

2.3 Applicable Methods and Method Selection

A method installed as above is applicable for an arguments tuple if the following conditions are satisfied.

The number of arguments equals the length of the list args-filts, the i -th argument lies in the filter args-
filts[i], and famp returns true when applied to the families of the arguments. The maximal number of
arguments supported for methods is six, one gets an error message if one tries to install a method with at
least seven arguments.

So args-filt describes conditions for each argument, and famp describes a relation between the arguments.

For unary operations such as attributes and properties, there is no such relation to postulate, famp is
ReturnTrue for these operations, a function that always returns true. For binary operations, the usual
value of famp is IsIdenticalObj (see 12.5.1 in the Reference Manual), which means that both arguments
must lie in the same family.

Note that any properties which occur among the filters in the filter list will not be tested by the method
selection if they are not yet known. (More exact: if prop is a property then the filter implicitly uses not prop
but Hasprop and prop.) If this is desired you must explicitly enforce a test (see section 2.5) below.

If no method is applicable, the error message no method found is signaled.

Otherwise, the applicable method with highest rank is selected and then called. This rank is given by the
sum of the ranks of the filters in the list args-filt , including involved filters, plus the number val used
in the call of InstallMethod. So the argument val can be used to raise the priority of a method relative to
other methods for opr .

Note that from the applicable methods, an efficient one shall be selected. This is a method that needs only
little time and storage for the computations.

It seems to be impossible for GAP to select an optimal method in all cases. The present ranking of methods
is based on the assumption that a method installed for a special situation shall be preferred to a method
installed for a more general situation.

For example, a method for computing a Sylow subgroup of a nilpotent group is expected to be more efficient
than a method for arbitrary groups. So the more specific method will be selected if GAP knows that the
group given as argument is nilpotent.

Of course there is no obvious way to decide between the efficiency of incommensurable methods. For example,
take an operation with one method for permutation groups, another method for nilpotent groups, but no
method for nilpotent permutation groups, and call this operation with a permutation group known to be
nilpotent.
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2.4 Partial Methods

1 I TryNextMethod()

After a method has been selected and called, the method may recognize that it cannot compute the desired
result, and give up by calling TryNextMethod().

In effect, the execution of the method is terminated, and the method selection calls the next method that is
applicable w.r.t. the original arguments. In other words, the applicable method is called that is subsequent
to the one that called TryNextMethod, according to decreasing rank of the methods.

For example, since every finite group of odd order is solvable, one may install a method for the property
IsSolvableGroup that checks whether the size of the argument is an odd integer, returns true if so, and
gives up otherwise.

Care is needed if a partial method might modify the type of one of its arguments, for example by computing
an attribute or property. If this happens, and the type has really changed, then the method should not
exit using TryNextMethod() but should call the operation again, as the new information in the type may
cause some methods previously judged inapplicable to be applicable. For example, if the above method for
IsSolvableGroup actually computes the size, (rather than just examining a stored size), then it must take
care to check whether the type of the group has changed.

2.5 Redispatching

As mentioned above the method selection will not test unknown properties. In situations, in which algorithms
are only known (or implemented) under certain conditions, however such a test might be actually desired.

One way to achieve this would be to install the method under weaker conditions and explicitly test the
properties first, exiting via TryNextMethod (see 2.4.1) if some of them are not fulfilled. A problem of this
approach however is that such methods then automatically are ranked lower and that the code does not
look nice.

A much better way is to use redispatching: Before deciding that no method has been found one tests these
properties and if they turn out to be true the method selection is started anew (and will then find a method).

This can be achieved via the following function:

1 I RedispatchOnCondition( oper, fampred, reqs, cond, val ) F

This function installs a method for the operation oper under the conditions fampred and reqs which has
absolute value val ; that is, the value of the filters reqs is disregarded. cond is a list of filters. If not all the
values of properties involved in these filters are already known for actual arguments of the method, they
are explicitly tested and if they are fulfilled and stored after this test, the operation is dispatched again.
Otherwise the method exits with TryNextMethod (see 2.4.1). This can be used to enforce tests like IsFinite
in situations when all existing methods require this property. The list cond may have unbound entries in
which case the corresponding argument is ignored for further tests.

2.6 Immediate Methods

Usually a method is called only if its operation has been called and if this method has been selected.

For attributes and properties, one can install also immediate methods. An immediate method is called
automatically as soon as it is applicable to an object, provided that the value is not yet known. Afterwards
the attribute setter is called in order to store the value.

Note that in such a case GAP executes a computation for which it was not explicitly asked by the user.
So one should install only those methods as immediate methods that are extremely cheap. To emphasize
this, immediate methods are also called zero cost methods. The time for their execution should really be
approximately zero.
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An immediate method method for the attribute or property attr with requirement req is installed via

1 I InstallImmediateMethod( attr, req, val, method )

where val is an integer value that measures the priority of method among the immediate methods for attr .

Note the difference to InstallMethod (see 2.2.1) that no family predicate occurs because attr expects only
one argument, and that req is not a list of requirements but the argument requirement itself.

For example, the size of a permutation group can be computed very cheaply if a stabilizer chain of the
group is known. So it is reasonable to install an immediate method for Size with requirement IsGroup and
Tester( stab ), where stab is the attribute corresponding to the stabilizer chain.

Another example would be the implementation of the conclusion that every finite group of prime power order
is nilpotent. This could be done by installing an immediate method for the attribute IsNilpotentGroup
with requirement IsGroup and Tester( Size ). This method would then check whether the size is a finite
prime power, return true in this case and otherwise call TryNextMethod() (see 2.4.1). But this requires
factoring of an integer, which cannot be guaranteed to be very cheap, so one should not install this method
as an immediate method.

Immediate methods are thought of as a possibility for objects to gain useful knowledge. They must not be
used to force the storing of “defining information” in an object. In other words, GAP should work even if all
immediate methods are invalidated.

2.7 Logical Implications

It may happen that a filter newfil shall be implied by another filter filt , which is usually a meet of other
properties, or the meet of some properties and some categories. Such a logical implication can be installed
as an immediate method for newfil that requires filt and that always returns true. It should be installed via

1 I InstallTrueMethod( newfil, filt )

This has the effect that newfil becomes an implied filter of filt , see 13.2 in the Reference Manual.

For example, each cyclic group is abelian, each finite vector space is finite dimensional, and each division
ring is integral. The first of these implications is installed as follows.

InstallTrueMethod( IsCommutative, IsGroup and IsCyclic );

Contrary to other immediate methods, logical implications cannot be switched off. This means that after
the above implication has been installed, one can rely on the fact that every object in the filter IsGroup
and IsCyclic will also be in the filter IsCommutative.

2.8 Operations and Mathematical Terms

Usually an operation stands for a mathematical concept, and the name of the operation describes this
uniquely. Examples are the property IsFinite and the attribute Size. But there are cases where the same
mathematical term is used to denote different concepts, for example Degree is defined for polynomials, group
characters, and permutation actions, and Rank is defined for matrices, free modules, p-groups, and transitive
permutation actions.

It is in principle possible to install methods for the operation Rank that are applicable to the different
types of arguments, corresponding to the different contexts. But this is not the approach taken in the GAP
library. Instead there are operations such as RankMat for matrices and DegreeOfCharacter (in fact these
are attributes) which are installed as methods of the “ambiguous” operations Rank and Degree.

The idea is to distinguish between on the one hand different ways to compute the same thing (e.g. different
methods for \=, Size, etc.), and on the other hand genuinely different things (such as the degree of a
polynomial and a permutation action).
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The former is the basic purpose of operations and attributes. The latter is provided as a user convenience
where mathematical usage forces it on us and where no conflicts arise. In programming the library, we use
the underlying mathematically precise operations or attributes, such as RankMat and RankOperation. These
should be attributes if appropriate, and the only role of the operation Rank is to decide which attribute the
user meant. That way, stored information is stored with “full mathematical precision” and is less likely to
be retrieved for a wrong purpose later.

One word about possible conflicts. A typical example is the mathematical term “centre”, which is defined
as {x ∈ M |a ∗ x = x ∗ a∀a ∈ M } for a magma M , and as {x ∈ L|l ∗ x = 0∀l ∈ L} for a Lie algebra L.
Here it is not possible to introduce an operation Centre that delegates to attributes CentreOfMagma and
CentreOfLieAlgebra, depending on the type of the argument. This is because any Lie algebra in GAP is
also a magma, so both CentreOfMagma and CentreOfLieAlgebra would be defined for a Lie algebra, with
different meaning if the characteristic is 2. So we cannot achieve that one operation in GAP corresponds to
the mathematical term “centre”.

“Ambiguous” operations such as Rank are declared in the library file overload.g.



3 Creating New Objects

This chapter is divided into three parts.
In the first part, it is explained how to create filters (see 3.1, 3.2, 3.3, 3.4), operations (see 3.5), families
(see 3.6), types (see 3.7), and objects with given type (see 3.8).
In the second part, first a few small examples are given, for dealing with the usual cases of component
objects (see 3.9) and positional objects (see 3.10), and for the implementation of new kinds of lists (see 3.11
and 3.14). Finally, the external representation of objects is introduced (see 3.15), as a tool for representation
independent access to an object.
The third part deals with some rules concerning the organization of the GAP library; namely, some commands
for creating global variables are explained (see 3.17) that correspond to the ones discussed in the first part of
the chapter, and the idea of distinguishing declaration and implementation part of GAP packages is outlined
(see 3.18).
See also Chapter 5 for examples how the functions from the first part are used, and why it is useful to have
a declaration part and an implementation part.

3.1 Creating Categories
1 I NewCategory( name, super )

NewCategory returns a new category cat that has the name name and is contained in the filter super ,
see 13.2 in the Reference Manual. This means that every object in cat lies automatically also in super . We
say also that super is an implied filter of cat .
For example, if one wants to create a category of group elements then super should be IsMultiplica-
tiveElementWithInverse or a subcategory of it. If no specific supercategory of cat is known, super may be
IsObject.
@Eventually tools will be provided to display hierarchies of categories etc., which will help to
choose super appropriately.@
The incremental rank (see 13.2 in the Reference Manual) of cat is 1.
Two functions that return special kinds of categories are of importance.

2 I CategoryCollections( cat )

For a category cat , CategoryCollections returns the collections category of cat . This is a category in
that all collections of objects in cat lie.
For example, a permutation lies in the category IsPerm, and every dense list of permutations and every
domain of permutations lies in the collections category of IsPerm.

3 I CategoryFamily( cat )

For a category cat , CategoryFamily returns the family category of cat . This is a category in that all
families lie that know from their creation that all their elements are in the category cat , see 3.6.
For example, a family of tuples is in the category CategoryFamily( IsTuple ), and one can distinguish
such a family from others by this category. So it is possible to install methods for operations that require
one argument to be a family of tuples.
CategoryFamily is quite technical, and in fact of minor importance.
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3.2 Creating Representations

1 I NewRepresentation( name, super, slots )

NewRepresentation returns a new representation rep that has the name name and is a subrepresentation
of the representation super . This means that every object in rep lies automatically also in super . We say
also that super is an implied filter of rep.

Each representation in GAP is a subrepresentation of exactly one of the four representations IsInternalRep,
IsDataObjectRep, IsComponentObjectRep, IsPositionalObjectRep. The data describing objects in the
former two can be accessed only via GAP kernel functions, the data describing objects in the latter two is
accessible also in library functions, see 3.9 and 3.10 for the details.

The third argument slots is a list either of integers or of strings. In the former case, rep must be IsPosition-
alObjectRep or a subrepresentation of it, and slots tells what positions of the objects in the representation
rep may be bound. In the latter case, rep must be IsComponentObjectRep or a subrepresentation of, and slots
lists the admissible names of components that objects in the representation rep may have. The admissible
positions resp. component names of super need not be be listed in slots.

The incremental rank (see 13.2 in the Reference Manual) of rep is 1.

Note that for objects in the representation rep, of course some of the component names and positions
reserved via slots may be unbound.

Examples for the use of NewRepresentation can be found in 3.9, 3.10, and also in 5.3.

3.3 Creating Attributes and Properties

1 I NewAttribute( name, filt )
I NewAttribute( name, filt, rank )

NewAttribute returns a new attribute attr with name name (see also 13.5 in the Reference Manual). The
filter filt describes the involved filters of attr (see 13.2 in the Reference Manual). That is, the argument for
attr is expected to lie in filt .

Each method for attr that does not require its argument to lie in filt must be installed using InstallOther-
Method.

Contrary to the situation with categories and representations, the tester of attr does not imply filt . This is
exactly because of the possibility to install methods that do not require filt .

For example, the attribute Size was created with second argument a list or a collection, but there is also a
method for Size that is applicable to a character table, which is neither a list nor a collection.

The optional third argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of the
tester of attr , the default value is 1.

2 I NewAttribute( name, filt, "mutable" )
I NewAttribute( name, filt, "mutable", rank )

If the third argument is the string "mutable", the stored values of the new attribute are not forced to be
immutable. This is useful for an attribute whose value is some partial information that may be completed
later. For example, there is an attribute ComputedSylowSubgroups for the list holding those Sylow subgroups
of a group that have been computed already by the function SylowSubgroup, and this list is mutable because
one may want to enter groups into it as they are computed.

3 I NewProperty( name, filt )
I NewProperty( name, filt, rank )

NewProperty returns a new property prop with name name (see also 13.7 in the Reference Manual). The
filter filt describes the involved filters of prop. As in the case of attributes, filt is not implied by prop.
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The optional third argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of the
property prop itself, i.e. not of its tester, the default value is 1.

Each method that is installed for an attribute or a property via InstallMethod must require exactly one
argument, and this must lie in the filter filt that was entered as second argument of NewAttribute resp.
NewProperty.

As for any operation (see 3.5), for attributes and properties one can install a method taking an argument
that does not lie in filt via InstallOtherMethod, or a method for more than one argument; in the latter
case, clearly the result value is not stored in any of the arguments.

3.4 Creating Other Filters

1 I NewFilter( name )
I NewFilter( name, rank )

NewFilter returns a simple filter with name name (see 13.8 in the Reference Manual). The optional second
argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of the filter, the default
value is 1.

In order to change the value of filt for an object obj , one can use logical implications (see 2.7) or the functions

2 I SetFilterObj( obj, filt )
I ResetFilterObj( obj, filt )

SetFilterObj sets the value of filt (and of all filters implied by filt) for obj to true,

ResetFilterObj sets the value of filt for obj to false (but implied filters of filt are not touched. This might
create inconsistent situations if applied carelessly).

The default value of filt for each object is false.

3.5 Creating Operations

1 I NewOperation( name, args-filts )

NewOperation returns an operation opr with name name. The list args-filts describes requirements about
the arguments of opr , namely the number of arguments must be equal to the length of args-filts, and the
i -th argument must lie in the filter args-filts[i].

Each method that is installed for opr via InstallMethod must require that the i -th argument lies in the
filter args-filts[i].

One can install methods for other arguments tuples via InstallOtherMethod, this way it is also possible to
install methods for a different number of arguments than the length of args-filts.

3.6 Creating Families

Families are probably the least obvious part of the GAP type system, so some remarks about the role of
families are necessary. When one uses GAP as it is, one will (better: should) not meet families at all. The
two situations where families come into play are the following.

First, since families are used to describe relations between arguments of operations in the method selection
mechanism (see Chapter 2 in this manual, and also Chapter 13 in the Reference Manual), one has to prescribe
such a relation in each method installation (see 2.2); usual relations are ReturnTrue (which means that any
relation of the actual arguments is admissible), IsIdenticalObj (which means that there are two arguments
that lie in the same family), and IsCollsElms (which means that there are two arguments, the first being
a collection of elements that lie in the same family as the second argument).
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Second —and this is the more complicated situation— whenever one creates a new kind of objects, one has
to decide what its family shall be. If the new object shall be equal to existing objects, for example if it is
just represented in a different way, there is no choice: The new object must lie in the same family as all
objects that shall be equal to it. So only if the new object is different (w.r.t. the equality “=”) from all other
GAP objects, we are likely to create a new family for it. Note that enlarging an existing family by such new
objects may be problematic because of implications that have been installed for all objects of the family in
question. The choice of families depends on the applications one has in mind. For example, if the new objects
in question are not likely to be arguments of operations for which family relations are relevant (for example
binary arithmetic operations), one could create one family for all such objects, and regard it as “the family
of all those GAP objects that would in fact not need a family”. On the other extreme, if one wants to create
domains of the new objects then one has to choose the family in such a way that all intended elements of
a domain do in fact lie in the same family. (Remember that a domain is a collection, see Chapter 12.4 in
the Reference Manual, and that a collection consists of elements in the same family, see Chapter 28 and
Section 13.1 in the Reference Manual.)

