Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[All84] Alltop, W. O., A method for extending binary linear codes, IEEE Trans. Inform. Theory, 30 (1984), 871–872.

[BMd)] Bazzi, L. and Mitter, S. K., Some constructions of codes from group actions, preprint (March 2003 (submitted)).

[Bro06] Brouwer, A. E., Bounds on the minimum distance of linear codes (1997-2006), \href{http://www.win.tue.nl/~aeb/voorlincod.html}{http://www.win.tue.nl/~aeb/voorlincod.html}.

[Bro98] Brouwer, A. E. (Pless, V. S. and Huffman, W. C., Eds.), Bounds on the Size of Linear Codes, in Handbook of Coding Theory, {Elsevier, North Holland} (1998), 295–461.

[Che69] Chen, C. L., Some Results on Algebraically Structured Error-Correcting Codes, Ph.{D} Dissertation, {University of Hawaii}, USA (1969).

[GDT91] Gabidulin, E., Davydov, A. and Tombak, L., Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Inform. Theory, 37 (1) (1991), 219–224.

[Gal62] Gallager, R., Low-Density Parity-Check Codes, IRE Trans. Inform. Theory, IT-8 (1962), 21–28.

[Gao03] Gao, S., A new algorithm for decoding Reed-Solomon codes, Communications, Information and Network Security (V. Bhargava, H. V. Poor, V. Tarokh and S. Yoon, Eds.), Kluwer Academic Publishers (2003), 55–68.

[GS85] Graham, R. and Sloane, N., On the covering radius of codes, IEEE Trans. Inform. Theory, 31 (1) (1985), 385–401.

[Han99] Hansen, J. P., Toric surfaces and error-correcting codes, Coding theory, cryptography, and related areas (ed., Bachmann et al), Springer-Verlag (1999).

[HHKK07] Harada, M., Holzmann, W., Kharaghani, H. and Khorvash, M., Extremal Ternary Self-Dual Codes Constructed from Negacirculant Matrices, Graphs and Combinatorics, 23 (4) (2007), 401–417.

[Hel72] Helgert, H. J., Srivastava codes, IEEE Trans. Inform. Theory, 18 (1972), 292–297.

[HP03] Huffman, W. C. and Pless, V., Fundamentals of error-correcting codes, Cambridge Univ. Press (2003).

[Joy04] Joyner, D., Toric codes over finite fields, Applicable Algebra in Engineering, Communication and Computing, 15 (2004), 63–79.

[JH04] Justesen, J. and Hoholdt, T., A course in error-correcting codes, European Mathematical Society (2004).

[Leo82] Leon, J. S., Computing automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory, 28 (1982), 496–511.

[Leo88] Leon, J. S., A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE Trans. Inform. Theory, 34 (1988), 1354–1359.

[Leo91] Leon, J. S., Permutation group algorithms based on partitions, I: theory and algorithms, J. Symbolic Comput., 12 (1991), 533–583.

[MS83] MacWilliams, F. J. and Sloane, N. J. A., The theory of error-correcting codes, Amsterdam: North-Holland (1983).

[SRC72] Sloane, N., Reddy, S. and Chen, C., New binary codes, IEEE Trans. Inform. Theory, 18 (1972), 503–510.

[Sti93] Stichtenoth, H., Algebraic function fields and codes, Springer-Verlag (1993).

[TSSFJ04] Tanner, R., Sridhara, D., Sridharan, A., Fuja, T. and Costello Jr., D., LDPC Block and Convolutional Codes Based on Circulant Matrices, IEEE Trans. Inform. Theory, 50 (12) (2004), 2966–2984.

[GG03] von zur Gathen, J. and Gerhard, J., Modern computer algebra, Cambridge Univ. Press (2003).

[Zim96] Zimmermann, K. H., Integral Hecke Modules, Integral Generalized Reed-Muller Codes, and Linear Codes, Technische Universität Hamburg-Harburg (3–96), Hamburg, Germany (1996).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML