Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 Idempotents
 4.1 Computing idempotents from character table
 4.2 Testing lists of idempotents for completeness
 4.3 Idempotents from Shoda pairs
 4.4 Complete set of orthogonal primitive idempotents from Shoda pairs and cyclotomic classes

4 Idempotents

4.1 Computing idempotents from character table

4.1-1 PrimitiveCentralIdempotentsByCharacterTable
‣ PrimitiveCentralIdempotentsByCharacterTable( FG )( operation )

Returns: A list of group algebra elements.

The input FG should be a semisimple group algebra.

Returns the list of primitive central idempotents of FG using the character table of G (9.4).


gap> QS3 := GroupRing( Rationals, SymmetricGroup(3) );;                 
gap> PrimitiveCentralIdempotentsByCharacterTable( QS3 );
[ (1/6)*()+(-1/6)*(2,3)+(-1/6)*(1,2)+(1/6)*(1,2,3)+(1/6)*(1,3,2)+(-1/6)*(1,3),
  (2/3)*()+(-1/3)*(1,2,3)+(-1/3)*(1,3,2), (1/6)*()+(1/6)*(2,3)+(1/6)*(1,2)+(1/
    6)*(1,2,3)+(1/6)*(1,3,2)+(1/6)*(1,3) ]
gap> QG:=GroupRing( Rationals , SmallGroup(24,3) );
<algebra-with-one over Rationals, with 4 generators>
gap> FG:=GroupRing( CF(3) , SmallGroup(24,3) );
<algebra-with-one over CF(3), with 4 generators>
gap> pciQG := PrimitiveCentralIdempotentsByCharacterTable(QG);;
gap> pciFG := PrimitiveCentralIdempotentsByCharacterTable(FG);;
gap> Length(pciQG);
5
gap> Length(pciFG);
7

4.2 Testing lists of idempotents for completeness

4.2-1 IsCompleteSetOfOrthogonalIdempotents
‣ IsCompleteSetOfOrthogonalIdempotents( R, list )( operation )

The input should be formed by a unital ring R and a list list of elements of R.

Returns true if the list list is a complete list of orthogonal idempotents of R. That is, the output is true provided the following conditions are satisfied:

The sum of the elements of list is the identity of R,

e^2=e, for every e in list and

e*f=0, if e and f are elements in different positions of list.

No claim is made on the idempotents being central or primitive.

Note that the if a non-zero element t of R appears in two different positions of list then the output is false, and that the list list must not contain zeroes.


gap> QS5 := GroupRing( Rationals, SymmetricGroup(5) );;
gap> idemp := PrimitiveCentralIdempotentsByCharacterTable( QS5 );;
gap> IsCompleteSetOfOrthogonalIdempotents( QS5, idemp );
true
gap> IsCompleteSetOfOrthogonalIdempotents( QS5, [ One( QS5 ) ] );
true
gap> IsCompleteSetOfOrthogonalIdempotents( QS5, [ One( QS5 ), One( QS5 ) ] );
false

4.3 Idempotents from Shoda pairs

4.3-1 PrimitiveCentralIdempotentsByStrongSP
‣ PrimitiveCentralIdempotentsByStrongSP( FG )( attribute )

Returns: A list of group algebra elements.

The input FG should be a semisimple group algebra of a finite group G whose coefficient field F is either a finite field or the field of rationals.

If F = ℚ then the output is the list of primitive central idempotents of the group algebra FG realizable by strong Shoda pairs (9.15) of G.

If F is a finite field then the output is the list of primitive central idempotents of FG realizable by strong Shoda pairs (K,H) of G and q-cyclotomic classes modulo the index of H in K (9.17).

If the list of primitive central idempotents given by the output is not complete (i.e. if the group G is not strongly monomial (9.16)) then a warning is displayed.


gap> QG:=GroupRing( Rationals, AlternatingGroup(4) );;           
gap> PrimitiveCentralIdempotentsByStrongSP( QG );
[ (1/12)*()+(1/12)*(2,3,4)+(1/12)*(2,4,3)+(1/12)*(1,2)(3,4)+(1/12)*(1,2,3)+(1/
    12)*(1,2,4)+(1/12)*(1,3,2)+(1/12)*(1,3,4)+(1/12)*(1,3)(2,4)+(1/12)*
    (1,4,2)+(1/12)*(1,4,3)+(1/12)*(1,4)(2,3),
  (1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2)(3,4)+(-1/12)*(1,2,3)+(
    -1/12)*(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3)(2,4)+(-1/12)*
    (1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4)(2,3),
  (3/4)*()+(-1/4)*(1,2)(3,4)+(-1/4)*(1,3)(2,4)+(-1/4)*(1,4)(2,3) ]
gap> QG := GroupRing( Rationals, SmallGroup(24,3) );;
gap> PrimitiveCentralIdempotentsByStrongSP( QG );;
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input! 
gap> FG := GroupRing( GF(2), Group((1,2,3)) );;
gap> PrimitiveCentralIdempotentsByStrongSP( FG );
[ (Z(2)^0)*()+(Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2), 
  (Z(2)^0)*(1,2,3)+(Z(2)^0)*(1,3,2) ]
gap> FG := GroupRing( GF(5), SmallGroup(24,3) );; 
gap> PrimitiveCentralIdempotentsByStrongSP( FG );;
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input! 