Let us look at an example. Suppose that no permutations are available in GAP, and that we want to
implement permutations. Clearly we want to support permutation groups, but it is not a priori clear how
to distribute the new permutations into families. We can put all permutations into one family; this is how
in fact permutations are implemented in GAP. But it would also be possible to put all permutations of a
given degree into a family of their own; this would for example mean that for each degree, there would be
distinguished trivial permutations, and that the stabilizer of the point 5 in the symmetric group on the
points 1, 2, . . . , 5 is not regarded as equal to the symmetric group on 1, 2, 3, 4. Note that the latter approach
would have the advantage that it is no problem to construct permutations and permutation groups acting on
arbitrary (finite) sets, for example by constructing first the symmetric group on the set and then generating
any desired permutation group as a subgroup of this symmetric group.

So one aspect concerning a reasonable choice of families is to make the families large enough for being able to
form interesting domains of elements in the family. But on the other hand, it is useful to choose the families
small enough for admitting meaningful relations between objects. For example, the elements of different free
groups in GAP lie in different families; the multiplication of free group elements is installed only for the case
that the two operands lie in the same family, with the effect that one cannot erroneously form the product
of elements from different free groups. In this case, families appear as a tool for providing useful restrictions.

As another example, note that an element and a collection containing this element never lie in the same
family, by the general implementation of collections; namely, the family of a collection of elements in the
family Fam is the collections family of Fam (see 3.6.2). This means that for a collection, we need not (because
we cannot) decide about its family.

1 I NewFamily( name )
I NewFamily( name, req )
I NewFamily( name, req, imp )
I NewFamily( name, req, imp, famfilter )

NewFamily returns a new family fam with name name. The argument req , if present, is a filter of which fam
shall be a subset. If one tries to create an object in fam that does not lie in the filter req , an error message
is printed. Also the argument imp, if present, is a filter of which fam shall be a subset. Any object that is
created in the family fam will lie automatically in the filter imp.

The filter famfilter , if given, specifies a filter that will hold for the family fam (not for objects in fam).

Families are always represented as component objects (see 3.9). This means that components can be used
to store and access useful information about the family.

There are a few functions in GAP that construct families. As an example, consider (see also 28.1 in the
Reference Manual)
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2 I CollectionsFamily( fam )

CollectionsFamily is an attribute that takes a family fam as argument, and returns the family of all
collections over fam, that is, of all dense lists and domains that consist of objects in fam.

The NewFamily call in the standard method of CollectionsFamily is executed with second argument
IsCollection, since every object in the collections family must be a collection, and with third argument
the collections categories of the involved categories in the implied filter of fam.

If fam is a collections family then

3 I ElementsFamily( fam )

returns the unique family with collections family fam; note that by definition, all elements in a collection
lie in the same family, so ElementsFamily( fam ) is the family of each element in any collection that has
the family fam.

3.7 Creating Types

1 I NewType( fam, filt )
I NewType( fam, filt, data )

NewType returns the type given by the family fam and the filter filt . The optional third argument data is
any object that denotes defining data of the desired type.

For examples where NewType is used, see 3.9, 3.10, and the example in Chapter 5.

3.8 Creating Objects

1 I Objectify( type, data ) F

New objects are created by Objectify. data is a list or a record, and type is the type that the desired object
shall have. Objectify turns data into an object with type type. That is, data is changed, and afterwards it
will not be a list or a record unless type is of type list resp. record.

If data is a list then Objectify turns it into a positional object, if data is a record then Objectify turns it
into a component object (for examples, see 3.9 and 3.10).

Objectify does also return the object that it made out of data.

For examples where Objectify is used, see 3.9, 3.10, and the example in Chapter 5.

Attribute assignments will change the type of an object. If you create many objects, code of the form

o:=Objectify(type,rec());
SetMyAttribute(o,value);

will take a lot of time for type changes. You can avoid this by setting the attributes immediately while the
object is created, via:

2 I ObjectifyWithAttributes(obj,type,Attr1,val1[,Attr2,val2...]) F

which changes the type of object obj to type type and sets attribute Attr1 to val1 , sets attribute Attr2 to
val2 and so forth.

If the filter list of type includes that these attributes are set (and the properties also include values of the
properties) and if no special setter methods are installed for any of the involved attributes then they are set
simultaneously without type changes which can produce a substantial speedup.

If the conditions of the last sentence are not fulfilled, an ordinary Objectify with subsequent Setter calls
for the attributes is performed, instead.
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3.9 Component Objects

A component object is an object in the representation IsComponentObjectRep or a subrepresentation of
it. Such an object cobj is built from subobjects that can be accessed via cobj!.name, similar to components
of a record. Also analogously to records, values can be assigned to components of cobj via cobj!.name:=
val . For the creation of component objects, see 3.8.

1 I NamesOfComponents( comobj ) F

For a component object comobj , NamesOfComponents returns a list of strings, which are the names of
components currently bound in comobj .

One must be very careful when using the !. operator, in order to interpret the component in the right way,
and even more careful when using the assignment to components using !., in order to keep the information
stored in cobj consistent.

First of all, in the access or assignment to a component as shown above, name must be among the admissible
component names for the representation of cobj , see 3.2. Second, preferably only few low level functions
should use !., whereas this operator should not occur in “user interactions”.

Note that even if cobj claims that it is immutable, i.e., if cobj is not in the category IsMutable, access and
assignment via !. work. This is necessary for being able to store newly discovered information in immutable
objects.

The following example shows the implementation of an iterator (see 28.7 in the Reference Manual) for the
domain of integers, which is represented as component object. See 3.10 for an implementation using positional
objects. (In practice, such an iterator can be implemented more elegantly using IteratorByFunctions,
see 3.13 and 28.7.8 in the GAP Reference Manual.)

The used succession of integers is 0, 1,−1, 2,−2, 3,−3, . . ., that is, an = n/2 if n is even, and an = (1− n)/2
otherwise.

IsIntegersIteratorCompRep := NewRepresentation( "IsIntegersIteratorRep",
IsComponentObjectRep, [ "counter" ] );

The above command creates a new representation (see 3.2.1) IsIntegersIteratorCompRep, as a subrepre-
sentation of IsComponentObjectRep, and with one admissible component counter. So no other components
than counter will be needed.

InstallMethod( Iterator,
"method for ‘Integers’",
[ IsIntegers ],
function( Integers )
return Objectify( NewType( IteratorsFamily,

IsIterator
and IsIntegersIteratorCompRep ),

rec( counter := 0 ) );
end );

After the above method installation, one can already ask for Iterator( Integers ). Note that exactly the
domain of integers is described by the filter IsIntegers.

By the call to NewType, the returned object lies in the family containing all iterators, which is Itera-
torsFamily, it lies in the category IsIterator and in the representation IsIntegersIteratorCompRep;
furthermore, it has the component counter with value 0.

What is missing now are methods for the two basic operations of iterators, namely IsDoneIterator and
NextIterator. The former must always return false, since there are infinitely many integers. The latter
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must return the next integer in the iteration, and update the information stored in the iterator, that is,
increase the value of the component counter.

InstallMethod( IsDoneIterator,
"method for iterator of ‘Integers’",
[ IsIterator and IsIntegersIteratorCompRep ],
ReturnFalse );

InstallMethod( NextIterator,
"method for iterator of ‘Integers’",
[ IsIntegersIteratorCompRep ],
function( iter )
iter!.counter:= iter!.counter + 1;
if iter!.counter mod 2 = 0 then
return iter!.counter / 2;

else
return ( 1 - iter!.counter ) / 2;

fi;
end );

3.10 Positional Objects

A positional object is an object in the representation IsPositionalObjectRep or a subrepresentation of
it. Such an object pobj is built from subobjects that can be accessed via pobj![pos], similar to positions in
a list. Also analogously to lists, values can be assigned to positions of pobj via pobj![pos]:= val . For the
creation of positional objects, see 3.8.

One must be very careful when using the ![] operator, in order to interpret the position in the right way,
and even more careful when using the assignment to positions using ![], in order to keep the information
stored in pobj consistent.

First of all, in the access or assignment to a position as shown above, pos must be among the admissible
positions for the representation of pobj , see 3.2. Second, preferably only few low level functions should use
![], whereas this operator should not occur in “user interactions”.

Note that even if pobj claims that it is immutable, i.e., if pobj is not in the category IsMutable, access
and assignment via ![] work. This is necessary for being able to store newly discovered information in
immutable objects.

The following example shows the implementation of an iterator (see 28.7 in the Reference Manual) for the
domain of integers, which is represented as positional object. See 3.9 for an implementation using component
objects, and more details.

IsIntegersIteratorPosRep := NewRepresentation( "IsIntegersIteratorRep",
IsPositionalObjectRep, [ 1 ] );

The above command creates a new representation (see 3.2.1) IsIntegersIteratorPosRep, as a subrepre-
sentation of IsComponentObjectRep, and with only the first position being admissible for storing data.

InstallMethod( Iterator,
"method for ‘Integers’",
[ IsIntegers ],
function( Integers )
return Objectify( NewType( IteratorsFamily,

IsIterator
and IsIntegersIteratorRep ),
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[ 0 ] );
end );

After the above method installation, one can already ask for Iterator( Integers ). Note that exactly the
domain of integers is described by the filter IsIntegers.

By the call to NewType, the returned object lies in the family containing all iterators, which is IteratorsFam-
ily, it lies in the category IsIterator and in the representation IsIntegersIteratorPosRep; furthermore,
the first position has value 0.

What is missing now are methods for the two basic operations of iterators, namely IsDoneIterator and
NextIterator. The former must always return false, since there are infinitely many integers. The latter
must return the next integer in the iteration, and update the information stored in the iterator, that is,
increase the value stored in the first position.

InstallMethod( IsDoneIterator,
"method for iterator of ‘Integers’",
[ IsIterator and IsIntegersIteratorPosRep ],
ReturnFalse );

InstallMethod( NextIterator,
"method for iterator of ‘Integers’",
[ IsIntegersIteratorPosRep ],
function( iter )
iter![1]:= iter![1] + 1;
if iter![1] mod 2 = 0 then
return iter![1] / 2;

else
return ( 1 - iter![1] ) / 2;

fi;
end );

It should be noted that one can of course install both the methods shown in Section 3.9 and 3.10. The call
Iterator( Integers ) will cause one of the methods to be selected, and for the returned iterator, which
will have one of the representations we constructed, the right NextIterator method will be chosen.

3.11 Implementing New List Objects

This section gives some hints for the quite usual situation that one wants to implement new objects that
are lists. More precisely, one either wants to deal with lists that have additional features, or one wants that
some objects also behave as lists. An example can be found in 3.12.

A list in GAP is an object in the category IsList. Basic operations for lists are Length, \[\], and Is-
Bound\[\] (see 21.2 in the Reference Manual).

Note that the access to the position pos in the list list via list[pos] is handled by the call \[\]( list,
pos ) to the operation \[\]. To explain the somewhat strange name \[\] of this operation, note that
non-alphanumeric characters like [ and ] may occur in GAP variable names only if they are escaped by a \
character.

Analogously, the check IsBound( list[pos] ) whether the position pos of the list list is bound is handled
by the call IsBound\[\]( list, pos ) to the operation IsBound\[\].

For mutable lists, also assignment to positions and unbinding of positions via the operations \[\]\:\= and
Unbind\[\] are basic operations. The assignment list[pos]:= val is handled by the call \[\]\:\=( list,
pos, val ), and Unbind( list[pos] ) is handled by the call Unbind\[\]( list, pos ).
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All other operations for lists, e.g., Add, Append, Sum, are based on these operations. This means that it is
sufficient to install methods for the new list objects only for the basic operations.

So if one wants to implement new list objects then one creates them as objects in the category IsList, and
installs methods for Length, \[\], and IsBound\[\]. If the new lists shall be mutable, one needs to install
also methods for \[\]\:\= and Unbind\[\].

One application for this is the implementation of enumerators for domains. An enumerator for the domain
D is a dense list whose entries are in bijection with the elements of D . If D is large then it is not useful to
write down all elements. Instead one can implement such a bijection implicitly. This works also for infinite
domains.

In this situation, one implements a new representation of the lists that are already available in GAP, in
particular the family of such a list is the same as the family of the domain D .

But it is also possible to implement new kinds of lists that lie in new families, and thus are not equal
to lists that were available in GAP before. An example for this is the implementation of matrices whose
multiplication via “*” is the Lie product of matrices.

In this situation, it makes no sense to put the new matrices into the same family as the original matrices.
Note that the product of two Lie matrices shall be defined but not the product of an ordinary matrix and
a Lie matrix. So it is possible to have two lists that have the same entries but that are not equal w.r.t. “=”
because they lie in different families.

3.12 Example – Constructing Enumerators

When dealing with countable sets, a usual task is to define enumerations, i.e., bijections to the positive
integers. In GAP, this can be implemented via enumerators (see 21.23 in the GAP Reference Manual).
These are lists containing the elements in a specified ordering, and the operations Position and list access
via \[\] define the desired bijection. For implementing such an enumerator, one mainly needs to install the
appropriate functions for these operations.

A general setup for creating such lists is given by EnumeratorByFunctions (see 28.2.4 in the GAP Reference
Manual).

If the set in question is a domain D for which a Size method is available then all one has to do is to write
down the functions for computing the n-th element of the list and for computing the position of a given
GAP object in the list, to put them into the components ElementNumber and NumberElement of a record,
and to call EnumeratorByFunctions with the domain D and this record as arguments. For example, the
following lines of code install an Enumerator method for the case that D is the domain of rational integers.
(Note that IsIntegers is a filter that describes exactly the domain of rational integers.)

InstallMethod( Enumerator,
"for integers",
[ IsIntegers ],
Integers -> EnumeratorByFunctions( Integers, rec(

ElementNumber := function( e, n ) ... end,
NumberElement := function( e, x ) ... end ) ) );

The bodies of the functions have been omitted above; here is the code that is actually used in GAP. (The
ordering coincides with that for the iterators for the domain of rational integers that have been discussed
in 3.9 and 3.10.)
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gap> enum:= Enumerator( Integers );
<enumerator of Integers>
gap> Print( enum!.NumberElement, "\n" );
function ( e, x )

local pos;
if not IsInt( x ) then

return fail;
elif 0 < x then

pos := 2 * x;
else

pos := -2 * x + 1;
fi;
return pos;

end
gap> Print( enum!.ElementNumber, "\n" );
function ( e, n )

if n mod 2 = 0 then
return n / 2;

else
return (1 - n) / 2;

fi;
return;

end

The situation becomes slightly more complicated if the set S in question is not a domain. This is because one
must provide also at least a method for computing the length of the list, and because one has to determine
the family in which it lies (see 3.8). The latter should usually not be a problem since either S is nonempty
and all its elements lie in the same family –in this case one takes the collections family of any element in S–
or the family of the enumerator must be ListsFamily.

An example in the GAP library is an enumerator for the set of k -tuples over a finite set; the function is
called EnumeratorOfTuples.

gap> Print( EnumeratorOfTuples, "\n" );
function ( set, k )

local enum;
if IsEmpty( set ) then

return Immutable( [ ] );
elif k = 0 then

return Immutable( [ [ ] ] );
fi;
enum := EnumeratorByFunctions( CollectionsFamily( FamilyObj( set ) ), rec(

ElementNumber := function ( enum, n )
local nn, t, i;
nn := n - 1;
t := [ ];
for i in [ 1 .. enum!.k ] do

t[i] := RemInt( nn, Length( enum!.set ) ) + 1;
nn := QuoInt( nn, Length( enum!.set ) );

od;
if nn <> 0 then

Error( "<enum>[", n, "] must have an assigned value" );
fi;



26 Chapter 3. Creating New Objects

nn := enum!.set{Reversed( t )};
MakeImmutable( nn );
return nn;

end,
NumberElement := function ( enum, elm )

local n, i;
if not IsList( elm ) then

return fail;
fi;
elm := List( elm, function ( x )

return Position( enum!.set, x );
end );

if fail in elm or Length( elm ) <> enum!.k then
return fail;

fi;
n := 0;
for i in [ 1 .. enum!.k ] do

n := Length( enum!.set ) * n + elm[i] - 1;
od;
return n + 1;

end,
Length := function ( enum )

return Length( enum!.set ) ^ enum!.k;
end,

PrintObj := function ( enum )
Print( "EnumeratorOfTuples( ", enum!.set, ", ", enum!.k, " )"
);
return;

end,
set := Set( set ),
k := k ) );

SetIsSSortedList( enum, true );
return enum;

end

We see that the enumerator is a homogeneous list that stores individual functions ElementNumber, Num-
berElement, Length, and PrintObj; besides that, the data components S and k are contained.

3.13 Example – Constructing Iterators

Iterators are a kind of objects that is implemented for several collections in the GAP library and which might
be interesting also in other cases, see 28.7 in the GAP Reference Manual. A general setup for implementing
new iterators is provided by IteratorByFunctions.

All one has to do is to write down the functions for NextIterator, IsDoneIterator, and ShallowCopy,
and to call IteratorByFunctions with this record as argument. For example, the following lines of code
install an Iterator method for the case that the argument is the domain of rational integers.

(Note that IsIntegers is a filter that describes exactly the domain of rational integers.)
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InstallMethod( Iterator,
"for integers",
[ IsIntegers ],
Integers -> IteratorByFunctions( rec(

NextIterator:= function( iter ) ... end,
IsDoneIterator := ReturnFalse,
ShallowCopy := function( iter ) ... end ) ) );

The bodies of two of the functions have been omitted above; here is the code that is actually used in
GAP. (The ordering coincides with that for the iterators for the domain of rational integers that have been
discussed in 3.9 and 3.10.)

gap> iter:= Iterator( Integers );
<iterator>
gap> Print( iter!.NextIterator, "\n" );
function ( iter )

iter!.counter := iter!.counter + 1;
if iter!.counter mod 2 = 0 then

return iter!.counter / 2;
else

return (1 - iter!.counter) / 2;
fi;
return;

end
gap> Print( iter!.ShallowCopy, "\n" );
function ( iter )

return rec(
counter := iter!.counter );

end

Note that the ShallowCopy component of the record must be a function that does not return an iterator but
a record that can be used as the argument of IteratorByFunctions in order to create the desired shallow
copy.

3.14 Arithmetic Issues in the Implementation of New Kinds of Lists

When designing a new kind of list objects in GAP, defining the arithmetic behaviour of these objects is an
issue.

There are situations where arithmetic operations of list objects are unimportant in the sense that adding
two such lists need not be represented in a special way. In such cases it might be useful either to support no
arithmetics at all for the new lists, or to enable the default arithmetic methods. The former can be achieved
by not setting the filters IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector in the
types of the lists, the latter can be achieved by setting the filter IsListDefault. (for details, see 21.12 in the
GAP Reference Manual). An example for “wrapped lists” with default behaviour are vector space bases; they
are lists with additional properties concerning the computation of coefficients, but arithmetic properties are
not important. So it is no loss to enable the default methods for these lists.

However, often the arithmetic behaviour of new list objects is important, and one wants to keep these
lists away from default methods for addition, multiplication etc. For example, the sum and the product
of (compatible) block matrices shall be represented as a block matrix, so the default methods for sum and
product of matrices shall not be applicable, although the results will be equal to those of the default methods
in the sense that their entries at corresponding positions are equal.
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So one does not set the filter IsListDefault in such cases, and thus one can implement one’s own methods
for arithmetic operations. (Of course “can” means on the other hand that one must implement such methods
if one is interested in arithmetics of the new lists.)

The specific binary arithmetic methods for the new lists will usually cover the case that both arguments are
of the new kind, and perhaps also the interaction between a list of the new kind and certain other kinds of
lists may be handled if this appears to be useful.

For the last situation, interaction between a new kind of lists and other kinds of lists, GAP provides al-
ready a setup. Namely, there are the categories IsGeneralizedRowVector and IsMultiplicativeGener-
alizedRowVector, which are concerned with the additive and the multiplicative behaviour, respectively, of
lists. For lists in these filters, the structure of the results of arithmetic operations is prescribed (see 21.13
and 21.14 in the GAP Reference Manual).

For example, if one implements block matrices in IsMultiplicativeGeneralizedRowVector then automat-
ically the product of such a block matrix and a (plain) list of such block matrices will be defined as the
obvious list of matrix products, and a default method for plain lists will handle this multiplication. (Note
that this method will rely on a method for computing the product of the block matrices, and of course no
default method is available for that.) Conversely, if the block matrices are not in IsMultiplicativeGen-
eralizedRowVector then the product of a block matrix and a (plain) list of block matrices is not defined.
(There is no default method for it, and one can define the result and provide a method for computing it.)

Thus if one decides to set the filters IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVec-
tor for the new lists, on the one hand one loses freedom in defining arithmetic behaviour, but on the other
hand one gains several default methods for a more or less natural behaviour.

If a list in the filter IsGeneralizedRowVector (IsMultiplicativeGeneralizedRowVector) lies in IsAt-
tributeStoringRep, the values of additive (multiplicative) nesting depth is stored in the list and need not
be calculated for each arithmetic operation. One can then store the value(s) already upon creation of the
lists, with the effect that the default arithmetic operations will access elements of these lists only if this is
unavoidable. For example, the sum of two plain lists of “wrapped matrices” with stored nesting depths are
computed via the method for adding two such wrapped lists, and without accessing any of their rows (which
might be expensive). In this sense, the wrapped lists are treated as black boxes.

3.15 External Representation

An operation is defined for elements rather than for objects in the sense that if the arguments are replaced
by objects that are equal to the old arguments w.r.t. the equivalence relation “=” then the result must be
equal to the old result w.r.t. “=”.

But the implementation of many methods is representation dependent in the sense that certain representation
dependent subobjects are accessed.

For example, a method that implements the addition of univariate polynomials may access coefficients lists of
its arguments only if they are really stored, while in the case of sparsely represented polynomials a different
approach is needed.

In spite of this, for many operations one does not want to write an own method for each possible representa-
tions of each argument, for example because none of the methods could in fact take advantage of the actually
given representations of the objects. Another reason could be that one wants to install first a representation
independent method, and then add specific methods as they are needed to gain more efficiency, by really
exploiting the fact that the arguments have certain representations.

For the purpose of admitting representation independent code, one can define an external representation
of objects in a given family, install methods to compute this external representation for each representation
of the objects, and then use this external representation of the objects whenever they occur.
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We cannot provide conversion functions that allow us to first convert any object in question to one particular
“standard representation”, and then access the data in the way defined for this representation, simply because
it may be impossible to choose such a “standard representation” uniformly for all objects in the given family.

So the aim of an external representation of an object obj is a different one, namely to describe the data from
which obj is composed. In particular, the external representation of obj is not one possible (“standard”)
representation of obj , in fact the external representation of obj is in general different from obj w.r.t. “=”,
first of all because the external representation of obj does in general not lie in the same family as obj .

For example the external representation of a rational function is a list of length two or three, the first
entry being the zero coefficient, the second being a list describing the coefficients and monomials of the
numerator, and the third, if bound, being a list describing the coefficients and monomials of the denominator.
In particular, the external representation of a polynomial is a list and not a polynomial.

The other way round, the external representation of obj encodes obj in such a way that from this data and
the family of obj , one can create an object that is equal to obj . Usually the external representation of an
object is a list or a record.

Although the external representation of obj is by definition independent of the actually available represen-
tations for obj , it is usual that a representation of obj exists for which the computation of the external
representation is obtained by just “unpacking” obj , in the sense that the desired data is stored in a compo-
nent or a position of obj , if obj is a component object (see 3.9) or a positional object (see 3.10).

To implement an external representation means to install methods for the following two operations.

1 I ExtRepOfObj( obj )
I ObjByExtRep( fam, data )

ExtRepOfObj returns the external representation of its argument, and ObjByExtRep returns an object in the
family fam that has external representation data.

Of course, ObjByExtRep( FamilyObj( obj ), ExtRepOfObj( obj ) ) must be equal to obj . But it is not
required that equal objects have equal external representations.

Note that if one defines a new representation of objects for which an external representation does already
exist then one must install a method to compute this external representation for the objects in the new
representation.

3.16 Mutability and Copying

Any GAP Object is either mutable or immutable. This can be tested with the Operation IsMutable. The
intended meaning of (im)mutability is a mathematical one: an immutable Object should never change in
such a way that it represents a different Element. Objects may change in other ways, for instance to store
more information, or represent an element in a different way.

Immutability is enforced in different ways for built-in objects (like records, or lists) and for external objects
(made using Objectify).

For built-in objects which are immutable, the kernel will prevent you from changing them. Thus

gap> l := [1,2,4];
[ 1, 2, 4 ]
gap> MakeImmutable(l);
[ 1, 2, 4 ]
gap> l[3] := 5;
Lists Assignment: <list> must be a mutable list

For external Objects, the situation is different. An external Object which claims to be immutable (i.e. its
Type does not contain IsMutable) should not admit any Methods which change the Element it represents.
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The kernel does not prevent the use of !. and ![ to change the underlying data structure. This is used for
instance by the code that stores Attribute values for reuse. In general, these ! operations should only be
used in Methods which depend on the Representation of the Object. Furthermore, we would not recommend
users to install Methods which depend on the Representations of Objects created by the library or by GAP
packages, as there is certainly no guarantee of the representations being the same in future versions of GAP.

Here we see an immutable Object (the group S4), in which we improperly install a new component.

gap> g := SymmetricGroup(IsPermGroup,4);
Sym( [ 1 .. 4 ] )
gap> IsMutable(g);
false
gap> NamesOfComponents(g);
[ "GeneratorsOfMagmaWithInverses", "Size", "MovedPoints", "NrMovedPoints" ]
gap> g!.silly := "rubbish";
"rubbish"
gap> NamesOfComponents(g);
[ "GeneratorsOfMagmaWithInverses", "Size", "MovedPoints", "NrMovedPoints",
"silly" ]

gap> g!.silly;
"rubbish"

On the other hand, if we form an immutable externally represented list, we find that GAP will not let us
change the object.

gap> e := Enumerator(g);
<enumerator of perm group>
gap> IsMutable(e);
false
gap> IsList(e);
true
gap> e[3];
(1,2,4)
gap> e[3] := false;
Error, The list you are trying to assign to is immutable

When we consider copying Objects, another filter IsCopyable, enters the game and we find that Shal-
lowCopy and StructuralCopy behave quite differently. Objects can be divided for this purpose into three:
mutable Objects, immutable but copyable Objects, and non-copyable objects (called constants).

A mutable or copyable Object should have a Method for the Operation ShallowCopy, which should make
a new mutable Object, sharing its top-level subobjects with the original. The exact definition of top-level
subobject may be defined by the implementor for new kinds of Object.

ShallowCopy applied to a constant simply returns the constant.

StructuralCopy is expected to be much less used than ShallowCopy. Applied to a mutable object, it returns
a new mutable object which shares no mutable sub-objects with the input. Applied to an immutable Object
(even a copyable one), it just returns the object. It is not an Operation (indeed, it’s a rather special kernel
function).
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gap> e1 := StructuralCopy(e);
<enumerator of perm group>
gap> IsMutable(e1);
false
gap> e2 := ShallowCopy(e);
[ (), (1,4), (1,2,4), (1,3,4), (2,4), (1,4,2), (1,2), (1,3,4,2), (2,3,4),
(1,4,2,3), (1,2,3), (1,3)(2,4), (3,4), (1,4,3), (1,2,4,3), (1,3), (2,4,3),
(1,4,3,2), (1,2)(3,4), (1,3,2), (2,3), (1,4)(2,3), (1,2,3,4), (1,3,2,4) ]

gap>

There are two other related functions: Immutable, which makes a new immutable object which shares no
mutable subobjects with its input and MakeImmutable which changes an object and its mutable subobjects
in place to be immutable. It should only be used on “new” Objects that you have just created, and which
cannot share mutable subobjects with anything else.

Both Immutable and MakeImmutable work on external objects by just resetting the IsMutable filter in the
Object’s type. This should make ineligible any methods that might change the Object. As a consequence,
you must allow for the possibility of immutable versions of any objects you create.

So, if you are implementing your own external Objects. The rules amount to the following:

1. You decide if your Objects should be mutable or copyable or constants, by fixing whether their Type
includes IsMutable or IsCopyable.

2. You install Methods for your objects respecting that decision:

• for constants – no methods change the underlying elements;

• for copyables – you provide a method for ShallowCopy;

• for mutables – you may have methods that change the underlying elements and these should
explicitly require IsMutable.

3.17 Global Variables in the Library

Global variables in the GAP library are usually read-only in order to avoid their being overwritten acciden-
tally.

1 I BindGlobal( name, val ) F

sets the global variable named by the string name to the value val , and makes it read-only. An error is given
if the global variable corresponding to name already had a value bound.

2 I DeclareAttribute( name, filt[, "mutable"][, rank] ) F
I DeclareCategory( name, super ) F
I DeclareFilter( name, rank ) F
I DeclareProperty( name, filt[, rank] ) F
I DeclareRepresentation( name, super, slots ) F

The different types of filters (see Sections 3.1, 3.2, 3.3, 3.4) that are used in the GAP library are assigned by the
above DeclareSomething functions which make the variable with name name (a string) automatically read-
only. The only other difference between NewSomething and DeclareSomething is that DeclareAttribute
and DeclareProperty also bind read-only global variables with names Hasname and Setname for the
tester and setter of the attribute (see Section 13.6 in the Reference Manual). For the meaning of the other
arguments of DeclareSomething , see 3.3.1, 3.1.1, 3.4.1, 3.3.3, and 3.2.1.
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3 I DeclareOperation( name, args-filts ) F
I DeclareGlobalFunction( name ) F

declare operations and other global functions used in the GAP library, respectively, are assigned to the read-
only variable with name name (a string). For the meaning of the other arguments of DeclareOperation,
see 3.5.1.

GAP functions that are not operations and that are intended to be called by users should be notified to
GAP in the declaration part of the respective package (see Section 3.18) via DeclareGlobalFunction, which
returns a function that serves as a place holder for the function that will be installed later, and that will
print an error message if it is called. See also 3.17.7.

4 I InstallGlobalFunction( gvar, func ) F

A global function declared with DeclareGlobalFunction can be given its value func via InstallGlob-
alFunction; gvar is the global variable (not a string) named with the name argument of the call to
DeclareGlobalFunction. For example, a declaration like

DeclareGlobalFunction( "SumOfTwoCubes" );

in the “declaration part” (see Section 3.18) might have a corresponding “implementation part” of:

InstallGlobalFunction( SumOfTwoCubes, function(x, y) return x^3 + y^3; end);

Note: func must be a function which has not been declared as a GlobalFunction itself. Otherwise com-
pletion files (see 3.5 in the reference manual) get confused!

5 I DeclareGlobalVariable( name[, description] ) F

For global variables that are not functions, instead of using BindGlobal one can also declare the variable
with DeclareGlobalVariable which creates a new global variable named by the string name. If the second
argument description is entered then this must be a string that describes the meaning of the global variable.
DeclareGlobalVariable shall be used in the declaration part of the respective package (see 3.18), values can
then be assigned to the new variable with InstallValue or InstallFlushableValue, in the implementation
part (again, see 3.18).

6 I InstallValue( gvar, value ) F
I InstallFlushableValue( gvar, value ) F

InstallValue assigns the value value to the global variable gvar . InstallFlushableValue does the same
but additionally provides that each call of FlushCaches (see 3.17.9) will assign a structural copy of value
to gvar .

InstallValue does not work if value is an “immediate object” (i.e., an internally represented small integer
or finite field element). Furthermore, InstallFlushableValue works only if value is a list. (Note that
InstallFlushableValue makes sense only for mutable global variables.)

7 I DeclareSynonym( name, value ) F

assigns the string name to a global variable as a synonym for value. Two typical intended usages are to
declare an “and-filter”, e.g.

DeclareSynonym( "IsGroup", IsMagmaWithInverses and IsAssociative );

and (mainly for compatibility reasons) to provide a previously declared global function with an alternative
name, e.g.
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DeclareGlobalFunction( "SizeOfSomething" );
DeclareSynonym( "OrderOfSomething", SizeOfSomething );

Note: Before using DeclareSynonym in the way of this second example, one should determine whether the
synonym is really needed. Perhaps an extra index entry in the documentation would be sufficient.

When declaring a synonym that is to be an attribute DeclareSynonymAttr should be used.

8 I DeclareSynonymAttr( name, value ) F

assigns the string name to an attribute global variable as a synonym for value. Two typical intended usages
are to provide a previously declared attribute or property with an alternative name, e.g.

DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );
DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );

and to declare an attribute that is an “and-filter”, e.g.

DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );

Also see 3.17.7. (The comments made there also pertain to DeclareSynonymAttr.)

9 I FlushCaches() O

FlushCaches resets the value of each global variable that has been declared with DeclareGlobalVariable
and for which the initial value has been set with InstallFlushableValue to this initial value.

FlushCaches should be used only for debugging purposes, since the involved global variables include for
example lists that store finite fields and cyclotomic fields used in the current GAP session, in order to avoid
that these fields are constructed anew in each call to GF and CF (see 57.3.1 and 58.1.1 in the Reference
Manual).

