Main Branches

Downloads  Installation  Overview  Data Libraries  Packages  Documentation  Contacts  FAQ  GAP 3 

23 publications using GAP in the category "Functions of a complex variable"

[AW12] Anderson, J. W. and Wootton, A., A lower bound for the number of group actions on a compact Riemann surface, Algebr. Geom. Topol., 12 (1) (2012), 19–35.

[AW14] Anderson, J. W. and Wootton, A., Gaps in the space of skeletal signatures, Arch. Math. (Basel), 102 (2) (2014), 181–190.

[BB+15] Bartholdi, L., Buff, X., Graf von Bothmer, H., and Kröker, J., Algorithmic construction of Hurwitz maps, Exp. Math., 24 (1) (2015), 76–92.

[BKP19] Baumeister, B., Kielak, D., and Pierro, E., On the smallest non-abelian quotient of $\rm Aut(F_n)$, Proc. Lond. Math. Soc. (3), 118 (6) (2019), 1547–1591.

[BC+17] Breda d'Azevedo, A., Catalano, D. A., Karabáš, J., and Nedela, R., Quadrangle groups inclusions, Beitr. Algebra Geom., 58 (2) (2017), 369–394.

[B00] Breuer, T., Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, 280 (2000), xii+199 pages.

[BCT12] Bujalance, E., Cirre, F., and Turbek, P., Symmetry types of cyclic covers of the sphere, Israel J. Math., 191 (1) (2012), 61–83.

[CS17] Catalano, D. A. and Sarti, C., Fano plane's embeddings on compact orientable surfaces, Beitr. Algebra Geom., 58 (4) (2017), 635–653.

[CJ+13] Conder, M. D. E., Jones, G. A., Streit, M., and Wolfart, J., Galois actions on regular dessins of small genera, Rev. Mat. Iberoam., 29 (1) (2013), 163–181.

[FMP13] Fairbairn, B., Magaard, K., and Parker, C., Generation of finite quasisimple groups with an application to groups acting on Beauville surfaces, Proc. Lond. Math. Soc. (3), 107 (4) (2013), 744–798.

[FG+13] Fuertes, Y., González-Diez, G., Hidalgo, R. A., and Leyton, M., Automorphisms group of generalized Fermat curves of type $(k,3)$, J. Pure Appl. Algebra, 217 (10) (2013), 1791–1806.

[G03] Girondo, E., Multiply quasiplatonic Riemann surfaces, Experiment. Math., 12 (4) (2003), 463–475.

[GG+20] Girondo, E., González-Diez, G., Hidalgo, R. A., and Jones, G. A., Zapponi-orientable dessins d'enfants, Rev. Mat. Iberoam., 36 (2) (2020), 549–570.

[GWW10] Gromadzki, G., Weaver, A., and Wootton, A., On gonality of Riemann surfaces, Geom. Dedicata, 149 (2010), 1–14.

[GM98] Guralnick, R. and Magaard, K., On the minimal degree of a primitive permutation group, J. Algebra, 207 (1) (1998), 127–145.

[H18] Hidalgo, R. A., $p$-groups acting on Riemann surfaces, J. Pure Appl. Algebra, 222 (12) (2018), 4173–4188.

[J04] Jamali, A., Deficiency zero non-metacyclic $p$-groups of order less than 1000, J. Appl. Math. Comput., 16 (1-2) (2004), 303–306.

[JSW10] Jones, G. A., Streit, M., and Wolfart, J., Wilson's map operations on regular dessins and cyclotomic fields of definition, Proc. Lond. Math. Soc. (3), 100 (2) (2010), 510–532.

[M14] Moreno-Mejía, I., A canonical curve of genus 17, Results Math., 66 (1-2) (2014), 65–86.

[MS19] Müller, J. and Sarkar, S., A structured description of the genus spectrum of Abelian $p$-groups, Glasg. Math. J., 61 (2) (2019), 381–423.

[S18] Swinarski, D., Equations of Riemann surfaces with automorphisms, in Higher genus curves in mathematical physics and arithmetic geometry, Amer. Math. Soc., [Providence], RI, Contemp. Math., 703 ([2018] \copyright 2018), 33–46.

[WW+18] Wang, C., Wang, S., Zhang, Y., and Zimmermann, B., Bordered surfaces in the 3-sphere with maximum symmetry, J. Pure Appl. Algebra, 222 (9) (2018), 2490–2504.

[Z99] Zimmerman, J., The symmetric genus of $2$-groups, Glasg. Math. J., 41 (1) (1999), 115–124.