4.3-2 PrimitiveCentralIdempotentsBySP
‣ PrimitiveCentralIdempotentsBySP( QG )( function )

Returns: A list of group algebra elements.

The input should be a rational group algebra of a finite group G.

Returns a list containing all the primitive central idempotents e of the rational group algebra QG such that χ(e)ne 0 for some irreducible monomial character χ of G.

The output is the list of all primitive central idempotents of QG if and only if G is monomial, otherwise a warning message is displayed.


gap> QG := GroupRing( Rationals, SymmetricGroup(4) );
<algebra-with-one over Rationals, with 2 generators>
gap> pci:=PrimitiveCentralIdempotentsBySP( QG );
[ (1/24)*()+(1/24)*(3,4)+(1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)*(2,4,3)+(1/24)*
    (2,4)+(1/24)*(1,2)+(1/24)*(1,2)(3,4)+(1/24)*(1,2,3)+(1/24)*(1,2,3,4)+(1/
    24)*(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(1/24)*(1,3,4,2)+(1/24)*
    (1,3)+(1/24)*(1,3,4)+(1/24)*(1,3)(2,4)+(1/24)*(1,3,2,4)+(1/24)*(1,4,3,2)+(
    1/24)*(1,4,2)+(1/24)*(1,4,3)+(1/24)*(1,4)+(1/24)*(1,4,2,3)+(1/24)*(1,4)
    (2,3), (1/24)*()+(-1/24)*(3,4)+(-1/24)*(2,3)+(1/24)*(2,3,4)+(1/24)*
    (2,4,3)+(-1/24)*(2,4)+(-1/24)*(1,2)+(1/24)*(1,2)(3,4)+(1/24)*(1,2,3)+(-1/
    24)*(1,2,3,4)+(-1/24)*(1,2,4,3)+(1/24)*(1,2,4)+(1/24)*(1,3,2)+(-1/24)*
    (1,3,4,2)+(-1/24)*(1,3)+(1/24)*(1,3,4)+(1/24)*(1,3)(2,4)+(-1/24)*
    (1,3,2,4)+(-1/24)*(1,4,3,2)+(1/24)*(1,4,2)+(1/24)*(1,4,3)+(-1/24)*(1,4)+(
    -1/24)*(1,4,2,3)+(1/24)*(1,4)(2,3), (3/8)*()+(-1/8)*(3,4)+(-1/8)*(2,3)+(
    -1/8)*(2,4)+(-1/8)*(1,2)+(-1/8)*(1,2)(3,4)+(1/8)*(1,2,3,4)+(1/8)*
    (1,2,4,3)+(1/8)*(1,3,4,2)+(-1/8)*(1,3)+(-1/8)*(1,3)(2,4)+(1/8)*(1,3,2,4)+(
    1/8)*(1,4,3,2)+(-1/8)*(1,4)+(1/8)*(1,4,2,3)+(-1/8)*(1,4)(2,3), 
  (3/8)*()+(1/8)*(3,4)+(1/8)*(2,3)+(1/8)*(2,4)+(1/8)*(1,2)+(-1/8)*(1,2)(3,4)+(
    -1/8)*(1,2,3,4)+(-1/8)*(1,2,4,3)+(-1/8)*(1,3,4,2)+(1/8)*(1,3)+(-1/8)*(1,3)
    (2,4)+(-1/8)*(1,3,2,4)+(-1/8)*(1,4,3,2)+(1/8)*(1,4)+(-1/8)*(1,4,2,3)+(-1/
    8)*(1,4)(2,3), (1/6)*()+(-1/12)*(2,3,4)+(-1/12)*(2,4,3)+(1/6)*(1,2)(3,4)+(
    -1/12)*(1,2,3)+(-1/12)*(1,2,4)+(-1/12)*(1,3,2)+(-1/12)*(1,3,4)+(1/6)*(1,3)
    (2,4)+(-1/12)*(1,4,2)+(-1/12)*(1,4,3)+(1/6)*(1,4)(2,3) ]
gap> IsCompleteSetOfPCIs(QG,pci);
true
gap> QS5 := GroupRing( Rationals, SymmetricGroup(5) );;
gap> pci:=PrimitiveCentralIdempotentsBySP( QS5 );;
Wedderga: Warning!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
gap> IsCompleteSetOfPCIs( QS5 , pci );
false