3.18 Declaration and Implementation Part

Each package of GAP code consists of two parts, the declaration part that defines the new categories and
operations for the objects the package deals with, and the implementation part where the corresponding
methods are installed. The declaration part should be representation independent, representation dependent
information should be dealt with in the implementation part.

GAP functions that are not operations and that are intended to be called by users should be notified to
GAP in the declaration part via DeclareGlobalFunction. Values for these functions can be installed in the
implementation part via InstallGlobalFunction.

Calls to the following functions belong to the declaration part.

DeclareAttribute, DeclareCategory, DeclareFilter, DeclareOperation, DeclareGlobalFunction, De-
clareSynonym, DeclareSynonymAttr, DeclareProperty, InstallTrueMethod.

See 3.17.2, 3.17.2, 3.17.2, 3.17.3, 3.17.3, 3.17.7, 3.17.8, 3.17.2, 2.7.1.

Calls to the following functions belong to the implementation part.

DeclareRepresentation, InstallGlobalFunction, InstallMethod, InstallImmediateMethod, Instal-
lOtherMethod, NewFamily, NewType, Objectify.

See 3.17.2, 3.17.4, 2.2.1, 2.6.1, 2.2.2, 3.6.1, 3.7.1, 3.8.1.

Whenever both a NewSomething and a DeclareSomething variant of a function exist (see 3.17), the use of
DeclareSomething is recommended because this protects the variables in question from being overwritten.
Note that there are no functions DeclareFamily and DeclareType since families and types are created
dynamically, hence usually no global variables are associated to them. Further note that DeclareRepre-
sentation is regarded as belonging to the implementation part, because usually representations of objects
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are accessed only in very few places, and all code that involves a particular representation is contained in
one file; additionally, representations of objects are often not interesting for the user, so there is no need to
provide a user interface or documentation about representations.

It should be emphasized that “declaration” means only an explicit notification of mathematical or technical
terms or of concepts to GAP. For example, declaring a category or property with name IsInteresting does
of course not tell GAP what this shall mean, and it is necessary to implement possibilities to create objects
that know already that they lie in IsInteresting in the case that it is a category, or to install implications
or methods in order to compute for a given object whether IsInteresting is true or false for it in the
case that IsInteresting is a property.



4
Examples of

Extending the System

This chapter gives a few examples of how one can extend the functionality of GAP.

They are arranged in ascending difficulty. We show how to install new methods, add new operations and
attributes and how to implement new features using categories and representations. (As we do not introduce
completely new kinds of objects in these example it will not be necessary to declare any families.) Finally
we show a simple way how to create new objects with an own arithmetic.

The examples given are all very rudimentary – no particular error checks are performed and the user interface
sometimes is quite clumsy.

Even more complex examples that create whole classes of objects anew will be given in the following two
chapters 5 and 6.

4.1 Addition of a Method

The easiest case is the addition of a new algorithm as a method for an existing operation for the existing
structures.

For example, assume we wanted to implement a better method for computing the exponent of a nilpotent
group (it is the product of the exponents of the Sylow subgroups).

The first task is to find which operation is used by GAP (it is Exponent) and how it is declared. We can
find this in the reference manual (in our particular case in section 37.16) and the declaration in the library
file lib/grp.gd (The easiest way to find the place of the declaration is usually to grep over all .gd and .g
files, see section 3 of “Extending Gap”.)

In our example the declaration in the library is:

DeclareAttribute("Exponent",IsGroup);

Similarly we find that the filter IsNilpotentGroup represents the concept of being nilpotent.

We then write a function that implements the new algorithm which takes the right set of arguments and
install it as a method. In our example this installation would be:

InstallMethod(Exponent,"for nilpotent groups",
[IsGroup and IsNilpotent],

function(G)
[function body omitted]

end);

We have left out the optional rank argument of InstallMethod, which normally is a wise choice – GAP
automatically uses an internal ranking based on the filters that is only offset by the given rank. So our
method will certainly be “better” than a method that has been installed for mere groups or for solvable
groups but will be ranked lower than the library method for abelian groups.

That’s all. Using ApplicableMethod (see 7.2.1) we can check for an nilpotent group that indeed our new
method will be used.
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When testing, remember that the method selection will not check for properties that are not known. (This
is done internally by checking the property tester first.) Therefore the method would not be applicable for
the group g in the following definition but only for the – mathematically identical but endowed with more
knowledge by GAP – group h. (Section 4.3 shows a way around this.)

gap> g:=Group((1,2),(1,3)(2,4));;
gap> h:=Group((1,2),(1,3)(2,4));;
gap> IsNilpotentGroup(h); # enforce test
true
gap> HasIsNilpotentGroup(g);
false
gap> HasIsNilpotentGroup(h);
true

Lets now look at a slightly more complicated example: We want to implement a better method for computing
normalizers in a nilpotent permutation group. (Such an algorithm can be found for example in [LRW97].)

We already know IsNilpotentGroup, the filter IsPermGroup represent the concepts of being a group of
permutations.

GAP uses Normalizer to compute normalizers, however the declaration is a bit more complicated. In the
library we find

InParentFOA( "Normalizer", IsGroup, IsObject, NewAttribute );

The full mechanism of InParentFOA is described in chapter 6 of “Extending GAP”, however for our purposes
it is sufficient to know that for such a function the actual work is done by an operation NormalizerOp (and
all the complications are just there to be able to remember certain results) and that the declaration of this
operation is given by the first arguments, it would be:

DeclareOperation( "NormalizerOp", [IsGroup, IsObject] );

This time we decide to enter a non-default family predicate in the call to InstallMethod. We could just
leave it out as in the previous call; this would yield the default value, the function ReturnTrue of arbitrary
many arguments which always returns true. However, then the method might be called in some cases of
inconsistent input (for example matrix groups in different characteristics) that ought to fall through the
method selection to raise an error.

In our situation, we want the second group to be a subgroup of the first, so necessarily both must have the
same family and we can use IsIdenticalObj as family predicate.

Now we can install the method. Again this manual is lazy and does not show you the actual code:

InstallMethod(NormalizerOp,"for nilpotent permutation groups",IsIdenticalObj,
[IsPermGroup and IsNilpotentGroup,
IsPermGroup and IsNilpotentGroup],

function(G,U)
[ function body omitted ]

end);

4.2 Extending the Range of Definition of an Existing Operation

It might be that the operation has been defined so far only for a set of objects that is too restrictive for our
purposes (or we want to install a method that takes another number of arguments). If this is the case, the
call to InstallMethod causes an error message. We can avoid this by using InstallOtherMethod instead
of InstallMethod.
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4.3 Enforcing Property Tests

As mentioned above, GAP does not check unknown properties to test whether a method might be applicable.
In some cases one wants to enforce this, however, because the gain from knowing the property outweighs
the cost of its determination.

In this situation one has to install a method without the additional property (so it can be tried even if the
property is not yet known) and at high rank (so it will be used before other methods). The first thing to
do in the actual function then is to test the property and to bail out with TryNextMethod() (see 2.4.1) if it
turns out to be false.

The above Exponent example thus would become:

InstallMethod(Exponent,"test abelianity", [IsGroup],
50,# enforced high rank

function(G)
if not IsAbelian(G) then
TryNextMethod();

fi;
[remaining function body omitted]

end);

The value “50” used in this example is quite arbitrary. A better way is to use values that are given by the
system inherently: We want this method still to be ranked as high, as if it had the IsAbelian requirement.
So we have GAP compute the extra rank of this:

InstallMethod(Exponent,"test abelianity", [IsGroup],
# enforced absolute rank of ‘IsGroup and IsAbelian’ installation: Subtract
# the rank of ‘IsGroup’ and add the rank of ‘IsGroup and IsAbelian’:
SIZE_FLAGS(FLAGS_FILTER(IsGroup and IsAbelian))
-SIZE_FLAGS(FLAGS_FILTER(IsGroup)),

function(G)

the slightly complicated construction of addition and subtraction is necessary because IsGroup and Is-
Abelian might imply the same elementary filters which we otherwise would count twice.

A somehow similar situation occurs with matrix groups. Most methods for matrix groups are only applicable
if the group is known to be finite.

However we should not enforce a finiteness test early (someone else later might install good methods for
infinite groups while the finiteness test would be too expensive) but just before GAP would give a “no method
found” error. This is done by redispatching, see 2.5. For example to enforce such a final finiteness test for
normalizer calculations could be done by:

RedispatchOnCondition(NormalizerOp,IsIdenticalObj,
[IsMatrixGroup,IsMatrixGroup],[IsFinite,IsFinite],0);

4.4 Adding a new Operation

The next step is to add own operations. As an example we take the Sylow normalizer in a group of a given
prime. This operation gets two arguments, the first has to be a group, the second a prime number.

There is a function IsPrimeInt, but no property for being prime (which would be pointless as integers
cannot store property values anyhow). So the second argument gets specified only as positive integer:
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SylowNormalizer:=NewOperation("SylowNormalizer",[IsGroup,IsPosInt]);

(Note that we are using NewOperation (see 3.5.1) instead of DeclareOperation (see 3.17.3) as used in the
library. The only difference other than that DeclareOperation saves some typing, is that it also protects
the variables against overwriting. When testing code (when one probably wants to change things) this might
be restricting. If this does not bother you, you can use

DeclareOperation("SylowNormalizer",[IsGroup,IsPosInt]);

as well.)

The filters IsGroup and IsPosInt given are only used to test that InstallMethod (see 2.2.1) installs meth-
ods with suitable arguments and will be completely ignored when using InstallOtherMethod (see 2.2.2).
Technically one could therefore simply use IsObject for all arguments in the declaration. The main point
of using more specific filters here is to help documenting with which arguments the function is to be used
(so for example a call SylowNormalizer(5,G) would be invalid).

Of course initially there are no useful methods for newly declared operations; you will have to write and
install them yourself.

If the operation only takes one argument and has reproducible results without side effects, it might be worth
declaring it as an attribute instead; see the next section (4.5).

4.5 Adding a new Attribute

Now we look at an example of how to add a new attribute. As example we consider the set of all primes
that divide the size of a group.

First we have to declare the attribute:

PrimesDividingSize:=NewAttribute("PrimesDividingSize",IsGroup);

(See 3.3.1). This implicitly declares attribute tester and setter, it is convenient however to assign these to
variables as well:

HasPrimesDividingSize:=Tester(PrimesDividingSize);
SetPrimesDividingSize:=Setter(PrimesDividingSize);

Alternatively, there is a declaration command DeclareAttribute (see 3.17.2) that executes all three assign-
ments simultaneously and protects the variables against overwriting:

DeclareAttribute("PrimesDividingSize",IsGroup);

Next we have to install method(s) for the attribute that compute its value. (This is not strictly necessary.
We could use the attribute also without methods only for storing and retrieving information, but calling it
for objects for which the value is not known would produce a “No method found” error.) For this purpose
we can imagine the attribute simply as an one-argument operation:

InstallMethod(PrimesDividingSize,"for finite groups",
[IsGroup and IsFinite],

function(G)
if Size(G)=1 then return [];
else return Set(Factors(Size(G)));fi;

end);

The function installed must always return a value (or call TryNextMethod; see 2.4.1). If the object is in the
representation IsAttributeStoringRep this return value once computed will be automatically stored and
retrieved if the attribute is called a second time. We don’t have to call setter or tester ourselves. (This storage
happens by GAP internally calling the attribute setter with the return value of the function. Retrieval is by
a high-ranking method which is installed under the condition HasPrimesDividingSize. This method was
installed automatically when the attribute was declared.)
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4.6 Adding a new Representation

Next, we look at the implementation of a new representation of existing objects. In most cases we want to
implement this representation only for efficiency reasons while keeping all the existing functionality.

For example, assume we wanted (following [Wie69]) to implement permutation groups defined by relations.

Next, we have to decide a few basics about the representation. All existing permutation groups in the library
are attribute storing and we probably want to keep this for our new objects. Thus the representation must be
a subrepresentation of IsComponentObjectRep and IsAttributeStoringRep. Furthermore we want each
object to be a permutation group and we can imply this directly in the representation.

We also decide that we store the degree (the largest point that might be moved) in a component degree
and the defining relations in a component relations (we do not specify the format of relations here. In
an actual implementation one would have to design this as well, but it does not affect the declarations this
chapter is about).

IsPermutationGroupByRelations:=NewRepresentation(
"IsPermutationGroupByRelations",
IsComponentObjectRep and IsAttributeStoringRep and IsPermGroup,
["degree","relations"]);

(If we wanted to implement sparse matrices we might for example rather settle for a positional object in
which we store a list of the nonzero entries.)

We can make the new representation a subrepresentation of an existing one. In such a case of course we
have to provide all structure of this “parent” representation as well.

Next we need to check in which family our new objects will be. This will be the same family as of ev-
ery other permutation group, namely the CollectionsFamily(PermutationsFamily) (where the family
PermutationsFamily=FamilyObj((1,2,3)) has been defined already in the library).

Now we can write a function to create our new objects. Usually it is helpful to look at functions from the
library that are used in similar situations (for example GroupByGenerators in our case) to make sure we
have not forgotten any further requirements in the declaration we might have to add here. However in most
cases the function is straightforward:

PermutationGroupByRelations:=function(degree,relations)
local g
g:=Objectify(NewType(CollectionsFamily(PermutationsFamily),

IsPermutationGroupByRelations),
rec(degree:=degree,relations:=relations));

end;

It also is a good idea to install a Print (possibly also a View) method – otherwise testing becomes quite
hard:

InstallMethod(PrintObj,"for perm grps. given by relations",
[IsPermutationGroupByRelations],

function(G)
Print("PermutationGroupByRelations(", G!.degree,",",G!.relations,")");

end);

Next we have to write enough methods for the new representation so that the existing algorithms can be
used. In particular we will have to implement methods for all operations for which library or kernel provides
methods for the existing (alternative) representations. In our particular case there are no such methods. (If
we would have implemented sparse matrices we would have had to implement methods for the list access
and assignment functions, see 21.2 in the reference manual.) However the existing way permutation groups



40 Chapter 4. Examples of Extending the System

are represented is by generators. To be able to use the existing machinery we want to be able to obtain a
generating set also for groups in our new representation. This can be done (albeit not very effectively) by
a stabilizer calculation in the symmetric group given by the degree component. The operation function to
use is probably a bit complicated and will depend on the format of the relations (we have not specified in
this example). In the following method we use operationfunction as a placeholder;

InstallMethod(GeneratorsOfGroup,"for perm grps. given by relations",
[IsPermutationGroupByRelations],

function(G)
local S,U;
S:=SymmetricGroup(G!.degree);
U:=Stabilizer(S,G!.relations, operationfunction );
return GeneratorsOfGroup(U);

end);

This is all we must do. Of course for performance reasons one might want to install methods for further
operations as well.

4.7 Components versus Attributes

In the last section we introduced two new components, G!.degree and G!.relations. Technically, we could
have used attributes instead. There is no clear distinction which variant is to be preferred: An attribute
expresses part of the functionality available to certain objects (and thus could be computed later and
probably even for a wider class of objects), a component is just part of the internal definition of an object.

So if the data is “of general interest”, if we want the user to have access to it, attributes are preferable. They
provide a clean interface and their immutability makes it safe to hand the data to a user who potentially
could corrupt a components entries.

On the other hand more “technical” data (say the encoding of a sparse matrix) is better hidden from the
user in a component, as declaring it as an attribute would not give any advantage.

Resource-wise, attributes need more memory (the attribute setter and tester are implicitly declared, and
two filter bits are required), the attribute access is one further function call in the kernel, thus components
might be an immeasurable bit faster.

4.8 Adding new Concepts

Finally we look how to implement a new concept for existing objects and fit this in the method selection.
Three examples that will be made more explicit below would be groups for which a “length” of elements
(as a word in certain generators) is defined, groups that can be decomposed as a semidirect product and
M-groups.

In each case we have two possibilities for the declaration. We can either declare it as a property or as a
category. Both are eventually filter and in this way indistinguishable for the method selection. The distinction
is rather conceptual and mainly reflects whether we want existing objects to be part of our new concept or
not.

Property:
Properties also are attributes: If a property value is not known for an object, GAP tries to find a
method to compute the property value. If no suitable method is found, an error is raised.
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Category:
An object is in a category if it has been created in it. Testing the category for an object simply
returns this value. Existing objects cannot enter a new category later in life. This means that in
most cases one has to write own code to create objects in a new category.
If we want to implement a completely new concept so that new operations are defined only for the
new objects – for example bialgebras for which a second scalar multiplication is defined – usually a
category is chosen.
Technically, the behaviour of the category IsXYZ, declared as subcategory of IsABC is therefore
exactly the same as if we would declare IsXYZ to be a property for IsABC and install the following
method:

InstallMethod(IsXYZ,"return false if not known",[IsABC],ReturnFalse);

(The words category also has a well-defined mathematical meaning, but this does not need to
concern us at this point. The set of objects which is defined to be a (GAP)-category does not need
to be a category in the mathematical sense, vice versa not every mathematical category is declared
as a (GAP) category.)

