[Up] [Previous] [Next] [Index]

5 Nilpotent Quotients

Sections

  1. Computing nilpotent quotients
  2. Example of nilpotent quotient computation

This chapter contains a description of the nilpotent quotient algorithm for associative finitely presented algebras. We refer to Eic11 for background on the algorithms used in this Chapter.

5.1 Computing nilpotent quotients

Let A be a finitely presented algebra in the GAP sense. The following function can be used to determine the class-c nilpotent quotient of A. The quotient is described by a nilpotent table.

  • NilpotentQuotientOfFpAlgebra( A, c ) F

    The output of this function is a nilpotent table with some additional entries. In particular, there is the additional entry img which describes the images of the generators of A in the nilpotent table.

    5.2 Example of nilpotent quotient computation

    gap> F := FreeAssociativeAlgebra(GF(2), 2);;
    gap> g := GeneratorsOfAlgebra(F);;
    gap> r := [g[1]^2, g[2]^2];;
    gap> A := F/r;;
    gap> NilpotentQuotientOfFpAlgebra(A,3);
    rec( def := [ 1, 2 ], dim := 8, fld := GF(2), 
      img := [ <a GF2 vector of length 8>, <a GF2 vector of length 8> ], 
      mat := [ [  ], [  ] ], rnk := 2, 
      tab := 
        [ [<a GF2 vector of length 8>, <a GF2 vector of length 8>, 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
          [ <a GF2 vector of length 8>, <a GF2 vector of length 8>, 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
          [ [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
          [ [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
            [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ]], 
      wds := [ ,, [ 2, 1 ], [ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 2, 5 ], [ 1, 6 ] ], 
      wgs := [ 1, 1, 2, 2, 3, 3, 4, 4 ] )
    

    [Up] [Previous] [Next] [Index]

    ModIsom manual
    January 2016