The output of PrimitiveCentralIdempotentsBySP contains the output of PrimitiveCentralIdempotentsByStrongSP (4.3-1), possibly properly.


gap> QG := GroupRing( Rationals, SmallGroup(48,28) );;
gap> pci:=PrimitiveCentralIdempotentsBySP( QG );;
Wedderga: Warning!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input! 
gap> Length(pci);    
6
gap> spci:=PrimitiveCentralIdempotentsByStrongSP( QG );;  
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input! 
gap> Length(spci);
5
gap> IsSubset(pci,spci);          
true
gap> QG:=GroupRing(Rationals,SmallGroup(1000,86));
<algebra-with-one over Rationals, with 6 generators>
gap> IsCompleteSetOfPCIs( QG , PrimitiveCentralIdempotentsBySP(QG) );
true
gap> IsCompleteSetOfPCIs( QG , PrimitiveCentralIdempotentsByStrongSP(QG) );
Wedderga: Warning!!!
The output is a NON-COMPLETE list of prim. central idemp.s of the input!
false

4.4 Complete set of orthogonal primitive idempotents from Shoda pairs and cyclotomic classes

4.4-1 PrimitiveIdempotentsNilpotent
‣ PrimitiveIdempotentsNilpotent( FG, H, K, C, args )( operation )

Returns: A list of orthogonal primitive idempotents.

The input FG should be a semisimple group algebra of a finite nilpotent group G whose coefficient field F is a finite field. H and K should form a strong Shoda pair (H,K) of G. args is a list containing an epimorphism map epi from N_G(K) to N_G(K)/K and a generator gq of H/K. C is the |F|-cyclotomic class modulo [H:K] (w.r.t. the generator gq of H/K)

The output is a complete set of orthogonal primitive idempotents of the simple algebra FGe_C(G,H,K) (9.20).


gap> G:=DihedralGroup(8);; 
gap> F:=GF(3);;                     
gap> FG:=GroupRing(F,G);;
gap> H:=StrongShodaPairs(G)[5][1];
Group([ f1*f2, f3, f3 ])
gap> K:=StrongShodaPairs(G)[5][2];
Group([ f1*f2 ])
gap> N:=Normalizer(G,K); 
Group([ f1*f2*f3, f3 ])
gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K);
[ f1*f2*f3, f3 ] -> [ f1, f1 ]
gap> QHK:=Image(epi,H); 
Group([ <identity> of ..., f1, f1 ])
gap> gq:=MinimalGeneratingSet(QHK)[1]; 
f1
gap> C:=CyclotomicClasses(Size(F),Index(H,K))[2];
[ 1 ]
gap> PrimitiveIdempotentsNilpotent(FG,H,K,C,[epi,gq]);
[ (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3)^0)*f1*f2+(Z(3))*f1*f2*f3, 
  (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3))*f1*f2+(Z(3)^0)*f1*f2*f3 ]

4.4-2 PrimitiveIdempotentsTrivialTwisting
‣ PrimitiveIdempotentsTrivialTwisting( FG, H, K, C, args )( operation )

Returns: A list of orthogonal primitive idempotents.

The input FG should be a semisimple group algebra of a finite group G whose coefficient field F is a finite field. H and K should form a strong Shoda pair (H,K) of G. args is a list containing an epimorphism map epi from N_G(K) to N_G(K)/K and a generator gq of H/K. C is the |F|-cyclotomic class modulo [H:K] (w.r.t. the generator gq of H/K). The input parameters should be such that the simple component FGe_C(G,H,K) has a trivial twisting.

The output is a complete set of orthogonal primitive idempotents of the simple algebra FGe_C(G,H,K) (9.20).


gap> G:=DihedralGroup(8);; 
gap> F:=GF(3);;                     
gap> FG:=GroupRing(F,G);;
gap> H:=StrongShodaPairs(G)[5][1];
Group([ f1*f2, f3, f3 ])
gap> K:=StrongShodaPairs(G)[5][2];
Group([ f1*f2 ])
gap> N:=Normalizer(G,K); 
Group([ f1*f2*f3, f3 ])
gap> epi:=NaturalHomomorphismByNormalSubgroup(N,K);
[ f1*f2*f3, f3 ] -> [ f1, f1 ]
gap> QHK:=Image(epi,H); 
Group([ <identity> of ..., f1, f1 ])
gap> gq:=MinimalGeneratingSet(QHK)[1]; 
f1
gap> C:=CyclotomicClasses(Size(F),Index(H,K))[2];
[ 1 ]
gap> PrimitiveIdempotentsTrivialTwisting(FG,H,K,C,[epi,gq]);
[ (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3)^0)*f1*f2+(Z(3))*f1*f2*f3, 
  (Z(3)^0)*<identity> of ...+(Z(3))*f3+(Z(3))*f1*f2+(Z(3)^0)*f1*f2*f3 ]

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 Bib Ind

generated by GAPDoc2HTML