Eventually the choice between category and property often becomes a matter of taste or style.

Sometimes there is even a third possibility (if you have GAP 3 experience this might reflect most closely “an
object whose operations record is XYOps”): We might want to indicate this new concept simply by the fact
that certain attributes are set. In this case we could simply use the respective attribute tester(s).

The examples given below each give a short argument why the respective solution was chosen, but one could
argue as well for other choices.

4.9 Example: M-groups

M-groups are finite groups for which all irreducible complex representations are induced from linear rep-
resentations of subgroups, it turns out that they are all solvable and that every supersolvable group is an
M-group. See [Isa76] for further details.

Solvability and supersolvability both are testable properties. We therefore declare IsMGroup as a property
for solvable groups:

IsMGroup:=NewProperty("IsMGroup",IsSolvableGroup);

The filter IsSolvableGroup in this declaration only means that methods for IsMGroup by default can only
be installed for groups that are (and know to be) solvable (though they could be installed for more general
situations using InstallOtherMethod). It does not yet imply that M-groups are solvable. We must do this
deliberately via an implication and we use the same technique to imply that every supersolvable group is
an M-group.

InstallTrueMethod(IsSolvableGroup,IsMGroup);
InstallTrueMethod(IsMGroup,IsSupersolvableGroup);

Now we might install a method that tests for solvable groups whether they are M-groups:

InstallMethod(IsMGroup,"for solvable groups",[IsSolvableGroup],
function(G)
[... code omitted. The function must return ‘true’ or ‘false’ ...]

end);
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4.10 Example: Groups with a word length

Our second example is that of groups for whose elements a word length is defined. (We assume that the
word length is only defined in the context of the group with respect to a preselected generating set but not
for single elements alone. However we will not delve into any details of how this length is defined and how
it could be computed.)

Having a word length is a feature which enables other operations (for example a “word length” function).
This is exactly what categories are intended for and therefore we use one.

First, we declare the category. All objects in this category are groups and so we inherit the supercategory
IsGroup:

DeclareCategory("IsGroupWithWordLength",IsGroup);

We also define the operation which is “enabled” by this category, the word length of a group element,
which is defined for a group and an element (remember that group elements are described by the category
IsMultiplicativeElementWithInverse):

DeclareOperation("WordLengthOfElement",[IsGroupWithWordLength,
IsMultiplicativeElementWithInverse]);

We then would proceed by installing methods to compute the word length in concrete cases and might for
example add further operations to get shortest words in cosets.

4.11 Example: Groups with a decomposition as semidirect product

The third example is groups which have a (nontrivial) decomposition as a semidirect product. If this infor-
mation has been found out, we want to be able to use it in algorithms. (Thus we do not only need the fact
that there is a decomposition, but also the decomposition itself.)

We also want this to be applicable to every group and not only for groups which have been explicitly
constructed via SemidirectProduct.

Instead we simply declare an attribute SemidirectProductDecomposition for groups. (again, in this manual
we don’t go in the details of how such an decomposition would look like).

DeclareAttribute("SemidirectProductDecomposition",IsGroup);

If a decomposition has been found, it can be stored in a group using SetSemidirectProductDecomposition.
(At the moment all groups in GAP are attribute storing.)

Methods that rely on the existence of such a decomposition then get installed for the tester filter Has-
SemidirectProductDecomposition.

4.12 Creating Own Arithmetic Objects

Finally let’s look at a way to create new objects with a user-defined arithmetic such that one can form
for example groups, rings or vector spaces of these elements. This topic is discussed in much more detail
in chapter 6, in this section we present a simple approach that may be useful to get started but does not
permit you to exploit all potential features.

The basic design is that the user designs some way to represent her objects in terms of GAPs built-in types,
for example as a list or a record. We call this the “defining data” of the new objects. Also provided are
functions that perform arithmetic on this “defining data”, that is they take objects of this form and return
objects that represent the result of the operation. The function ArithmeticElementCreator then is called
to provide a wrapping such that proper new GAP-objects are created which can be multiplied etc. with the
default infix operations such as \*.
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1 I ArithmeticElementCreator( spec ) F

offers a simple interface to create new arithmetic elements by providing functions that perform addition,
multiplication and so forth, conforming to the specification spec. ArithmeticElementCreator creates a new
category, representation and family for the new arithmetic elements being defined, and returns a function
which takes the “defining data” of an element and returns the corresponding new arithmetic element.

spec is a record with one or more of the following components:

ElementName
a string used to identify the new type of object. A global identifier IsElementName will be defined
to indicate a category for these now objects. (Therefore it is not clever to have blanks in the name).
Also a collections category is defined. (You will get an error message if the identifier IsElementName
is already defined.)

Equality, LessThan, One, Zero, Multiplication, Inverse, Addition, AdditiveInverse
functions defining the arithmetic operations. The functions interface on the level of “defining data”,
the actual methods installed will perform the unwrapping and wrapping as objects. Components
are optional, but of course if no multiplication is defined elements cannot be multiplied and so forth.
There are default methods for Equality and LessThan which simply calculate on the defining data.
If one is defined, it must be ensured that the other is compatible (so that a < b implies not(a = b))

Print
a function which prints the object. By default, just the defining data is printed.

MathInfo
filters determining the mathematical properties of the elements created. A typical value is for ex-
ample IsMultiplicativeElementWithInverse for group elements.

RepInfo
filters determining the representational properties of the elements created. The objects created are
always component objects, so in most cases the only reasonable option is IsAttributeStoringRep
to permit the storing of attributes.

All components are optional and will be filled in with default values (though of course an empty record will
not result in useful objects).

Note that the resulting objects are not equal to their defining data (even though by default they print as
only the defining data). The operation UnderlyingElement can be used to obtain the defining data of such
an element.

As the first example we look at subsets of {1 . . . , 4} and define an “addition” as union and “multiplication”
as intersection. These operations are both commutative and we want the resulting elements to know this.

We therefore use the following specification:

gap> # the whole set
gap> w := [1,2,3,4];
[ 1, 2, 3, 4 ]
gap> PosetElementSpec :=rec(
> # name of the new elements
> ElementName := "PosetOn4",
> # arithmetic operations
> One := a -> w,
> Zero := a -> [],
> Multiplication := function(a, b) return Intersection(a, b); end,
> Addition := function(a, b) return Union(a, b); end,
> AdditiveInverse := a -> Filtered(w, x->(not x in a)),
> # Mathematical properties of the elements
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> MathInfo := IsCommutativeElement and IsAdditivelyCommutativeElement
> );;
gap> mkposet := ArithmeticElementCreator(PosetElementSpec);
function( x ) ... end

Now we can create new elements, perform arithmetic on them and form domains:

gap> a := mkposet([1,2,3]);
[ 1, 2, 3 ]
gap> CategoriesOfObject(a);
[ "IsExtAElement", "IsNearAdditiveElement", "IsNearAdditiveElementWithZero",
"IsNearAdditiveElementWithInverse", "IsExtLElement", "IsExtRElement",
"IsMultiplicativeElement", "IsMultiplicativeElementWithOne",
"IsAdditivelyCommutativeElement", "IsCommutativeElement", "IsPosetOn4" ]

gap> a=[1,2,3];
false
gap> UnderlyingElement(a)=[1,2,3];
true
gap> b:=mkposet([2,3,4]);
[ 2, 3, 4 ]
gap> a+b;
[ 1, 2, 3, 4 ]
gap> a*b;
[ 2, 3 ]
gap> s:=Semigroup(a,b);
<semigroup with 2 generators>
gap> Size(s);
3

The categories IsPosetOn4 and IsPosetOn4Collection can be used to install methods specific to the new
objects.

gap> IsPosetOn4Collection(s);
true



5
An Example –

Residue Class Rings

In this chapter, we give an example how GAP can be extended by new data structures and new functionality.
In order to focus on the issues of the implementation, the mathematics in the example chosen is trivial.
Namely, we will discuss computations with elements of residue class rings Z/nZ.

The first attempt is straightforward (see Section 5.1), it deals with the implementation of the necessary
arithmetic operations. Section 5.2 deals with the question why it might be useful to use an approach that
involves creating a new data structure and integrating the algorithms dealing with these new GAP objects
into the system. Section 5.3 shows how this can be done in our example, and Section 5.4, the question of
further compatibility of the new objects with known GAP objects is discussed. Finally, Section 5.5 gives
some hints how to improve the implementation presented before.

5.1 A First Attempt to Implement Elements of Residue Class Rings

Suppose we want to do computations with elements of a ring Z/nZ, where n is a positive integer.

First we have to decide how to represent the element k + nZ in GAP. If the modulus n is fixed then we can
use the integer k . More precisely, we can use any integer k ′ such that k − k ′ is a multiple of n. If different
moduli are likely to occur then using a list of the form [k , n], or a record of the form rec( residue := k,
modulus := n ) is more appropriate. In the following, let us assume the list representation [k , n] is chosen.
Moreover, we decide that the residue k in all such lists satisfies 0 ≤ k < n, i.e., the result of adding two
residue classes represented by [k1, n] and [k2, n] (of course with same modulus n) will be [k , n] with k1 + k2

congruent to k modulo n and 0 ≤ k < n.

Now we can implement the arithmetic operations for residue classes. Note that the result of the mod operator
is normalized as required. The division by a noninvertible residue class results in fail.

gap> resclass_sum := function( c1, c2 )
> if c1[2] <> c2[2] then Error( "different moduli" ); fi;
> return [ ( c1[1] + c2[1] ) mod c1[2], c1[2] ];
> end;;
gap>
gap> resclass_diff := function( c1, c2 )
> if c1[2] <> c2[2] then Error( "different moduli" ); fi;
> return [ ( c1[1] - c2[1] ) mod c1[2], c1[2] ];
> end;;
gap>
gap> resclass_prod := function( c1, c2 )
> if c1[2] <> c2[2] then Error( "different moduli" ); fi;
> return [ ( c1[1] * c2[1] ) mod c1[2], c1[2] ];
> end;;
gap>
gap> resclass_quo := function( c1, c2 )
> local quo;
> if c1[2] <> c2[2] then Error( "different moduli" ); fi;
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> quo:= QuotientMod( c1[1], c2[1], c1[2] );
> if quo <> fail then
> quo:= [ quo, c1[2] ];
> fi;
> return quo;
> end;;

With these functions, we can in principle compute with residue classes.

gap> list:= List( [ 0 .. 3 ], k -> [ k, 4 ] );
[ [ 0, 4 ], [ 1, 4 ], [ 2, 4 ], [ 3, 4 ] ]
gap> resclass_sum( list[2], list[4] );
[ 0, 4 ]
gap> resclass_diff( list[1], list[2] );
[ 3, 4 ]
gap> resclass_prod( list[2], list[4] );
[ 3, 4 ]
gap> resclass_prod( list[3], list[4] );
[ 2, 4 ]
gap> List( list, x -> resclass_quo( list[2], x ) );
[ fail, [ 1, 4 ], fail, [ 3, 4 ] ]

5.2 Why Proceed in a Different Way?

It depends on the computations we intended to do with residue classes whether or not the implementation
described in the previous section is satisfactory for us.

Probably we are mainly interested in more complex data structures than the residue classes themselves, for
example in matrix algebras or matrix groups over a ring such as Z/4Z. For this, we need functions to add,
multiply, invert etc. matrices of residue classes. Of course this is not a difficult task, but it requires to write
additional GAP code.

And when we have implemented the arithmetic operations for matrices of residue classes, we might be
interested in domain operations such as computing the order of a matrix group over Z/4Z, a Sylow 2
subgroup, and so on. The problem is that a residue class represented as a pair [k , n] is not regarded as a
group element by GAP. We have not yet discussed how a matrix of residue classes shall be represented, but if
we choose the obvious representation of a list of lists of our residue classes then also this is not a valid group
element in GAP. Hence we cannot apply the function Group to create a group of residue classes or a group
of matrices of residue classes. This is because GAP assumes that group elements can be multiplied via the
infix operator * (equivalently, via the operation \*). Note that in fact the multiplication of two lists [ k 1,
n ], [ k 2, n ] is defined, but we have [ k 1, n ] * [ k 2, n ] = k 1 * k 2 + n * n, the standard
scalar product of two row vectors of same length. That is, the multiplication with * is not compatible with
the function reclass prod introduced in the previous section. Similarly, ring elements are assumed to be
added via the infix operator +; the addition of residue classes is not compatible with the available addition
of row vectors.

What we have done in the previous section can be described as implementation of a “standalone” arithmetic
for residue classes. In order to use the machinery of the GAP library for creating higher level objects such
as matrices, polynomials, or domains over residue class rings, we have to “integrate” this implementation
into the GAP library. The key step will be to create a new kind of GAP objects. This will be done in the
following sections; there we assume that residue classes and residue class rings are not yet available in GAP;
in fact they are available, and their implementation is very close to what is described here.
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5.3 A Second Attempt to Implement Elements of Residue Class Rings

Faced with the problem to implement elements of the rings Z/nZ, we must define the types of these elements
as far as is necessary to distinguish them from other GAP objects.

As is described in Chapter 13 in the Reference Manual, the type of an object comprises several aspects
of information about this object; the family determines the relation of the object to other objects, the
categories determine what operations the object admits, the representation determines how an object is
actually represented, and the attributes describe knowledge about the object.

First of all, we must decide about the family of each residue class. A natural way to do this is to put the
elements of each ring Z/nZ into a family of their own. This means that for example elements of Z/3Z and
Z/9Z lie in different families. So the only interesting relation between the families of two residue classes is
equality; binary arithmetic operations with two residue classes will be admissible only if their families are
equal. Note that in the naive approach in Section 5.1, we had to take care of different moduli by a check in
each function; these checks may disappear in the new approach because of our choice of families.

Note that we do not need to tell GAP anything about the above decision concerning the families of the objects
that we are going to implement, that is, the declaration part (see 3.18) of the little GAP package we are
writing contains nothing about the distribution of the new objects into families. (The actual construction
of a family happens in the function MyZmodnZ shown below.)

Second, we want to describe methods to add or multiply two elements in Z/nZ, and these methods shall be
not applicable to other GAP objects. The natural way to do this is to create a new category in which all
elements of all rings Z/nZ lie. This is done as follows.

gap> DeclareCategory( "IsMyZmodnZObj", IsScalar );
gap> cat:= CategoryCollections( IsMyZmodnZObj );;
gap> cat:= CategoryCollections( cat );;
gap> cat:= CategoryCollections( cat );;

So all elements in the rings Z/nZ will lie in the category IsMyZmodnZObj, which is a subcategory of IsScalar.
The latter means that one can add, subtract, multiply and divide two such elements that lie in the same
family, with the obvious restriction that the second operand of a division must be invertible. (The name
IsMyZmodnZObj is chosen because IsZmodnZObj is already defined in GAP, for an implementation of residue
classes that is very similar to the one developed in this manual chapter. Using this different name, one can
simply enter the GAP code of this chapter into a GAP session, either interactively or by reading a file with
this code, and experiment after each step whether the expected behaviour has been achieved, and what is
still missing.)

The next lines of GAP code above create the categories CategoryCollections( IsMyZmodnZObj ) and two
higher levels of collections categories of this, which will be needed later; it is important to create these
categories before collections of the objects in IsMyZmodnZObj actually arise.

Note that the only difference between DeclareCategory and NewCategory is that in a call to DeclareCate-
gory, a variable corresponding to the first argument is set to the new category, and this variable is read-only
(see 3.17). The same holds for DeclareRepresentation and NewRepresentation etc.

There is no analogue of categories in the implementation in Section 5.1, since there it was not necessary
to distinguish residue classes from other GAP objects. Note that the functions there assumed that their
arguments were residue classes, and the user was responsible not to call them with other arguments. Thus
an important aspect of types is to describe arguments of functions explicitly.

Third, we must decide about the representation of our objects. This is something we know already from
Section 5.1, where we chose a list of length two. Here we may choose between two essentially different
representations for the new GAP objects, namely as “component object” (record–like) or “positional object”
(list–like). We decide to store the modulus of each residue class in its family, and to encode the element
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k + nZ by the unique residue in the range [ 0 .. n-1 ] that is congruent to k modulo n, and the object
itself is chosen to be a positional object with this residue at the first and only position (see 3.10).

gap> DeclareRepresentation( "IsMyModulusRep", IsPositionalObjectRep, [ 1 ] );

The fourth ingredients of a type, attributes, are usually of minor importance for element objects. In
particular, we do not need to introduce special attributes for residue classes.

Having defined what the new objects shall look like, we now declare a global function (see 3.18), to create
an element when family and residue are given.

gap> DeclareGlobalFunction( "MyZmodnZObj" );

Now we have declared what we need, and we can start to implement the missing methods resp. functions;
so the following command belongs to the implementation part of our package (see 3.18).

The probably most interesting function is the one to construct a residue class.

gap> InstallGlobalFunction( MyZmodnZObj, function( Fam, residue )
> return Objectify( NewType( Fam, IsMyZmodnZObj and IsMyModulusRep ),
> [ residue mod Fam!.modulus ] );
> end );

Note that we normalize residue explicitly using mod; we assumed that the modulus is stored in Fam, so we
must take care of this below. If Fam is a family of residue classes, and residue is an integer, MyZmodnZObj
returns the corresponding object in the family Fam, which lies in the category IsMyZmodnZObj and in the
representation IsMyModulusRep.

MyZmodnZObj needs an appropriate family as first argument, so let us see how to get our hands on this. Of
course we could write a handy function to create such a family for given modulus, but we choose another
way. In fact we do not really want to call MyZmodnZObj explicitly when we want to create residue classes.
For example, if we want to enter a matrix of residues then usually we start with a matrix of corresponding
integers, and it is more elegant to do the conversion via multiplying the matrix with the identity of the
required ring Z/nZ; this is also done for the conversion of integral matrices to finite field matrices. (Note
that we will have to install a method for this.) So it is often sufficient to access this identity, for example via
One( MyZmodnZ( n ) ), where MyZmodnZ returns a domain representing the ring Z/nZ when called with
the argument n. We decide that constructing this ring is a natural place where the creation of the family
can be hidden, and implement the function. (Note that the declaration belongs to the declaration part, and
the installation belongs to the implementation part, see 3.18).

gap> DeclareGlobalFunction( "MyZmodnZ" );
gap>
gap> InstallGlobalFunction( MyZmodnZ, function( n )
> local F, R;
>
> if not IsPosInt( n ) then
> Error( "<n> must be a positive integer" );
> fi;
>
> # Construct the family of element objects of our ring.
> F:= NewFamily( Concatenation( "MyZmod", String( n ), "Z" ),
> IsMyZmodnZObj );
>
> # Install the data.
> F!.modulus:= n;
>
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> # Make the domain.
> R:= RingWithOneByGenerators( [ MyZmodnZObj( F, 1 ) ] );
> SetIsWholeFamily( R, true );
> SetName( R, Concatenation( "(Integers mod ", String(n), ")" ) );
>
> # Return the ring.
> return R;
> end );

Note that the modulus n is stored in the component modulus of the family, as is assumed by MyZmodnZ.
Thus it is not necessary to store the modulus in each element. When storing n with the !. operator as value
of the component modulus, we used that all families are in fact represented as component objects (see 3.9).

We see that we can use RingWithOneByGenerators to construct a ring with one if we have the appropriate
generators. The construction via RingWithOneByGenerators makes sure that IsRingWithOne (and IsRing)
is true for each output of MyZmodnZ. So the main problem is to create the identity element of the ring,
which in our case suffices to generate the ring. In order to create this element via MyZmodnZObj, we have to
construct its family first, at each call of MyZmodnZ.

Also note that we may enter known information about the ring. Here we store that it contains the whole
family of elements; this is useful for example when we want to check the membership of an element in the
ring, which can be decided from the type of the element if the ring contains its whole elements family. Giving
a name to the ring causes that it will be printed via printing the name. (By the way: This name (Integers
mod n) looks like a call to \mod with the arguments Integers and n; a construction of the ring via this call
seems to be more natural than by calling MyZmodnZ; later we shall install a \mod method in order to admit
this construction.)

Now we can read the above code into GAP, and the following works already.

gap> R:= MyZmodnZ( 4 );
(Integers mod 4)
gap> IsRing( R );
true
gap> gens:= GeneratorsOfRingWithOne( R );
[ <object> ]

But of course this means just to ask for the information we have explicitly stored in the ring. Already the
questions whether the ring is finite and how many elements it has, cannot be answered by GAP. Clearly we
know the answers, and we could store them in the ring, by setting the value of the property IsFinite to
true and the value of the attribute Size to n (the argument of the call to MyZmodnZ). If we do not want to
do so then GAP could only try to find out the number of elements of the ring via forming the closure of the
generators under addition and multiplication, but up to now, GAP does not know how to add or multiply
two elements of our ring.

So we must install some methods for arithmetic and other operations if the elements are to behave as we
want.

We start with a method for showing elements nicely on the screen. There are different operations for this
purpose. One of them is PrintObj, which is called for each argument in an explicit call to Print. Another
one is ViewObj, which is called in the read-eval-print loop for each object. ViewObj shall produce short
and human readable information about the object in question, whereas PrintObj shall produce information
that may be longer and is (if reasonable) readable by GAP. We cannot satisfy the latter requirement for
a PrintObj method because there is no way to make a family GAP readable. So we decide to display the
expression ( k mod n ) for an object that is given by the residue k and the modulus n, which would be
fine as a ViewObj method. Since the default for ViewObj is to call PrintObj, and since no other ViewObj
method is applicable to our elements, we need only a PrintObj method.
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gap> InstallMethod( PrintObj,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObj and IsMyModulusRep ],
> function( x )
> Print( "( ", x![1], " mod ", FamilyObj(x)!.modulus, " )" );
> end );

So we installed a method for the operation PrintObj (first argument), and we gave it a suitable informa-
tion message (second argument), see 7.2.1 and 7.3 for applications of this information string. The third
argument tells GAP that the method is applicable for objects that lie in the category IsMyZmodnZObj and
in the representation IsMyModulusRep. and the fourth argument is the method itself. More details about
InstallMethod can be found in 2.2.

Note that the requirement IsMyModulusRep for the argument x allows us to access the residue as x![1].
Since the family of x has the component modulus bound if it is constructed by MyZmodnZ, we may access
this component. We check whether the method installation has some effect.

gap> gens;
[ ( 1 mod 4 ) ]

Next we install methods for the comparison operations. Note that we can assume that the residues in the
representation chosen are normalized.

gap> InstallMethod( \=,
> "for two elements in Z/nZ (ModulusRep)",
> IsIdenticalObj,
> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],
> function( x, y ) return x![1] = y![1]; end );
gap>
gap> InstallMethod( \<,
> "for two elements in Z/nZ (ModulusRep)",
> IsIdenticalObj,
> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],
> function( x, y ) return x![1] < y![1]; end );

The third argument used in these installations specifies the required relation between the families of the
arguments (see 13.1 in the Reference Manual). This argument of a method installation, if present, is a
function that shall be applied to the families of the arguments. IsIdenticalObj means that the methods
are applicable only if both arguments lie in the same family. (In installations for unary methods, obviously
no relation is required, so this argument is left out there.)

Up to now, we see no advantage of the new approach over the one in Section 5.1. For a residue class
represented as [ k, n ], the way it is printed on the screen is sufficient, and equality and comparison of
lists are good enough to define equality and comparison of residue classes if needed. But this is not the case
in other situations. For example, if we would have decided that the residue k need not be normalized then
we would have needed functions in Section 5.1 that compute whether two residue classes are equal, and
which of two residue classes is regarded as larger than another. Note that we are free to define what “larger”
means for objects that are newly introduced.

Next we install methods for the arithmetic operations, first for the additive structure.
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gap> InstallMethod( \+,
> "for two elements in Z/nZ (ModulusRep)",
> IsIdenticalObj,
> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],
> function( x, y )
> return MyZmodnZObj( FamilyObj( x ), x![1] + y![1] );
> end );
gap>
gap> InstallMethod( ZeroOp,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObj ],
> x -> MyZmodnZObj( FamilyObj( x ), 0 ) );
gap>
gap> InstallMethod( AdditiveInverseOp,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObj and IsMyModulusRep ],
> x -> MyZmodnZObj( FamilyObj( x ), AdditiveInverse( x![1] ) ) );

Here the new approach starts to pay off. The method for the operation \+ allows us to use the infix operator
+ for residue classes. The method for ZeroOp is used when we call this operation or the attribute Zero
explicitly, and ZeroOp it is also used when we ask for 0 * rescl , where rescl is a residue class.

(Note that Zero and ZeroOp are distinguished because 0 * obj is guaranteed to return a mutable result
whenever a mutable version of this result exists in GAP –for example if obj is a matrix– whereas Zero is an
attribute and therefore returns immutable results; for our example there is no difference since the residue
classes are always immutable, nevertheless we have to install the method for ZeroOp. The same holds for
AdditiveInverse, One, and Inverse.)

Similarly, AdditiveInverseOp can be either called directly or via the unary - operator; so we can compute
the additive inverse of the residue class rescl as -rescl .

It is not necessary to install methods for subtraction, since this is handled via addition of the additive inverse
of the second argument if no other method is installed.

Let us try what we can do with the methods that are available now.

gap> x:= gens[1]; y:= x + x;
( 1 mod 4 )
( 2 mod 4 )
gap> 0 * x; -x;
( 0 mod 4 )
( 3 mod 4 )
gap> y = -y; x = y; x < y; -x < y;
true
false
true
false

We might want to admit the addition of integers and elements in rings Z/nZ, where an integer is implicitly
identified with its residue modulo n. To achieve this, we install methods to add an integer to an object in
IsMyZmodnZObj from the left and from the right.
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gap> InstallMethod( \+,
> "for element in Z/nZ (ModulusRep) and integer",
> [ IsMyZmodnZObj and IsMyModulusRep, IsInt ],
> function( x, y )
> return MyZmodnZObj( FamilyObj( x ), x![1] + y );
> end );
gap>
gap> InstallMethod( \+,
> "for integer and element in Z/nZ (ModulusRep)",
> [ IsInt, IsMyZmodnZObj and IsMyModulusRep ],
> function( x, y )
> return MyZmodnZObj( FamilyObj( y ), x + y![1] );
> end );

Now we can do also the following.

gap> 2 + x; 7 - x; y - 2;
( 3 mod 4 )
( 2 mod 4 )
( 0 mod 4 )

Similarly we install the methods dealing with the multiplicative structure. We need methods to multiply two
of our objects, and to compute identity and inverse. The operation OneOp is called when we ask for rescl^0,
and InverseOp is called when we ask for rescl^-1. Note that the method for InverseOp returns fail if the
argument is not invertible.

gap> InstallMethod( \*,
> "for two elements in Z/nZ (ModulusRep)",
> IsIdenticalObj,
> [ IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep ],
> function( x, y )
> return MyZmodnZObj( FamilyObj( x ), x![1] * y![1] );
> end );
gap>
gap> InstallMethod( OneOp,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObj ],
> elm -> MyZmodnZObj( FamilyObj( elm ), 1 ) );
gap>
gap> InstallMethod( InverseOp,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObj and IsMyModulusRep ],
> function( elm )
> local residue;
> residue:= QuotientMod( 1, elm![1], FamilyObj( elm )!.modulus );
> if residue <> fail then
> residue:= MyZmodnZObj( FamilyObj( elm ), residue );
> fi;
> return residue;
> end );

To be able to multiply our objects with integers, we need not (but we may, and we should if we are going
for efficiency) install special methods. This is because in general, GAP interprets the multiplication of an
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integer and an additive object as abbreviation of successive additions, and there is one generic method for
such a multiplication that uses only additions and —in the case of a negative integer— taking the additive
inverse. Analogously, there is a generic method for powering by integers that uses only multiplications and
taking the multiplicative inverse.
Note that we could also interpret the multiplication with an integer as a shorthand for the multiplication
with the corresponding residue class. We are lucky that this interpretation is compatible with the one that
is already available. If this would not be the case then of course we would get into trouble by installing a
concurrent multiplication that computes something different from the multiplication that is already defined,
since GAP does not guarantee which of the applicable methods is actually chosen (see 2.3).
Now we have implemented methods for the arithmetic operations for our elements, and the following calcu-
lations work.

gap> y:= 2 * x; z:= (-5) * x;
( 2 mod 4 )
( 3 mod 4 )
gap> y * z; y * y;
( 2 mod 4 )
( 0 mod 4 )
gap> y^-1; y^0;
fail
( 1 mod 4 )
gap> z^-1;
( 3 mod 4 )

There are some other operations in GAP that we may want to accept our elements as arguments. An example
is the operation Int that returns, e.g., the integral part of a rational number or the integer corresponding to
an element in a finite prime field. For our objects, we may define that Int returns the normalized residue.
Note that we define this behaviour for elements but we implement it for objects in the representation
IsMyModulusRep. This means that if someone implements another representation of residue classes then this
person must be careful to implement Int methods for objects in this new representation compatibly with
our definition, i.e., such that the result is independent of the representation.

gap> InstallMethod( Int,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObj and IsMyModulusRep ],
> z -> z![1] );

Another example of an operation for which we might want to install a method is \mod. We make the ring
print itself as Integers mod the modulus, and then it is reasonable to allow a construction this way, which
makes the PrintObj output of the ring GAP readable.

gap> InstallMethod( PrintObj,
> "for full collection Z/nZ",
> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],
> function( R )
> Print( "(Integers mod ",
> ElementsFamily( FamilyObj(R) )!.modulus, ")" );
> end );
gap>
gap> InstallMethod( \mod,
> "for ‘Integers’, and a positive integer",
> [ IsIntegers, IsPosRat and IsInt ],
> function( Integers, n ) return MyZmodnZ( n ); end );

Let us try this.
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gap> Int( y );
2
gap> Integers mod 1789;
(Integers mod 1789)

Probably it is not necessary to emphasize that with the approach of Section 5.1, installing methods for
existing operations is usually not possible or at least not recommended. For example, installing the function
resclass sum defined in Section 5.1 as a \+ method for adding two lists of length two (with integer entries)
would not be compatible with the general definition of the addition of two lists of same length. Installing
a method for the operation Int that takes a list [ k, n ] and returns k would in principle be possible,
since there is no Int method for lists yet, but it is not sensible to do so because one can think of other
interpretations of such a list where different Int methods could be installed with the same right.

As mentioned in Section 5.2, one advantage of the new approach is that with the implementation we have
up to now, automatically also matrices of residue classes can be treated.

gap> r:= Integers mod 16;
(Integers mod 16)
gap> x:= One( r );
( 1 mod 16 )
gap> mat:= IdentityMat( 2 ) * x;
[ [ ( 1 mod 16 ), ( 0 mod 16 ) ], [ ( 0 mod 16 ), ( 1 mod 16 ) ] ]
gap> mat[1][2]:= x;;
gap> mat;
[ [ ( 1 mod 16 ), ( 1 mod 16 ) ], [ ( 0 mod 16 ), ( 1 mod 16 ) ] ]
gap> Order( mat );
16
gap> mat + mat;
[ [ ( 2 mod 16 ), ( 2 mod 16 ) ], [ ( 0 mod 16 ), ( 2 mod 16 ) ] ]
gap> last^4;
[ [ ( 0 mod 16 ), ( 0 mod 16 ) ], [ ( 0 mod 16 ), ( 0 mod 16 ) ] ]

Such matrices, if they are invertible, are valid as group elements. One technical problem is that the default
algorithm for inverting matrices may give up since Gaussian elimination need not be successful over rings
containing zero divisors. Therefore we install a simpleminded inversion method that inverts an integer matrix.

gap> InstallMethod( InverseOp,
> "for an ordinary matrix over a ring Z/nZ",
> [ IsMatrix and IsOrdinaryMatrix
> and CategoryCollections( CategoryCollections( IsMyZmodnZObj ) ) ],
> function( mat )
> local one, modulus;
>
> one:= One( mat[1][1] );
> modulus:= FamilyObj( one )!.modulus;
> mat:= InverseOp( List( mat, row -> List( row, Int ) ) );
> if mat <> fail then
> mat:= ( mat mod modulus ) * one;
> fi;
> if not IsMatrix( mat ) then
> mat:= fail;
> fi;
> return mat;
> end );
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Additionally we install a method for finding a domain that contains the matrix entries; this is used by some
GAP library functions.

gap> InstallMethod( DefaultFieldOfMatrixGroup,
> "for a matrix group over a ring Z/nZ",
> [ IsMatrixGroup and CategoryCollections( CategoryCollections(
> CategoryCollections( IsMyZmodnZObj ) ) ) ],
> G -> RingWithOneByGenerators( [ One( Representative( G )[1][1] ) ] ) );

Now we can deal with matrix groups over residue class rings.

gap> mat2:= IdentityMat( 2 ) * x;;
gap> mat2[2][1]:= x;;
gap> g:= Group( mat, mat2 );;
gap> Size( g );
3072
gap> Factors( last );
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3 ]
gap> syl3:= SylowSubgroup( g, 3 );;
gap> gens:= GeneratorsOfGroup( syl3 );
[ [ [ ( 1 mod 16 ), ( 7 mod 16 ) ], [ ( 11 mod 16 ), ( 14 mod 16 ) ] ] ]
gap> Order( gens[1] );
3

It should be noted that this way more involved methods for matrix groups may not be available. For example,
many questions about a finite matrix group can be delegated to an isomorphic permutation group via a so-
called “nice monomorphism”; this can be controlled by the filter IsHandledByNiceMonomorphism (see 38.5.1
in the GAP Reference Manual).

By the way, also groups of (invertible) residue classes can be formed, but this may be of minor interest.

gap> g:= Group( x );; Size( g );
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ ( 1 mod 16 ) ]
1
gap> g:= Group( 3*x );; Size( g );
#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ ( 3 mod 16 ) ]
4

(The messages above tell that GAP does not know a method for deciding whether the given elements are
valid group elements. We could add an appropriate IsGeneratorsOfMagmaWithInverses method if we would
want.)

Having done enough for the elements, we may install some more methods for the rings if we want to use
them as arguments. These rings are finite, and there are many generic methods that will work if they are
able to compute the list of elements of the ring, so we install a method for this.

gap> InstallMethod( Enumerator,
> "for full collection Z/nZ",
> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],
> function( R )
> local F;
> F:= ElementsFamily( FamilyObj(R) );
> return List( [ 0 .. Size( R ) - 1 ], x -> MyZmodnZObj( F, x ) );
> end );
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Note that this method is applicable only to full rings Z/nZ, for proper subrings it would return a wrong
result. Furthermore, it is not required that the argument is a ring; in fact this method is applicable also to
the additive group formed by all elements in the family, provided that it knows to contain the whole family.

Analogously, we install methods to compute the size, a random element, and the units of full rings Z/nZ.

gap> InstallMethod( Random,
> "for full collection Z/nZ",
> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],
> R -> MyZmodnZObj( ElementsFamily( FamilyObj(R) ),
> Random( [ 0 .. Size( R ) - 1 ] ) ) );
gap>
gap> InstallMethod( Size,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObj ) and IsWholeFamily ],
> R -> ElementsFamily( FamilyObj(R) )!.modulus );
gap>
gap> InstallMethod( Units,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObj )
> and IsWholeFamily and IsRing ],
> function( R )
> local F;
> F:= ElementsFamily( FamilyObj( R ) );
> return List( PrimeResidues( Size(R) ), x -> MyZmodnZObj( F, x ) );
> end );

The Units method has the disadvantage that the result is returned as a list (in fact this list is also strictly
sorted). We could improve the implementation by returning the units as a group; if we do not want to take
the full list of elements as generators, we can use the function GeneratorsPrimeResidues (see 15.1.4 in the
Reference Manual).

gap> InstallMethod( Units,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObj )
> and IsWholeFamily and IsRing ],
> function( R )
> local G, gens;
>
> gens:= GeneratorsPrimeResidues( Size( R ) ).generators;
> if not IsEmpty( gens ) and gens[ 1 ] = 1 then
> gens:= gens{ [ 2 .. Length( gens ) ] };
> fi;
> gens:= Flat( gens ) * One( R );
> return GroupByGenerators( gens, One( R ) );
> end );

Each ring Z/nZ is finite, and we could install a method that returns true when IsFinite is called with
Z/nZ as argument. But we can do this more elegantly via installing a logical implication.

gap> InstallTrueMethod( IsFinite,
> CategoryCollections( IsMyZmodnZObj ) and IsDomain );

In effect, every domain that consists of elements in IsMyZmodnZObj will automatically store that it is finite,
even if IsFinite is not called for it.
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5.4 Compatibility of Residue Class Rings with Prime Fields

The above implementation of residue classes and residue class rings has at least two disadvantages. First, if
p is a prime then the ring Z/pZ is in fact a field, but the return values of MyZmodnZ are never regarded as
fields because they are not in the category IsMagmaWithInversesIfNonzero. Second, and this makes the
example really interesting, there are already elements of finite prime fields implemented in GAP, and we
may want to identify them with elements in Z/pZ.

To be more precise, elements of finite fields in GAP lie in the category IsFFE, and there is already a
representation, IsInternalRep, of these elements via discrete logarithms. The aim of this section is to make
IsMyModulusRep an alternative representation of elements in finite prime fields.

Note that this is only one step towards the desired compatibility. Namely, after having a second representation
of elements in finite prime fields, we may wish that the function GF (which is the usual function to create
finite fields in GAP) is able to return MyZmodnZ( p ) when GF( p ) is called for a prime p. Moreover,
then we have to decide about a default representation of elements in GF( p ) for primes p for which both
representations are available. Of course we can force the new representation by explicitly calling MyZmodnZ
and MyZmodnZObj whenever we want, but it is not a priori clear in which situation which representation is
preferable.

The same questions will occur when we want to implement a new representation for non-prime fields. The
steps of this implementation will be the same as described in this chapter, and we will have to achieve
compatibility with both the internal representation of elements in small finite fields and the representation
IsMyModulusRep of elements in arbitrary prime fields.

But let us now turn back to the task of this section. We first adjust the setup of the declaration part of the
previous section, and then repeat the installations with suitable modifications.

(We should start a new GAP session for that, otherwise GAP will complain that the objects to be declared
are already bound; additionally, the methods installed above may be not compatible with the ones we want.)

gap> DeclareCategory( "IsMyZmodnZObj", IsScalar );
gap>
gap> DeclareCategory( "IsMyZmodnZObjNonprime", IsMyZmodnZObj );
gap>
gap> DeclareSynonym( "IsMyZmodpZObj", IsMyZmodnZObj and IsFFE );
gap>
gap> DeclareRepresentation( "IsMyModulusRep", IsPositionalObjectRep, [ 1 ] );
gap>
gap> DeclareGlobalFunction( "MyZmodnZObj" );
gap>
gap> DeclareGlobalFunction( "MyZmodnZ" );

As in the previous section, all (newly introduced) elements of rings Z/nZ lie in the category IsMyZmodnZObj.
But now we introduce two subcategories, namely IsMyZmodnZObjNonprime for all elements in rings Z/nZ
where n is not a prime, and IsMyZmodpZObj for elements in finite prime fields. All objects in the latter are
automatically known to lie in the category IsFFE of finite field elements.

It would be reasonable if also those internally represented elements in the category IsFFE that do in fact
lie in a prime field would also lie in the category IsMyZmodnZObj (and thus in fact in IsMyZmodpZObj). But
this cannot be achieved because internally represented finite field elements do in general not store whether
they lie in a prime field.

As for the implementation part, again let us start with the definitions of MyZmodnZObj and MyZmodnZ.
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gap> InstallGlobalFunction( MyZmodnZObj, function( Fam, residue )
> if IsFFEFamily( Fam ) then
> return Objectify( NewType( Fam, IsMyZmodpZObj
> and IsMyModulusRep ),
> [ residue mod Characteristic( Fam ) ] );
> else
> return Objectify( NewType( Fam, IsMyZmodnZObjNonprime
> and IsMyModulusRep ),
> [ residue mod Fam!.modulus ] );
> fi;
> end );

gap> InstallGlobalFunction( MyZmodnZ, function( n )
> local F, R;
>
> if not ( IsInt( n ) and IsPosRat( n ) ) then
> Error( "<n> must be a positive integer" );
> elif IsPrimeInt( n ) then
> # Construct the family of element objects of our field.
> F:= FFEFamily( n );
> # Make the domain.
> R:= FieldOverItselfByGenerators( [ MyZmodnZObj( F, 1 ) ] );
> SetIsPrimeField( R, true );
> else
> # Construct the family of element objects of our ring.
> F:= NewFamily( Concatenation( "MyZmod", String( n ), "Z" ),
> IsMyZmodnZObjNonprime );
> # Install the data.
> F!.modulus:= n;
> # Make the domain.
> R:= RingWithOneByGenerators( [ MyZmodnZObj( F, 1 ) ] );
> SetIsWholeFamily( R, true );
> SetName( R, Concatenation( "(Integers mod ",String(n),")" ) );
> fi;
>
> # Return the ring resp. field.
> return R;
> end );

Note that the result of MyZmodnZ with a prime as argument is a field that does not contain the whole family
of its elements, since all finite field elements of a fixed characteristic lie in the same family. Further note that
we cannot expect a family of finite field elements to have a component modulus, so we use Characteristic
to get the modulus. Requiring that Fam!.modulus works also if Fam is a family of finite field elements would
violate the rule that an extension of GAP should not force changes in existing code, in this case code dealing
with families of finite field elements.

gap> InstallMethod( PrintObj,
> "for element in Z/nZ (ModulusRep)",
> [ IsMyZmodnZObjNonprime and IsMyModulusRep ],
> function( x )
> Print( "( ", x![1], " mod ", FamilyObj(x)!.modulus, " )" );
> end );
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gap>
gap> InstallMethod( PrintObj,
> "for element in Z/pZ (ModulusRep)",
> [ IsMyZmodpZObj and IsMyModulusRep ],
> function( x )
> Print( "( ", x![1], " mod ", Characteristic(x), " )" );
> end );
gap>
gap> InstallMethod( \=,
> "for two elements in Z/nZ (ModulusRep)",
> IsIdenticalObj,
> [ IsMyZmodnZObj and IsMyModulusRep,
> IsMyZmodnZObj and IsMyModulusRep ],
> function( x, y ) return x![1] = y![1]; end );

The above method to check equality is independent of whether the arguments have a prime or nonprime
modulus, so we installed it for arguments in IsMyZmodnZObj. Now we install also methods to compare objects
in IsMyZmodpZObj with the “old” finite field elements.

gap> InstallMethod( \=,
> "for element in Z/pZ (ModulusRep) and internal FFE",
> IsIdenticalObj,
> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],
> function( x, y )
> return DegreeFFE( y ) = 1 and x![1] = IntFFE( y );
> end );
gap>
gap> InstallMethod( \=,
> "for internal FFE and element in Z/pZ (ModulusRep)",
> IsIdenticalObj,
> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],
> function( x, y )
> return DegreeFFE( x ) = 1 and IntFFE( x ) = y![1];
> end );

The situation with the operation \< is more difficult. Of course we are free to define the comparison of
objects in IsMyZmodnZObjNonprime, but for the finite field elements, the comparison must be compatible
with the predefined comparison of the “old” finite field elements. The definition of the \< comparison of
internally represented finite field elements can be found in Chapter 57 in the Reference Manual. In situations
where the documentation does not provide the required information, one has to look it up in the GAP code;
for example, the comparison in our case can be found in the appropriate source code file of the GAP kernel.

gap> InstallMethod( \<,
> "for two elements in Z/nZ (ModulusRep, nonprime)",
> IsIdenticalObj,
> [ IsMyZmodnZObjNonprime and IsMyModulusRep,
> IsMyZmodnZObjNonprime and IsMyModulusRep ],
> function( x, y ) return x![1] < y![1]; end );
gap>
gap> InstallMethod( \<,
> "for two elements in Z/pZ (ModulusRep)",
> IsIdenticalObj,
> [ IsMyZmodpZObj and IsMyModulusRep,
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> IsMyZmodpZObj and IsMyModulusRep ],
> function( x, y )
> local p, r; # characteristic and primitive root
> if x![1] = 0 then
> return y![1] <> 0;
> elif y![1] = 0 then
> return false;
> else
> p:= Characteristic( x );
> r:= PrimitiveRootMod( p );
> return LogMod( x![1], r, p ) < LogMod( y![1], r, p );
> fi;
> end );
gap>
gap> InstallMethod( \<,
> "for element in Z/pZ (ModulusRep) and internal FFE",
> IsIdenticalObj,
> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],
> function( x, y )
> return x![1] * One( y ) < y;
> end );
gap>
gap> InstallMethod( \<,
> "for internal FFE and element in Z/pZ (ModulusRep)",
> IsIdenticalObj,
> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],
> function( x, y )
> return x < y![1] * One( x );
> end );

Now we install the same methods for the arithmetic operations \+, ZeroOp, AdditiveInverseOp, \-, \*,
and OneOp as in the previous section, without listing them below. Also the same Int method is installed
for objects in IsMyZmodnZObj. Note that it is compatible with the definition of Int for finite field elements.
And of course the same method for \mod is installed.

We have to be careful, however, with the methods for InverseOp, \/, and \^. These methods and the missing
methods for arithmetic operations with one argument in IsMyModulusRep and the other in IsInternalRep
are given below.

gap> InstallMethod( \+,
> "for element in Z/pZ (ModulusRep) and internal FFE",
> IsIdenticalObj,
> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],
> function( x, y ) return x![1] + y; end );
gap>
gap> InstallMethod( \+,
> "for internal FFE and element in Z/pZ (ModulusRep)",
> IsIdenticalObj,
> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],
> function( x, y ) return x + y![1]; end );
gap>
gap> InstallMethod( \*,
> "for element in Z/pZ (ModulusRep) and internal FFE",
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> IsIdenticalObj,
> [ IsMyZmodpZObj and IsMyModulusRep, IsFFE and IsInternalRep ],
> function( x, y ) return x![1] * y; end );
gap>
gap> InstallMethod( \*,
> "for internal FFE and element in Z/pZ (ModulusRep)",
> IsIdenticalObj,
> [ IsFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep ],
> function( x, y ) return x * y![1]; end );
gap>
gap> InstallMethod( InverseOp,
> "for element in Z/nZ (ModulusRep, nonprime)",
> [ IsMyZmodnZObjNonprime and IsMyModulusRep ],
> function( x )
> local residue;
> residue:= QuotientMod( 1, x![1], FamilyObj(x)!.modulus );
> if residue <> fail then
> residue:= MyZmodnZObj( FamilyObj(x), residue );
> fi;
> return residue;
> end );
gap>
gap> InstallMethod( InverseOp,
> "for element in Z/pZ (ModulusRep)",
> [ IsMyZmodpZObj and IsMyModulusRep ],
> function( x )
> local residue;
> residue:= QuotientMod( 1, x![1], Characteristic( FamilyObj(x) ) );
> if residue <> fail then
> residue:= MyZmodnZObj( FamilyObj(x), residue );
> fi;
> return residue;
> end );

The operation DegreeFFE is defined for finite field elements, we need a method for objects in IsMyZmodpZObj.
Note that we need not require IsMyModulusRep since no access to representation dependent data occurs.

gap> InstallMethod( DegreeFFE,
> "for element in Z/pZ",
> [ IsMyZmodpZObj ],
> z -> 1 );

The methods for Enumerator, Random, Size, and Units, that we had installed in the previous section had
all assumed that their argument contains the whole family of its elements. So these methods make sense only
for the nonprime case. For the prime case, there are already methods for these operations with argument a
field.

gap> InstallMethod( Enumerator,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObjNonprime ) and IsWholeFamily ],
> function( R )
> local F;
> F:= ElementsFamily( FamilyObj( R ) );
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> return List( [ 0 .. Size( R ) - 1 ], x -> MyZmodnZObj( F, x ) );
> end );
gap>
gap> InstallMethod( Random,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObjNonprime ) and IsWholeFamily ],
> R -> MyZmodnZObj( ElementsFamily( FamilyObj( R ) ),
> Random( [ 0 .. Size( R ) - 1 ] ) ) );
gap>
gap> InstallMethod( Size,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObjNonprime ) and IsWholeFamily ],
> R -> ElementsFamily( FamilyObj( R ) )!.modulus );
gap>
gap> InstallMethod( Units,
> "for full ring Z/nZ",
> [ CategoryCollections( IsMyZmodnZObjNonprime )
> and IsWholeFamily and IsRing ],
> function( R )
> local G, gens;
>
> gens:= GeneratorsPrimeResidues( Size( R ) ).generators;
> if not IsEmpty( gens ) and gens[ 1 ] = 1 then
> gens:= gens{ [ 2 .. Length( gens ) ] };
> fi;
> gens:= Flat( gens ) * One( R );
> return GroupByGenerators( gens, One( R ) );
> end );
gap>
gap> InstallTrueMethod( IsFinite,
> CategoryCollections( IsMyZmodnZObjNonprime ) and IsDomain );

5.5 Further Improvements in Implementing Residue Class Rings

There are of course many possibilities to improve the implementation.

With the setup as described above, subsequent calls MyZmodnZ( n ) with the same n yield incompatible
rings in the sense that elements of one ring cannot be added to elements of an other one. The solution for
this problem is to keep a global list of all results of MyZmodnZ in the current GAP session, and to return
the stored values whenever possible. Note that this approach would admit PrintObj methods that produce
GAP readable output.

One can improve the Units method for the full ring in such a way that a group is returned and not only a
list of its elements; then the result of Units can be used, e. g., as input for the operation SylowSubgroup.

To make computations more efficient, one can install methods for \-, \/, and \^; one reason for doing so may
be that this avoids the unnecessary construction of the additive or multiplicative inverse, or of intermediate
powers.
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InstallMethod( \-, "two elements in Z/nZ (ModulusRep)", ... );
InstallMethod( \-, "Z/nZ-obj. (ModulusRep) and integer", ... );
InstallMethod( \-, "integer and Z/nZ-obj. (ModulusRep)", ... );
InstallMethod( \-, "Z/pZ-obj. (ModulusRep) and internal FFE", ... );
InstallMethod( \-, "internal FFE and Z/pZ-obj. (ModulusRep)", ... );
InstallMethod( \*, "Z/nZ-obj. (ModulusRep) and integer", ... );
InstallMethod( \*, "integer and Z/nZ-obj. (ModulusRep)", ... );
InstallMethod( \/, "two Z/nZ-objs. (ModulusRep, nonprime)", ... );
InstallMethod( \/, "two Z/pZ-objs. (ModulusRep)", ... );
InstallMethod( \/, "Z/nZ-obj. (ModulusRep) and integer", ... );
InstallMethod( \/, "integer and Z/nZ-obj. (ModulusRep)", ... );
InstallMethod( \/, "Z/pZ-obj. (ModulusRep) and internal FFE", ... );
InstallMethod( \/, "internal FFE and Z/pZ-obj. (ModulusRep)", ... );
InstallMethod( \^, "Z/nZ-obj. (ModulusRep, nonprime) & int.", ... );
InstallMethod( \^, "Z/pZ-obj. (ModulusRep), and integer", ... );

The call to NewType in MyZmodnZObj can be avoided by storing the required type, e.g., in the family. But
note that it is not admissible to take the type of an existing object as first argument of Objectify. For
example, suppose two objects in IsMyZmodnZObj shall be added. Then we must not use the type of one of
the arguments in a call of Objectify, because the argument may have knowledge that is not correct for the
result of the addition. One may think of the property IsOne that may hold for both arguments but certainly
not for their sum.

For comparing two objects in IsMyZmodpZObj via “<”, we had to install a quite expensive method because
of the compatibility with the comparison of finite field elements that did already exist. In fact GAP supports
finite fields with elements represented via discrete logarithms only up to a given size. So in principle we have
the freedom to define a cheaper comparison via “<” for objects in IsMyZmodpZObj if the modulus is large
enough. This is possible by introducing two categories IsMyZmodpZObjSmall and IsMyZmodpZObjLarge,
which are subcategories of IsMyZmodpZObj, and to install different \< methods for pairs of objects in these
categories.



6
An Example –

Designing Arithmetic
Operations

In this chapter, we give a –hopefully typical– example of extending GAP by new objects with prescribed
arithmetic operations.

6.1 New Arithmetic Operations vs. New Objects

A usual procedure in mathematics is the definition of new operations for given objects; here are a few typical
examples. The Lie bracket defines an interesting new multiplicative structure on a given (associative) algebra.
Forming a group ring can be viewed as defining a new addition for the elements of the given group, and
extending the multiplication to sums of group elements in a natural way. Forming the exterior algebra of a
given vector space can be viewed as defining a new multiplication for the vectors in a natural way.

GAP does not support such a procedure. The main reason for this is that in GAP, the multiplication in a
group, a ring etc. is always written as *, and the addition in a vector space, a ring etc. is always written
as +. Therefore it is not possible to define the Lie bracket as a “second multiplication” for the elements of a
given algebra; in fact, the multiplication in Lie algebras in GAP is denoted by *. Analogously, constructing
the group ring as sketched above is impossible if an addition is already defined for the elements; note the
difference between the usual addition of matrices and the addition in the group ring of a matrix group! (See
Chapter 63 in the Reference Manual for an example.) Similarly, there is already a multiplication defined for
row vectors (yielding the standard scalar product), hence these vectors cannot be regarded as elements of
the exterior algebra of the space.

In situations such as the ones mentioned above, GAP’s way to deal with the structures in question is the
following. Instead of defining new operations for the given objects, new objects are created to which the
given arithmetic operations * and + are then made applicable.

With this construction, matrix Lie algebras consist of matrices that are different from the matrices with
associative multiplication; technically, the type of a matrix determines how it is multiplied with other
matrices (see 24.1.1 in the Reference Manual). A matrix with the Lie bracket as its multiplication can be
created with the function LieObject from a matrix with the usual associative multiplication.

Group rings (more general: magma rings, see Chapter 63 in the Reference Manual) can be constructed with
FreeMagmaRing from a coefficient ring and a group. The elements of the group are not contained in such a
group ring, one has to use an embedding map for creating a group ring element that corresponds to a given
group element.

It should be noted that the GAP approach to the construction of Lie algebras from associative algebras
is generic in the sense that all objects in the filter IsLieObject use the same methods for their addition,
multiplication etc., by delegating to the “underlying” objects of the associative algebra, no matter what
these objects actually are. Analogously, also the construction of group rings is generic.
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6.2 Designing new Multiplicative Objects

The goal of this section is to implement objects with a prescribed multiplication. Let us assume that we are
given a field F , and that we want to define a new multiplication * on F that is given by a ∗b = ab−a−b +2;
here ab denotes the ordinary product in F .

By the discussion in Section 6.1, we know that we cannot define a new multiplication on F itself but have
to create new objects.

We want to distinguish these new objects from all other GAP objects, in order to describe for example the
situation that two of our objects shall be multiplied. This distinction is made via the type of the objects.
More precisely, we declare a new filter, a function that will return true for our new objects, and false for
all other GAP objects. This can be done by calling DeclareFilter (see 3.17.2), but since our objects will
know about the value already when they are constructed, the filter can be created with DeclareCategory
(see 3.17.2 and 3.1.1).

DeclareCategory( "IsMyObject", IsObject );

The idea is that the new multiplication will be installed only for objects that “lie in the category IsMyOb-
ject”.

The next question is what internal data our new objects store, and how they are accessed. The easiest
solution is to store the “underlying” object from the field F . GAP provides two general possibilities how to
store this, namely record-like and list-like structures (for examples, see 3.9 and 3.10). We decide to store the
data in a list-like structure, at position 1. This representation is declared as follows.

DeclareRepresentation( "IsMyObjectListRep", IsPositionalObjectRep, [ 1 ] );

Of course we can argue that this declaration is superfluous because all objects in the category IsMyObject
will be represented this way; it is possible to proceed like that, but often (in more complicated situations)
it turns out to be useful that several representations are available for “the same element”.

For creating the type of our objects, we need to specify to which family (see 13.1 in the Reference Manual)
the objects shall belong. For the moment, we need not say anything about relations to other GAP objects,
thus the only requirement is that all new objects lie in the same family; therefore we create a new family.
Also we are not interested in properties that some of our objects have and others do not have, thus we need
only one type, and store it in a global variable.

MyType:= NewType( NewFamily( "MyFamily" ),
IsMyObject and IsMyObjectListRep );

The next step is to write a function that creates a new object. It may look as follows.

MyObject:= val -> Objectify( MyType, [ Immutable( val ) ] );

Note that we store an immutable copy of the argument in the returned object; without doing so, for
example if the argument would be a mutable matrix then the corresponding new object would be changed
whenever the matrix is changed (see 12.6 in the Reference Manual for more details about mutability).

Having entered the above GAP code, we can create some of our objects.

gap> a:= MyObject( 3 ); b:= MyObject( 5 );
<object>
<object>
gap> a![1]; b![1];
3
5

But clearly a lot is missing. Besides the fact that the desired multiplication is not yet installed, we see that
also the way how the objects are printed is not satisfactory.
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Let us improve the latter first. There are two GAP functions View and Print for showing objects on the
screen. View is thought to show a short and human readable form of the object, and Print is thought to
show a not necessarily short form that is GAP readable whenever this makes sense. We decide to show a
as 3 by View, and to show the construction MyObject( 3 ) by Print; the methods are installed for the
underlying operations ViewObj and PrintObj.

InstallMethod( ViewObj,
"for object in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep ],
function( obj )
Print( "<", obj![1], ">" );
end );

InstallMethod( PrintObj,
"for object in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep ],
function( obj )
Print( "MyObject( ", obj![1], " )" );
end );

This is the result of the above installations.

gap> a; Print( a, "\n" );
<3>
MyObject( 3 )

And now we try to install the multiplication.

InstallMethod( \*,
"for two objects in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep ],

function( a, b )
return MyObject( a![1] * b![1] - a![1] - b![1] + 2 );
end );

When we enter the above code, GAP runs into an error. This is due to the fact that the operation \* is
declared for two arguments that lie in the category IsMultiplicativeElement. One could circumvent the
check whether the method matches the declaration of the operation, by calling InstallOtherMethod in-
stead of InstallMethod. But it would make sense if our objects would lie in IsMultiplicativeElement,
for example because some generic methods for objects with multiplication would be available then, such as
powering by positive integers via repeated squaring. So we want that IsMyObject implies IsMultiplica-
tiveElement. The easiest way to achieve such implications is to use the implied filter as second argument
of the DeclareCategory call; but since we do not want to start anew, we can also install the implication
afterwards.

InstallTrueMethod( IsMultiplicativeElement, IsMyObject );

Afterwards, installing the multiplication works without problems. Note that MyType and therefore also a
and b are not affected by this implication, so we construct them anew.
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gap> MyType:= NewType( NewFamily( "MyFamily" ),
> IsMyObject and IsMyObjectListRep );;
gap> a:= MyObject( 3 );; b:= MyObject( 5 );;
gap> a*b; a^27;
<9>
<134217729>

Powering the new objects by negative integers is not possible yet, because GAP does not know how to
compute the inverse of an element a, say, which is defined as the unique element a ′ such that both aa ′ and
a ′a are “the unique multiplicative neutral element that belongs to a”.

And also this neutral element, if it exists, cannot be computed by GAP in our current situation. It does,
however, make sense to ask for the multiplicative neutral element of a given magma, and for inverses of
elements in the magma.

But before we can form domains of our objects, we must define when two objects are regarded as equal;
note that this is necessary in order to decide about the uniqueness of neutral and inverse elements. In our
situation, equality is defined in the obvious way. For being able to form sets of our objects, also an ordering
via \< is defined for them.

InstallMethod( \=,
"for two objects in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep ],

function( a, b )
return a![1] = b![1];
end );

InstallMethod( \<,
"for two objects in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep ],

function( a, b )
return a![1] < b![1];
end );

Let us look at an example. We start with finite field elements because then the domains are finite, hence
the generic methods for such domains will have a chance to succeed.

gap> a:= MyObject( Z(7) );
<Z(7)>
gap> m:= Magma( a );
<magma with 1 generators>
gap> e:= MultiplicativeNeutralElement( m );
<Z(7)^2>
gap> elms:= AsList( m );
[ <Z(7)>, <Z(7)^2>, <Z(7)^5> ]
gap> ForAll( elms, x -> ForAny( elms, y -> x*y = e and y*x = e ) );
true
gap> List( elms, x -> First( elms, y -> x*y = e and y*x = e ) );
[ <Z(7)^5>, <Z(7)^2>, <Z(7)> ]

So a multiplicative neutral element exists, in fact all elements in the magma m are invertible. But what about
the following.
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gap> b:= MyObject( Z(7)^0 ); m:= Magma( a, b );
<Z(7)^0>
<magma with 2 generators>
gap> elms:= AsList( m );
[ <Z(7)^0>, <Z(7)>, <Z(7)^2>, <Z(7)^5> ]
gap> e:= MultiplicativeNeutralElement( m );
<Z(7)^2>
gap> ForAll( elms, x -> ForAny( elms, y -> x*y = e and y*x = e ) );
false
gap> List( elms, x -> b * x );
[ <Z(7)^0>, <Z(7)^0>, <Z(7)^0>, <Z(7)^0> ]

Here we found a multiplicative neutral element, but the element b does not have an inverse. If an addition
would be defined for our elements then we would say that b behaves like a zero element.

When we started to implement the new objects, we said that we wanted to define the new multiplication
for elements of a given field F . In principle, the current implementation would admit also something like
MyObject( 2 ) * MyObject( Z(7) ). But if we decide that our initial assumption holds, we may define
the identity and the inverse of the object <a> as <2*e> and <a/(a-e)>, respectively, where e is the identity
element in F and / denotes the division in F ; note that the element <e> is not invertible, and that the
above definitions are determined by the multiplication defined for our objects. Further note that after the
installations shown below, also One( MyObject( 1 ) ) is defined.

(For technical reasons, we do not install the intended methods for the attributes One and Inverse but for the
operations OneOp and InverseOp. This is because for certain kinds of objects –mainly matrices– one wants
to support a method to compute a mutable identity or inverse, and the attribute needs only a method that
takes this object, makes it immutable, and then returns this object. As stated above, we only want to deal
with immutable objects, so this distinction is not really interesting for us.)

A more interesting point to note is that we should mark our objects as likely to be invertible, since we add
the possibility to invert them. Again, this could have been part of the declaration of IsMyObject, but we
may also formulate an implication for the existing category.

InstallTrueMethod( IsMultiplicativeElementWithInverse, IsMyObject );

InstallMethod( OneOp,
"for an object in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep ],
a -> MyObject( 2 * One( a![1] ) ) );

InstallMethod( InverseOp,
"for an object in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep ],
a -> MyObject( a![1] / ( a![1] - One( a![1] ) ) ) );

Now we can form groups of our (nonzero) elements.

gap> MyType:= NewType( NewFamily( "MyFamily" ),
> IsMyObject and IsMyObjectListRep );;
gap>
gap> a:= MyObject( Z(7) );
<Z(7)>
gap> b:= MyObject( 0*Z(7) ); g:= Group( a, b );
<0*Z(7)>
<group with 2 generators>
gap> Size( g );
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6

We are completely free to define an addition for our elements, a natural one is given by <a> + <b> =
<a+b-1>. As we did for the multiplication, we first change IsMyObject such that the additive structure is
also known.

InstallTrueMethod( IsAdditiveElementWithInverse, IsMyObject );

Next we install the methods for the addition, and those to compute the additive neutral element and the
additive inverse.

InstallMethod( \+,
"for two objects in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep ],

function( a, b )
return MyObject( a![1] + b![1] - 1 );
end );

InstallMethod( ZeroOp,
"for an object in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep ],
a -> MyObject( One( a![1] ) ) );

InstallMethod( AdditiveInverseOp,
"for an object in ‘IsMyObject’",
[ IsMyObject and IsMyObjectListRep ],
a -> MyObject( a![1] / ( a![1] - One( a![1] ) ) ) );

Let us try whether the addition works.

gap> MyType:= NewType( NewFamily( "MyFamily" ),
> IsMyObject and IsMyObjectListRep );;
gap> a:= MyObject( Z(7) );; b:= MyObject( 0*Z(7) );;
gap> m:= AdditiveMagma( a, b );
<additive magma with 2 generators>
gap> Size( m );
7

Similar as installing a multiplication automatically makes powering by integers available, multiplication with
integers becomes available with the addition.

gap> 2 * a;
<Z(7)^5>
gap> a+a;
<Z(7)^5>
gap> MyObject( 2*Z(7)^0 ) * a;
<Z(7)>

In particular we see that this multiplication does not coincide with the multiplication of two of our objects,
that is, an integer cannot be used as a shorthand for one of the new objects in a multiplication.

(It should be possible to create a field with the new multiplication and addition. Currently this fails, due
to missing methods for computing several kinds of generators from field generators, for computing the
characteristic in the case that the family does not know this in advance, for checking with AsField whether
a domain is in fact a field, for computing the closure as a field.)
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It should be emphasized that the mechanism described above may be not suitable for the situation that one
wants to consider many different multiplications “on the same set of objects”, since the installation of a new
multiplication requires the declaration of at least one new filter and the installation of several methods. But
the design of GAP is not suitable for such dynamic method installations.

Turning this argument the other way round, the implementation of the new arithmetics defined by the above
multiplication and addition is available for any field F , one need not repeat it for each field one is interested
in.

Similar to the above situation, the construction of a magma ring RM from a coefficient ring R and a magma
M is implemented only once, since the definition of the arithmetic operations depends only on the given
multiplication of M and not on M itself. So the addition is not implemented for the elements in M or –more
precisely– for an isomorphic copy. In some sense, the addition is installed “for the multiplication”, and as
mentioned in Section 6.1, there is only one multiplication \* in GAP.
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